
sensors

Article

An Underwater Image Enhancement Method for
Different Illumination Conditions Based on Color
Tone Correction and Fusion-Based Descattering

Yidan Liu 1,2, Huiping Xu 2,*, Dinghui Shang 1,2, Chen Li 2 and Xiangqian Quan 2

1 School of Ocean and Earth Science, Tongji University, Shanghai 200092, China; 1510853@tongji.edu.cn (Y.L.);
1410845@tongji.edu.cn (D.S.)

2 Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Hainan 572000, China;
lic@idsse.ac.cn (C.L.); quanxq@idsse.ac.cn (X.Q.)

* Correspondence: xuhp@idsse.ac.cn

Received: 19 November 2019; Accepted: 10 December 2019; Published: 16 December 2019 ����������
�������

Abstract: In the shallow-water environment, underwater images often present problems like color
deviation and low contrast due to light absorption and scattering in the water body, but for deep-sea
images, additional problems like uneven brightness and regional color shift can also exist, due to
the use of chromatic and inhomogeneous artificial lighting devices. Since the latter situation is
rarely studied in the field of underwater image enhancement, we propose a new model to include
it in the analysis of underwater image degradation. Based on the theoretical study of the new
model, a comprehensive method for enhancing underwater images under different illumination
conditions is proposed in this paper. The proposed method is composed of two modules: color-tone
correction and fusion-based descattering. In the first module, the regional or full-extent color
deviation caused by different types of incident light is corrected via frequency-based color-tone
estimation. And in the second module, the residual low contrast and pixel-wise color shift problems
are handled by combining the descattering results under the assumption of different states of the
image. The proposed method is experimented on laboratory and open-water images of different
depths and illumination states. Qualitative and quantitative evaluation results demonstrate that
the proposed method outperforms many other methods in enhancing the quality of different types
of underwater images, and is especially effective in improving the color accuracy and information
content in badly-illuminated regions of underwater images with non-uniform illumination, such as
deep-sea images.

Keywords: underwater image enhancement; color correction; contrast enhancement; underwater
artificial illumination; deep-sea image

1. Introduction

As one of the most direct approaches to perceive the world below the surface, optical images can
provide plenty of useful information for various underwater applications, such as marine geology
surveys, underwater mining, fishery and marine archaeology [1–5]. However, compared with images
from terrestrial environment, underwater images often suffer from severe degradation problems,
which can impact their reliability and utility in underwater applications. The reason of underwater
image degradation is in many aspects. The first one is the degradation caused by the water body.
As shown in Figure 1, light with different wavelengths is attenuated in different ratios in the water
body. This uneven attenuation leads to ubiquitous color bias in underwater images. Suspended
particles in water can also cause degradation in underwater images. As depicted in Figure 1, particles
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near the transmission path from photographed scene to camera cause small-angle scattering (forward
scattering) of incident light, and particles in surrounding environment induce ambient light into the
camera lens by large-angle scattering (backscattering). These redirections of light lead to blurriness
and hazy looks in underwater images. As the going deep of underwater explorations, artificial lighting
devices are added to provide necessary illumination for dark deep-sea environment, as depicted in
Figure 1. Due to the limited range and inhomogeneity of artificial illumination, problems like dark
background and bright spot are often seen in deep-sea images. Besides, if the light source is chromatic,
the color balance of underwater images will also be affected. To facilitate the usage of underwater
images, these degradation problems should be addressed.
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To date, there have been many attempts to improve the quality of underwater images. According
to recent literature reviews [6,7], they are usually classified into two main categories: underwater
image enhancement and underwater image restoration. Methods of underwater image enhancement
require no prior knowledge about the environment and mainly aim at improving the visual quality of
underwater images. For example, in [8], Iqbal et al. used histogram stretching in the RGB color space
to restore the color balance, and the stretching of saturation and intensity in the HSI color space to
improve the colorfulness and contrast of underwater images. In [9], Ancuti et al. proposed a multi-scale
fusion method that combined the result images of color correction and contrast enhancement by four
weight maps about image luminance, contrast, chromatic and saliency. In [10], Ghani and Isa reduced
the color deviation in underwater images by using the characteristics of Rayleigh distribution, and
improved the image saturation and contrast by stretching corresponding components in the HSV color
space. In [11], Li et al. proposed a weakly supervised color transfer method to correct color distortion
in underwater images.

Underwater image restoration methods, on the other hand, attempt to recover the true scene
radiances from degraded underwater images. These methods use models to analyze the mechanism of
underwater image degradation, and restore the images by reversing the degradation process and using
model parameters deduced via prior knowledges. In these methods, the simplified image formation
model (IFM) is frequently used for its effectiveness and simplicity [6], and due to its similarity to the
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model of outdoor hazy image, the Dark Channel Prior (DCP) from outdoor image dehazing [12] is
also widely introduced in methods based on this model. In [13], Galdran et al. proposed the Red
Channel Prior based on the DCP to recover the lost contrast in underwater images. This new prior
reversed the red channel to deal with the strong attenuation of red light in the water body. In [14],
Drews Jr et al. proposed the Underwater DCP (UDCP) from the traditional DCP by excluding the
red channel in producing the prior. Apart from the DCP-related priors, there are also other priors
proposed for underwater image restoration. In [15], Carlevaris-Bianco et al. proposed a prior by
comparing the maximum intensity of the red channel to the maximum intensity in the green and
blue channels over a small image patch. In [16] and [17], Peng et al. defined a new prior from image
blurriness and used it to improve the quality of images from various underwater environments. There
are also some other methods that combined the features of former two categories. For example, in the
work of Hou et al. [18], the UDCP is used together with quad-tree subdivision and Gamma correction
to improve the contrast and saturation of underwater images. And in [19], Qing et al. proposed a
comprehensive method with adaptive dehazing and adaptive histogram equalization to remove the
scattering and restore the color balance of underwater images. Usually for these methods, no strict
classification is made.

From the study of the relevant literature, we have also noticed that most of the published works
are designed for solving water-caused problems, i.e., color deviation and low contrast caused by the
attenuation and scattering of light in the water body, while only a few of them have considered the
degradation caused by artificial lighting. Moreover, in latter works, the study of lighting-caused
degradation is also seemed to be limited in the range of local problems like bright spots [13] or
vignetting [20], but more general problems like the influence to the distribution of color and brightness
in the whole image range are rarely studied.

In this paper, we propose an underwater image enhancement method for different illumination
conditions based on a new model of underwater image degradation. In the new model, illumination is
included in the modeling of the single-pixel intensity, so its influences to local regions as well as the
whole image range are covered in this model. The proposed method is composed of two components:
color-tone correction and fusion-based descattering. The first component is based on a frequency-based
color-tone estimation strategy. By changing its application range and using necessary modification
filters, it can be used to correct the global color cast in uniformly-illuminated images and regional
color cast in non-uniformly-illuminated images. The second component is used to solve the residual
degradation problems that are related to the scene-camera distance. This component adopts a fusion
strategy to enhance images under different states. Experiments on laboratory and open-water images
of different depths and lighting conditions prove the effectiveness of the proposed method. According
to qualitative and quantitative evaluation results, the proposed method can improve the color balance
and contrast of underwater images, and restore the color accuracy and visibility of badly-illuminated
regions in non-uniformly illuminated images.

The rest of this paper is organized as follows: In Section 2, the enhancement of underwater images
with different illumination conditions is studied theoretically based on the model study of underwater
images with arbitrary illumination conditions. In Section 3, the overall framework and individual
components of the proposed method are introduced. In Section 4, the proposed method is evaluated on
images from shallow water, laboratory and deep sea images, with comparison to three state-of-the-art
underwater image enhancement and restoration methods. And in the last section, conclusions of this
work are presented.

2. Problem Formulation and Model Improvement

To study the solution of underwater image degradation problems caused by the water body and
the light source, the Jaffe–McGlamery model [21,22], a general model of underwater image formation,
is reviewed first. In the Jaffe–McGlamery model, the irradiance of a monochromatic underwater image
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is formulated as the linear combination of following three components: the direct component Ed, the
forward scattering component E f s and the backscattering component Ebs, i.e.,

E(x|λ) = Ed(x|λ) + E f s(x|λ) + Ebs(x|λ), (1)

where x represents an image point, and λ is the wavelength of incident light. By weighing with
the spectral response [23] of the detector, the monochromatic irradiances of the whole spectrum
are integrated and transformed into the pixel values of an image in the RGB color space, i.e.,
Ik(x) =

∫
λ

Qk(λ)φk(λ)E(x|λ)dλ, where φk(λ) is the spectral response of channel k, k ∈ {R, G, B},
and Qk(λ) is a factor about the imaging system and the unit conversion from light irradiance to
pixel intensity.

In the model of monochromatic image irradiance (i.e., Equation (1)), the direct component
Ed(x|λ) corresponds to the irradiance that has been exponentially decayed after being reflected by the
photographed scene, i.e.,

Ed(x|λ) = EI(x|λ)M(x
∣∣∣λ)e−c(λ)d(x)κ(x), (2)

where EI(x|λ) is the irradiance of incident light on the scene point, M(x|λ) is the reflectance of the
scene point, c(λ) is the volume attenuation coefficient, d(x) is the distance between the scene point and
the camera, and κ(x) represents other parameters of the imaging system. According to [22], EI(x|λ) is
a function of the light source irradiance and the attenuation along the transmission path from the light
source to the scene. Using BP to represent the beam pattern of the light source, γ to represent the angle
from the light source to the scene point, and D to represent the distance between the scene point and the
light source, the incident irradiance EI(x|λ) is calculated as EI(x

∣∣∣λ) = BP(x|λ)cosγ(x) e−c(λ)D(x)/D2(x) .

The formula of κ(x) is given by κ(x) = cos4 ϑ(x) · Tl
4 f 2

n
·

[
d(x)−Fl

d(x)

]2
, where ϑ is the angle from the camera

to the scene point, Tl is the transmittance of the lens, and fn is the F number of the camera of focal
length Fl.

The forward scattering component E f s(x|λ) corresponds to the reflected light with small-angle
scattering. It is calculated by convoluting the direct component with a point spread function g(x

∣∣∣λ) :

E f s(x|λ) = Ed(x|λ) ∗ g(x|λ). (3)

Here, “∗” denotes convolution, g(x|λ) =
[
e−G(λ)d(x)

− e−c(λ)d(x)
]
F
−1

{
e−B(λ)d(x) f

}
, where G and B are

empirical constants, F −1
{·} represents the inverse Fourier transform, and f is radial frequency.

According to [22], a more accurate representation of EI in Equation (2) should also include the forward
scattering process, i.e., EI

′(x|λ) = EI(x|λ) + EI(x|λ) ∗ g(x|λ), where EI
′ represents the more accurate

representation of EI.
The final component, backscattering Ebs(x|λ), corresponds to the light that enters the camera

without being reflected by the scene. In its original form, it is calculated as the superposition of the
illuminated volume elements weighted by the value of the volume-scattering function [22]:

Ebs(x|λ) =
N∑

i=1

e−c(λ)Ziβ(φ)Es(x|λ)κ′(x), (4)

where β(φ) is the volume-scattering function, Es(x|λ) is the irradiance received by the small
volume element in layer i, Zi is the distance from the layer i to the camera, and κ′(x) represents
parameters of the camera system. According to [22], Es(x

∣∣∣λ) , like EI(x
∣∣∣λ) of Equation (2), is a

function of the source light and the attenuation along the source-to-scene path; mathematically,
Es(x

∣∣∣λ) = BP(x|λ) e−c(λ)Di(x)/D2
i (x) , where Di is the distance from the element in layer i to the light

source. Forward scattering should also be included for a more accurate calculation of Es. κ′(x) is
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similar to κ(x) in Equation (2) and is calculated by κ′(x) = cos3 ϑi(x) ·
π∆ZTl

4 f 2
n
·

[Zi−Fl
Zi

]2
, where ϑi is the

angle from the camera to the element in layer i, and ∆Z is the sickness of the layer.
In [24], a simplified formula for calculating backscattering in uniformly illuminated conditions is

provided, which is
Ebs(x|λ) = Ebs,∞(λ)

[
1− e−c(λ)d(x)

]
, (5)

where Ebs,∞ represents the backscattering of infinite distance. According to [24], it is a function of
incident irradiance, the reciprocal of volume attenuation coefficient and the full-angle integral of

volume scattering function, i.e., Ebs,∞(λ) ∝
Es(λ)
c(λ)

∫
Θ β(φ)dφ.

Clearly, in the Jaffe–McGlamery model, water-caused degradation and the influence of light
source are well covered, which makes it a good simulation tool for general underwater images. But
for the task of underwater image restoration, its complexity hinders its usage. Instead, a simplified
version, the IFM model, is more commonly used to restore underwater images, as mentioned in the
former section. The formula of the IFM model is given as follows:

Ik(x) = Jk(x)tk(x) + Bk
[
1− tk(x)

]
, k ∈ {R, G, B} (6)

where Ik(x) is the underwater image, Jk(x) is the target image that represents scene radiance, tk(x) is
the transmission map (TM) that equals to e−ckd(x), and Bk is the background light (BL). For IFM-based
methods, the restoration of an underwater image is achieved by estimating and eliminating TM and
BL via proper priors about the input underwater image.

By comparing the Jaffe–McGlamery model and the IFM model, it’s very clear that the IFM model is
an approximation of the Jaffe–McGlamery model in the case of uniform illumination. In the IFM model,
the product of EI(x|λ) and M(x|λ) is replaced by Jk(x), and the original form of the backscattering
component is replaced by the simplified formula in Equation (5). The forward scattering component
and the other parameters are omitted because of their relatively low influence on the value of pixel
intensity, and the integral of irradiances of the whole spectrum is simplified by using corresponding
parameters of each color channel (i.e., ck and Bk) to keep the solvability of the model. Apparently, the
IFM model can be invalid in the condition of inhomogeneous illumination, because the condition of
using Equation (5) is not satisfied. Moreover, the estimated scene radiance can also be inaccurate due
to the discrepancy of EI from normal daylight. To improve the model accuracy while remaining its
simplicity, we make a small change to the IFM model by adding a parameter to represent incident light.
The modified model is given as follows:

Ik(x) = Lk(x)Jk(x)tk(x) + bk(x), k ∈ {R, G, B}. (7)

Here Lk(x) stands for the incident light of the scene that corresponds to EI(x|λ) for Ed(x|λ). bk(x)
corresponds to the Ebs(x|λ) in Equation (4). In the case of uniform illumination, it is simplified as
Bk

[
1− tk(x)

]
, as in the IFM model.

For the case of inhomogeneous illumination, the simplification of backscattering cannot be directly
applied, but based on the assumption that light field changes gradually in space, the inhomogeneous
illumination can be approximated as homogeneous in small regions. By applying the simplification of
backscattering to these small regions, the above model is transformed into:

Ik(x) = Lk(Ωx)Jk(x)tk(x) + Bk(Ωx)
[
1− tk(x)

]
, k ∈ {R, G, B}, (8)

where Ωx represents a small neighborhood of x that receives homogeneous illumination. Apparently,
the case of homogenous illumination that is assumed in the IFM model is a special case of this
new model.

Due to the uncertainty and spatial variance of Lk(Ωx) and Bk(Ωx), priors for solving Jk(x) from the
new model are hard to derive. However, since Lk(Ωx) and Bk(Ωx) mainly cause color deviation in the
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regional or full-image scale, their influence can be suppressed by the idea of white balance under the
Gray World assumption. For an image with uniform illumination and invariant scene-camera distance,
i.e., Ik(x) = Lk Jk(x)tk + Bk

(
1− tk

)
, white balance can be easily applied with a linear transformation

whose general form is Ik
T(x) =

[
Ik(x) −Hk

1

]
/Hk

2, because all the terms that result in color deviation
in Ik(x) (i.e., Lk, tk and Bk) are global constants in this model. In the general formula of linear
transformation, Hk

1 and Hk
2 are abstract parameters that respectively represent the general effects

of offsetting and scaling processes. These abstract parameters need to be concretized according to
the color-deviation characters of Ik(x) to ensure an unbiased transformation result. For example, in
the color-tone correction method presented in the next section, the offsetting (Hk

1) and scaling (Hk
2)

processes are performed with a subtraction of the biased color tone and a classic histogram stretching,
and the subtracted color-tone image is estimated on the basis of the frequency character of Ik(x) to
approximate the true color-deviation condition of Ik(x).

For an image with uniform illumination and variant scene-camera distance, i.e., Ik(x) =

Lk Jk(x)tk(x) + Bk
[
1− tk(x)

]
, a similar linear transformation can remove the color deviation resulted

from Lk and Bk, and partly from tk(x), because former two terms are spatial constants and the last term
is not. For the case of non-uniform illumination, i.e., Ik(x) = Lk(Ωx)Jk(x)tk(x) + Bk(Ωx)

[
1− tk(x)

]
, the

color cast caused by Lk(Ωx) and Bk(Ωx) can still be suppressed by linear transformation in region Ωx,
based on the assumption that the illumination is uniform in Ωx. But in practice, the criterion of uniform
illumination cannot be applied very strictly, because the Gray World assumption can be invalid in
extremely small regions with colorful objects. So instead of suppressing the regional constants Lk(Ωx)

and Bk(Ωx), it is more practical to apply linear transformation by pixels, with corresponding parameters
estimated from loosely-defined uniform regions and refined by smoothing filters to compensate the
inter-regional differences.

After linear transformation, the global or regional color-tone deviation related to incident light is
suppressed. To solve the residual problems about tk(x), the result image is further transformed into
the following form:

Ik
T(x) =

Lk(Ωx)Jk(x)−Hk
1(x)

Hk
2(x)

tk(x) +
Bk(Ωx)−Hk

1(x)

Hk
2(x)

[
1− tk(x)

]
= Jk

T(x)t
k(x) + Bk

T(x)
[
1− tk(x)

]
, k ∈ {R, G, B}.

(9)

Apparently, this image is in a similar form as the IFM model. Assuming a good linear transformation,
both Jk

T(x) and Bk
T(x) of this image are supposed to be free from color deviations caused by the

incident light, i.e., Jk
T(x) is close to Jk(x) and Bk

T(x) is a constant. So the restoration of Jk(x) can be
applied by estimating and eliminating tk(x) (TM) and Bk

T (BL) from image Ik
T(x). But to ensure a good

estimation of Jk(x), priors should be choosen carefully to fit the character of Ik
T(x). Moreover, a bad

linear transformation is always possible, no matter how robust the transformation method is, so the
situation of Jk

T(x) being deviated from Jk(x) should also be considered in the restoration process.

3. Proposed Method

Based on former analysis, the enhancement of an underwater image with uncertain illumination
condition should include two parts: one for suppressing the color deviations originated from the
light source, and the other for handling the residual problems for scene radiance estimation. In this
section, an enhancement method for underwater images with different illumination conditions is
proposed accordingly, with two modules named color-tone correction and fusion-based descattering.
The general workflow with key steps in each module is presented in Figure 2. In the following content,
details of these modules are introduced.
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3.1. Color-Tone Correction

3.1.1. General Routine for Uniformly-illuminated Underwater Images

As discussed in the former section, the basis of correcting deviated color tone is to find proper
parameters to perform linear transformation of underwater image intensities. Based on our observation,
the most frequent color in an equidistant underwater image makes a good estimation of the deviated
color tone of this image, and by subtracting it from the original image, an image with achromatic color
tone that fits the Gray World assumption can be obtained. To find the most frequent color, we calculate
the average Fourier frequency of the input underwater image of all channels and apply inverse Fourier
transformation to its maximum value. Details of applying this process is provided in Algorithm 1.
In Figure 3a–c, an example of obtaining the deviated color tone from a close-up underwater image
captured in our experimental pool is presented.

Algorithm 1. Full-extent color tone estimation for an uniformly illuminated image

Input: Uniformly illuminated image Ik , k ∈ {R, G, B}.
Output: Color-tone image Tk.

1. Calculating the Fourier frequency of the input image: FIk
← F

{
Ik

}
. F {·} represents Fourier transform.

2. Calculating the average frequency of all channels: avgFI ←
(
FIR + FIG + FIB

)
/3 .

3. Defining the max-frequency filter: Filt ← [avgFI == max(avgFI)] .
4. Applying the max-frequency filter on the input image: FTk

← FIk. ∗ Filt .

5. Calculating the intensity of color tone: Tk
← F

−1
{
FTk

}
, F−1

{·} represents inverse Fourier transform.

After calculating the deviated color tone in the full image-range, the color-balanced image is
obtained by subtracting the deviated color tone from the original image. Result of this step for the
original image in Figure 3a is given in Figure 3d. Apparently, this image is much darker than normal
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images. Here we use a linear histogram stretching to restore the right intensity range. The basic
function of linear histogram stretching [25] is given as follows:

Iout = (Iin − a)
(

c− d
b− a

)
+ d, (10)

where Iin and Iout represent the input and output pixel intensities, respectively, a, b, c and d are the
minimum and maximum intensity of the input image and the targeted output image, respectively.
In this paper, c and d are set to 255 and 0, and a and b are selected in 0~10% and 90~100% in
the whole histogram of the input image depending on the brightness level of the original image.
The brightness-adjusted result of the image in Figure 3d is given in Figure 3e. Obviously, the result
image has more balanced color tone than the original underwater image.
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Figure 3. (a) A close-up underwater image captured in a water-filled pool. (b) Estimated color tone of 
(a). (c) The average Fourier frequency of (a). The black box in it locates the maximum frequency. (d) 
Color-tone subtracted result of (a). (e) Brightness-adjusted result of (d). 

Figure 3. (a) A close-up underwater image captured in a water-filled pool. (b) Estimated color tone
of (a). (c) The average Fourier frequency of (a). The black box in it locates the maximum frequency.
(d) Color-tone subtracted result of (a). (e) Brightness-adjusted result of (d).

For underwater images with uniform illumination and variant scene-camera distance, the above
method removes the color deviation induced by the incident light and partly removes the deviation
caused by the attenuation along the scene-camera path, as mentioned in the theoretical analysis in
former section. In Figure 4, an example of applying the proposed color tone correction method on a
uniformly-illuminated and non-equidistant underwater image from Bubble Vision [26] is presented.
Compared with the close-up case, the proposed color-tone correction method has managed to remove
the global color shift in the input image but left a large amount of regional color deviation and scattering
in the processed result. These problems are caused by the variant scene-camera distance, i.e., variant
transmission rate of the input image, and will be handled in next module of image descattering.
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3.1.2. Regional Color-Tone Estimation for Underwater Images with Non-Uniform Illumination

For underwater images with non-uniform illumination, the key to address the problem of
illumination variation is to transform it into the color-tone correction of uniformly-illuminated regions,
but to define these regions, the spatial distribution of illumination is supposed to known. To break this
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cycle, we use a spatial Gaussian filter to produce a blurred version of the input image to approximate the
real color-tone deviation, then the regions with nearly-uniform illumination are obtained by applying
K-means clustering to the raw color-tone image. To ensure spatial continuity and avoid unwanted
details, the used spatial Gaussian filter should be large enough. In this paper, the standard deviation
of the Gaussian filter is set to about 1/8 of the shorter-side length of the input image, and the filter
size is set to about 4 times the value of standard deviation. The number of clusters is determined
intuitively according to the light pattern in the original image, but in most cases, at least three clusters
are needed to define a bright region, a dim region, and an intermediate region. After the definition
of uniformly illuminated regions, color-tone deviations of these regions are estimated with the same
frequency-based method as in the former case. To avoid discontinuities in the ultimate color tone
corrected result, the obtained regional color tone image is modified with another spatial Gaussian filter
using the same parameters as in the first step to remove noticeable boundaries and with a guided
filter [27] to refine the shape of light patterns, in case these patterns are changed in the previous step. A
detailed description of this procedure is given in Algorithm 2. In Figure 5a–e, an example of estimating
deviated color tone in an underwater image with inhomogeneous artificial illumination is presented
with images of key steps of this procedure. In this experiment, the input image was captured in
Mariana at the depth of 8200 m during the TS-03 Cruise of the Chinese Academy of Sciences, with
illumination completely provided by inhomogeneous and chromatic artificial light sources.

Algorithm 2. Regional color-tone estimation for a non-uniformly illuminated image

Input: Non-uniformly illuminated image Ik , k ∈ {R, G, B}.
Output: Color-tone image Tk.

1. Applying a spatial Gaussian filter to Ik to get a raw color-tone image Gk.

2. Segmenting Ik into M regions by the K-means method based on the Euclidian distance of colors in Gk.
3. Initializing Tk with an all-zero matrix of the same size as Ik.
4. For m = 1 to M do
5. Reshaping the pixels of region m of Ik into vector Vk

m.
6. Estimating the color tone Tk

m from vector Vk
m by using the frequency-based method in Algorithm 2.

7. Replacing the intensity values of pixels in region m of Tk with Tk
m.

8. End for
9. Applying a spatial Gaussian filter and a guided filter to remove boundaries and refine Tk. The guidance

image for the guided filtering is the input image Ik.

After the calculation of deviated color tone, the color-tone corrected result is obtained in the same
way as in the former case, i.e., subtracting the estimated color tone from the original image and apply
linear histogram stretching to restore a normal brightness level. In Figure 5f, the color-tone corrected
result of the original image in Figure 5a is presented. For comparison, the color-tone estimation and
correction results obtained via former method for uniformly-illuminated underwater images are also
provided in Figure 5g,h. By comparing these two color-tone-corrected results, it is very clear that using
the regional color-tone estimation method proposed in this subsection can better restore the color and
brightness balance of the non-uniformly illuminated image, and improve the visibility in regions with
limited illumination.
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Figure 5. (a) An underwater image that was captured in deep sea with only inhomogeneous artificial 
illumination. (b) A raw color tone estimation of (a) obtained by applying spatial Gaussian filter. (c) 
Segmenting (a) into regions with nearly-uniform illumination by K-means. (d) A combination of 
estimated color tones of all regions. (e) Ultimate color-tone image obtained by applying spatial 
Gaussian filter and guided filter to (d). (f) Color-tone corrected result of (a) by using the color tone in 
(e). (g) Estimated color-tone image from (a) by applying color-tone estimation method for uniformly-
illuminated images. (h) Color-tone corrected result of (a) by using the color tone in (g). 

3.2. Fusion-Based Descattering 

As shown in Figures 4 and 5, a non-equidistant underwater image after being applied with color-
tone correction can still present some degradation problems like scattering and regional color 
deviation, due to the unsettled problems like the variation of transmission rate. According to the 
theoretical analysis in Section 2, these degradation problems can be solved by image descattering, 
i.e., estimating TM and BL from input image and recovering scene radiance from it. Mathematically, 
the descattering of a color-tone-corrected image can be represented with:   𝐽்(𝑥) = 𝐼்(𝑥) − 𝐵்𝑡(𝑥) + 𝐵், (11)

where 𝑡(𝑥) is the TM, 𝐼்(𝑥), 𝐽்(𝑥) and 𝐵் are respectively the linear transformation results of the 
original image 𝐼(𝑥) , the deviated scene radiance 𝐿(𝛺௫)𝐽(𝑥)  and the deviated BL 𝐵(𝛺௫) , as 
demonstrated in Equation (9).  
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Figure 5. (a) An underwater image that was captured in deep sea with only inhomogeneous artificial
illumination. (b) A raw color tone estimation of (a) obtained by applying spatial Gaussian filter.
(c) Segmenting (a) into regions with nearly-uniform illumination by K-means. (d) A combination
of estimated color tones of all regions. (e) Ultimate color-tone image obtained by applying spatial
Gaussian filter and guided filter to (d). (f) Color-tone corrected result of (a) by using the color
tone in (e). (g) Estimated color-tone image from (a) by applying color-tone estimation method for
uniformly-illuminated images. (h) Color-tone corrected result of (a) by using the color tone in (g).

3.2. Fusion-Based Descattering

As shown in Figures 4 and 5, a non-equidistant underwater image after being applied with
color-tone correction can still present some degradation problems like scattering and regional color
deviation, due to the unsettled problems like the variation of transmission rate. According to the
theoretical analysis in Section 2, these degradation problems can be solved by image descattering, i.e.,
estimating TM and BL from input image and recovering scene radiance from it. Mathematically, the
descattering of a color-tone-corrected image can be represented with:

JT(x) =
IT(x) − BT

t(x)
+ BT, (11)

where t(x) is the TM, IT(x), JT(x) and BT are respectively the linear transformation results of the original
image I(x), the deviated scene radiance L(Ωx)J(x) and the deviated BL B(Ωx), as demonstrated in
Equation (9).

Essentially, by applying this descattering process, the ultimate goal is to achieve a good estimation
of J(x) by recovering JT(x) from IT(x). Considering the uncertain states of JT(x) with respect to the
true J(x), the following three cases are included in the descattering process:

(1) Case of Dim & Scattering images (Case DS): JT(x) is close to J(x), and BT is low. In this case, distant
regions of IT(x) are low-contrast and dim, due to the low level of incident and backscattering
light. Considering the relativeness between the low contrast and long scene-camera distance, TM
and BL can be estimated based on the level of intensity variation of input image [17].

(2) Case of Bright & Scattering images (Case BS): JT(x) is close to J(x), and BT is bright. For this case,
the high level of ambient light causes high intensity and low contrast in distant regions. Since
this case is very close to the outdoor hazy image, the estimation of TM and BL can be done based
on the Dark Channel Prior [12].

(3) Case of Color-Cast images (Case CC): JT(x) is largely biased from J(x). This is a complement case
for images with under- or over-corrected color tone. Since the low-contrast trait is still valid in this
case, BL is estimated in the same way as in Case DS. For the calculation of TM, the estimation of
scene-camera distance is made in the red channel, because red light is more sensitive to distance
change in underwater environment.



Sensors 2019, 19, 5567 11 of 22

Since no hard boundaries exist between these three cases, the descattering results of these cases
are combined together to form an ultimate enhancement result. The overall workflow of this module is
briefly shown in Figure 6. In the following content, details of this workflow are presented.
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3.2.1. Descattering of Case DS

As mentioned above, distant regions of this case are dim and low-contrast. Since BL usually
corresponds to the farthest region, it can be estimated by finding the region with the lowest intensity
variation. The definition of regional intensity variation (RIV) is given as follows, which is modified
from the “blurriness” feature defined in [17]:

PRIV(x) = 1−N

G
H

max
y∈Ωx

1
n

n∑
i=1

∣∣∣PNG(y) −Gri,ri(y)
∣∣∣


. (12)

Here PNG represents the normalized grayscale version of input image. Gri,ri is obtained by filtering PNG
by an ri × ri spatial Gaussian filter with variance r2

i (ri = 2in+ 1, n is set to 4). This image represents the
average intensity level of surrounding region of a given pixel. Ωx represents a square neighborhood of
pixel x, whose size is about 1.5% of the input image. And functionsH{·}, G{·} andN{·} are respectively
hole-filling operator, guided filtering function and min-max normalization function. By applying this
calculation, the level of the regional variation of a pixel is quantified by a 0-1 number with higher
values representing lower variations.

The candidates of BL can be found in the region with the highest RIVs. To robustly locate this
region, a quad-tree subdivision [17] is applied to PRIV(x). Based on our experiments, an efficient
estimation of BL can be made by setting the ultimate region size to 0.1% of the input image, so the
iteration time is usually set to 5. The value of BL is obtained by calculating the average value of pixel
intensities in candidate region. Mathematically,

BT,DS = mean(IT(Ωx)), where Ωx = argmax
x (QT)

(PRIV(x)). (13)

Since PRIV(x) is a normalized quantification of the level of intensity variation, it can be seen as an
approximation of the relative distance between scene and camera, and used for the calculation of TM.
The formula of TM estimation is given by:

tDS(x) = e−αPRIV(x)−β, (14)
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where α and β are used to control the variation range of TM. In this paper, their values are set as 0.95
and 0, respectively.

Considering the uneven-attenuation nature of light underwater, the TM of different channels
should be set differently. Based on the theoretical analysis in [24], the relationship of TMs of different
channels is

ln
(
tk1
DS(x)

)
ln

(
tk2
DS(x)

) =
Bk2

T,DS

(
pλk1 + q

)
Bk1

T,DS (pλk2 + q)
, (15)

where k1, k2 ∈ {R, G, B} and k1 , k2, p = −0.00113, q = 1.62517, λR = 620 nm, λG = 540 nm and
λB = 450 nm. Since the red channel is most sensitive to underwater attenuation, the TM calculated
in Equation (14) is assigned to the red channel, and the other two TMs are derived from it based on
Equation (15).

The final step of descattering is to recover scene radiance from the given image. The basic formula
of this process is shown in Equation (11), but for improving the robustness of scene-radiance recovery,
a lower bound of TM is used to avoid dividing extremely small values [12]. The formula of this step is
given as follows:

JT,DS(x) =
IT(x) − BT,DS

max(t0, tDS(x))
+ BT,DS. (16)

where t0 is the lower bound of TM and is set to 0.1 in this paper.
In the first row of Figure 6, an example of applying descattering to Case DS is shown. Following

the direction of arrows, the first image is the map of PRIV(x), the second image shows the color of BT,DS,
the third image is the tDS(x), and the last image is the recovered JT,DS(x). The red box in the first image
indicates the candidate region of BL estimation. Compared to the input image at the far left of Figure 6,
the recovered image is much brighter and has better contrast, especially in the background areas.

3.2.2. Descattering of Case BS

The descattering of Case BS is similar to the dehazing process due to the similarity of Case BS and
outdoor hazy images. According to the dehazing method in [12], both BL and TM are estimated from
the dark channel of input image to avoid the interference of bright objects in the foreground, but based
on former calculation, the estimation of BL can be simplified. As mentioned in the previous subsection,
RIV is related to the variation level of pixel intensities within a given region. Since foreground regions
are better contrast and richer in details, their RIVs tend to be lower than background regions, so
by adding this feature to image intensity, foreground regions can be excluded and pixels with high
brightness and long distance can be located. Mathematically, the newly derived feature is given by:

PN(x) = [PNG(x) + PRIV(x)]/2. (17)

Candidates of BL are then obtained by finding the top 0.1% pixels in PN(x), and the value of BL is
calculated from the average of candidate intensities, i.e.,

BT,BS = mean(IT(Ωx)), where Ωx = argmax
x (0.1%)

(PN(x)). (18)

The estimation of TM is similar to that in DCP-based dehazing method [12], which includes
dividing the input image with BL and calculating the Dark Channel from it. The formula of TM
calculation is given as follows:

tBS(x) = 1− σ min
k∈{R,G,B}

[
min
y∈Ωx

(
Ik
T(y)/Bk

T,BS

)]
, (19)

where σ is used to preserve a small portion of scattering for human eyes to perceive depth, and its
value is set as 0.95 in this paper. The size of Ωx is the same as in the calculation of PRIV(x).
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Due to the uneven-attenuation of light in water and high sensitivity of red light, the tBS(x)
calculated from Equation (19) is only assigned to the red channel and processed with Equation (15) to
derive TMs for the other two channels, as has been done for Case DS. The recovery of scene radiance
is also similar, by replacing the BL and TM in Equation (16) with those from this subsection, the
scene radiance of this case is obtained. The recovered scene radiance is denoted as JT,BS. The sample
images of this case is shown in the second row of Figure 6 with the same order as in the previous case.
As shown by these images, the main function of this case is to reduce the intensities in distant regions
and produce a higher-contrast result.

3.2.3. Descattering of Case CC

As mentioned earlier, the estimation of BL in this case is the same as that in Case DS, due to the
low contrast of distant regions caused by backscattering, and for the estimation of TM, the red channel
is used because it is more sensitive to distance change in underwater environment than the other
two channels.

As the RIV in Case DS, the intensity of red channel is used to produce a rough estimation of the
relative distance between the scene and the camera. Since it attenuates severely, we use its regional
maximum to indicate the distance of corresponding pixel. Likewise, it is also processed with a guided
filter to remove the block artifact and a min-max normalization function to map its value to the range
of 0-1. Mathematically, the relative distance calculated from the red channel is defined as:

dR(x) = 1−N
{
G

{
max

y∈Ω(x)

(
IR
T (y)

)}}
. (20)

The size of Ωx here is still the same as that for calculating PRIV(x).
With the relative distance calculated, TM of this case is obtained by replacing the PRIV(x) in

Equation (14). The following process is identical with former two cases, in which the calculated TM is
assigned to the red channel and used to derive the values for the other two channels, and the scene
radiance is recovered by replacing corresponding parameters in Equation (16). The recovered scene
radiance is denoted as JT,CC.

Images of this case is shown in the last row of Figure 6. Since the BL of this case is the same as that
in Case DS, the resulted images of these two cases has similar color tones. But due to the difference
of TM estimation, the descattering of this case emphasizes more on color correction than contrast
improvement, which leads to a plainer result than Case DS.

3.2.4. Image Fusion

Since there is no hard boundaries between the previous three cases, all of the descattered images
are fused together to form a final enhancement result. Inspired by [17], these images are fused linearly
with weights calculated from two sigmoid functions which respectively describe the level of brightness
and color balance of the input image. The formula of image fusion is given as follows:

J f usion = θ1 · JT,BS + (1− θ1) · [θ2 · JT,CC + (1− θ2) · JT,DS ], (21)

where θ1 is a sigmoid function related to the general brightness level of input image:

θ1 =
{
1 + exp[−ω(avg(IT) − τIM)]

}−1, (22)

with ω controls the flatness of the sigmoid function and τ controls the base level of image brightness.
In this paper, their values are set as 20 and 0.6, respectively. IM represents the maximum gray scale
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level, it equals to 255 for images with 8-bit pixels. The second weight θ2 is about the level of color bias
in the input image. It is defined as follows:

θ2 =

{
1 + exp

[
−ω

(
max

k∈{R,G,B}
avg

(
Ik
T

)
− min

k∈{R,G,B}
avg

(
Ik
T

)
− γ · avg(IT)

)]}−1

, (23)

where γ controls the basic metric of color bias, and is set as 0.1 in this paper.
The sample image of this step is shown at the far right of Figure 6. As indicated by the arrows, it is

the combination of descattered results of Case DS, Case BS and Case CC. In this fusion, the calculated
weights for the three cases are respectively 0.4529, 0.2141 and 0.333, so the result image is more similar
to the output of Case DS and Case CC, where the low contrast, low intensity and color deviation
problems are tackled.

4. Evaluation and Results

In this section, the proposed method is experimented on three different datasets, including a
shallow water dataset from Bubble Vision (BV) [26], a laboratory dataset from a deep-sea experiment
pool (EP), and a real deep sea (DS) dataset from the TS-03 Cruise of the Chinese Academy of Sciences.
Among these datasets, the BV dataset was captured in Bali under uniform and natural light, the
EP dataset was captured in a 22 m× 10 m× 20 m water-filled pool at night, and the DS dataset was
captured in open water of Mariana at the depth over 8200m. For the latter two datasets, illumination
was provided by artificial lighting devices located on the photographed objects or near the camera,
and light bulbs of green or blue colors were used to extend vision range while saving energy. These
illumination settings caused additional color deviation and light imbalance problems to images of
these datasets.

The performance of proposed method is evaluated qualitatively and quantitatively in terms of
visual quality and practical value, which include the assessment of color richness, color balance
and contrast of enhanced images, and their credibility and information content, especially in
badly-illuminated regions. The performance of proposed method is compared with the fusion-based
method from Ancuti et al. [9], the Red-Channel method from Galdran et al. [13] and the IFM-based
method of Peng and Cosman [17]. These methods are selected for their reported good performance on
underwater image enhancement. Specifically, Galdran’s method is able to enhance normal underwater
images as well as those with artificial light sources, and Peng’s method is able to enhance underwater
images with various lighting conditions. In the following content, the evaluation results of these
methods on underwater images with different illumination conditions are reported.

4.1. Evaluation on the Dataset of Uniform Natural Illumination

The evaluation on uniformly-illuminated underwater images is conducted on the BV dataset.
In Figure 7, enhancement results of Ancuti’s method, Galdran’s method, Peng’s method and the
proposed method are presented, together with the original images from the BV datasets. As shown
in this figure, Ancuti’s method removes the bluish hue and broads the range of color, but the low
contrast problem of distant regions is not solved. Galdran’s method, on the contrast, improves the
image contrast but cannot fully remove the bluish hue. Peng’s method achieves improvements in both
aspects, but it can be unstable and cause over-enhanced results, such as that of BV-2. In comparison,
our method is robust and can improve both color balance and image contrast. Moreover, our method
is also better at preserving details during the enhancement, such as the fish school in BV-2 and the
bubble group in BV-3.
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Figure 7. Visual comparison of different methods on enhancing uniformly-illuminated underwater
images from the BV dataset.

Since visual evaluation can be influenced by the size of image and the color temperature of the
displayer, we also use a quantitative metric to objectively evaluate the image quality. The selected
metric is the UIQM from [28], which is a non-reference measure of the image visual quality based on
evaluations of color balance and richness, detail sharpness and image contrast. The formula of UIQM
is given by:

UIQM = c1 ×UICM + c2 ×UISM + c3 ×UIConM, (24)

where UICM, UISM and UIConM are respectively the measures of image colorfulness, image sharpness
and image contrast. The weights of these measures are assigned as c1 = 0.0282, c2 = 0.2953 and
c3 = 3.5753, according to [28]. The UIQM is calculated for every image in this experiment, but to
avoid an overlong table, the scores of individual images are listed in Appendix A (Table A1), and
in the main text, only the average scores of each method are presented (Table 1). Apparently, the
quantitative evaluation results are in accordance with previous qualitative evaluation. As shown in
Table 1, the highest scores of UICM, UIConM and UIQM are won by our results, which means our
method outperforms the others in terms of color richness and balance, contrast, and the overall visual
quality of image. In the evaluation of sharpness, our method has the highest values in BV-3 and BV-4,
but is behind Peng’s method in BV-1 and BV-2. This can be caused by the strong descattering of Peng’s
results in these two trials.

Table 1. Quantitative evaluation on the BV dataset in terms of UICM, UISM, UIConM and UIQM.

Original Ancuti Galdran Peng Ours

UICM 3.2343 5.5697 4.2195 5.1658 7.0555
UISM 0.0040 0.1535 0.0099 0.5475 0.2874

UIConM 0.1518 0.1602 0.1913 0.8654 2.5721
UIQM 0.6352 0.7752 0.8060 3.4016 9.4797

4.2. Evaluation on the Datasets of Non-Uniform Artifial Illumination

The evaluation on underwater images with inhomogeneous illumination is conducted on the EP
dataset and the DS dataset. As mentioned above, due to the use of inhomogeneous and chromatic
lighting devices, images of these two datasets are more likely to suffer from regional color deviation and
lighting imbalance than images in the BV dataset. So in this evaluation, we will not only focus on the
quality improvement of the whole image, but also assess the enhancement in severely degraded regions.
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4.2.1. Experiment on the EP Dataset

The original EP images and corresponding enhancement results of Ancuti’s method, Galdran’s
method, Peng’s method and the proposed method are shown in Figure 8. Clearly, Galdran’s method
and Peng’s method fail to restore the right color in this test. Ancuti’s method is also failed in the first
two trials. By contrast, our method improves the color balance in all tested images. As can be seen in
Figure 8, the blue-green color cast in the original images is largely reduced in our results. For EP-3
and EP-4, a very realistic color tone is restored in our results, and for EP-1 and EP-2, the strong color
deviations are largely suppressed, but due to the rapid color change in these images, the result images
are less realistic than those of EP-3 and EP-4. Actually, this is a deficiency of the regional color-tone
estimation method in our work, which will be solved in future studies hopefully. Apart from color
correction, the illumination balance is also improved in our results. For EP-1, EP-2 and EP-3, the
low-illumination regions are brighter than before, and for EP-4, the hazy region is of higher contrast.
This improvement is a side-product of the regional color-tone correction method in our work. For
practical use, this trait can be very helpful since it improves the visibility of badly-illuminated regions
without consuming more energy for illumination.
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Figure 8. Visual comparison of different methods on enhancing non-uniformly-illuminated underwater
images from the EP dataset.

For objective evaluation, UIQM is used to assess the visual quality of enhanced images. The average
scores of each method are shown in Table 2, and the scores of individual images are listed in Table A2
of Appendix A. Unlike former experiment, the evaluation scores do not support our visual assessment.
Based on the scores, Galdran’s results have the best visual quality and the highest contrast, and
Peng’s method has the best performance in terms of colorfulness and sharpness. From the calculation
formulas of UICM, UISM and UIConM in [28], we speculate that this disagreement may be caused by
the omission of special information in the calculation of these measures. Due to this omission, the
regional color deviation and uneven brightness in Galdran’s and Peng’s results are mistaken as high
colorfulness and contrast, which leads to high scores in the evaluation results. Unfortunately, no other
metric is found to replace UIQM for this case, since the study of regional-deviated underwater image
is very rare.
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Table 2. Quantitative evaluation on the EP dataset in terms of general visual quality (UICM, UISM,
UIConM and UIQM) and regional color accuracy (MSE).

Original Ancuti Galdran Peng Ours

UICM 5.0334 6.3860 5.3108 7.2688 5.5161
UISM 0.1178 0.0010 0.1066 0.3310 0.0871

UIConM 4.2431 0.8215 7.0206 5.5843 2.0639
UIQM 15.3471 3.1176 25.2820 20.2681 7.5602
MSE 7432 5193 7784 6604 3339

Although the evaluation of overall image quality is unachievable at present, the evaluation of
regional color balance can still be made, owing to the color board captured in each EP image. As shown
in Figure 9a, the color board locates at the region with uniform and severe color deviation in each
image, so by calculating the color difference between the color board and a ground truth image, the
degree of color balance of this region can be known. Before calculation, the procedure in Figure 9b is
applied to correct the affine deformation of the color board in each image. The metric used to evaluate
color difference is the mean square error (MSE), which is given by:

MSE =
1
N

N∑
x=1

(I(x) − I0(x))
2, (25)

where I0(x) and I(x) are respectively the pixel values of the ground truth image and the image to
evaluate. The average and individual MSEs for each method are listed in Tables 2 and A2 (Appendix A),
respective. As shown by these values, the color boards of our results have the lowest MSEs. Since the
color tones of color board regions are nearly uniform, this evaluation result shows that our method can
restore the regional color balance better than the other methods. This result is consistent with former
visual observation.
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removed, and the colors and shapes in the background are much more salient than before.  

Figure 9. (a) The locations of color boards in EP images. (b) The procedure of preparing the color board
region for calculating the color difference against the ground truth image.

4.2.2. Experiment on the DS Dataset

The original DS images and corresponding enhancement results of the four tested methods are
shown in Figure 10. Due to the lack of ambient light, the DS images present less scattering but stronger
brightness imbalance than the EP images. Similar to the former case, Galdran’s method and Peng’s
method fail to enhance the original images in terms of the color balance and the brightness balance.
Ancuti’s method removes the color cast in the foreground but only slightly improves the illumination
in the background. Our method restores the color balance as well as the illumination balance. As can
be easily noticed, in our results, the greenish tone in the foreground is completely removed, and the
colors and shapes in the background are much more salient than before.
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Figure 10. Visual comparison of different methods on enhancing non-uniformly-illuminated underwater
images from the DS dataset.

To keep the consistency of the evaluation procedure, the UIQM measures are still calculated for
images in this experiment. The average and individual scores of this evaluation are shown in Tables 3
and A3 (Appendix A), respectively. Due to the large span of color and strong brightness imbalance,
the highest scores of this evaluation are won by Peng’s results.

Table 3. Quantitative evaluation on the DS dataset in terms of visual quality (UICM, UISM, UIConM
and UIQM) and image entropy.

Original Ancuti Galdran Peng Ours

UICM 4.2310 4.7390 4.1804 6.2793 3.4511
UISM 0.1869 0.0020 0.3570 0.4239 0.0798

UIConM 0.6012 0.1710 0.5157 1.2234 0.6491
UIQM 2.3240 0.7456 2.0669 4.6467 2.4415

Entropy 6.9938 7.3031 7.0108 6.9897 7.4274

To evaluate the enhancement of dark regions in the original images, we calculate the entropy
for all images in this experiment. In information theory, entropy measures the “randomness” of a
system. And for image enhancement tasks, the increase of image entropy indicates larger information
content and higher distinguishability of details in the enhanced images [29,30]. The entropy of an 8-bit
gray-scale image is defined as follows:

entropy = −
255∑
i=0

pilog2pi. (26)

Here pi is the probability of the gray level i in a pixel of the image, which is calculated by:

pi =

∑N
x=1(I(x) == i)∑255

j=0
∑N

x=1(I(x) == j)
, (27)

where I(x) represents the pixel value of the image and N is the total number of pixels in the image.
To measure the entropy of an RGB image, we first calculate the entropies of the three color channels
separately, then calculate the average of them as the entropy of the whole image.

The average and individual entropies of images in the experiment are listed in Tables 3 and A3
(Appendix A), respectively. As shown in these tables, our method improves the image entropies
better than the other methods. This result is consistent with former visual evaluation that our method
can effectively improve the information content in low-brightness regions. Ancuti’s results come the
second in this evaluation, which is due to the less salient backgrounds in these images.
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5. Conclusions

In this paper, we proposed an enhancement method for underwater images with uniform or
non-uniform illumination conditions. In practical operations, these conditions usually correspond to
the shallow-water environment and the deep-sea environment, respectively. The proposed method
is composed of two modules: color-tone correction and fusion-based descattering. The first module
reduces the regional or full-extent color-tone deviation that is caused by different types of incident
light. And the second module solves the problems of low contrast and pixel-wise color deviation
that are left after applying the first module. The proposed method is experimented on laboratory
and open-water images under different depths and illumination states. Qualitative and quantitative
evaluations show that the proposed method outperforms many other methods in improving the color
balance and contrast of underwater images with different illumination conditions, and is especially
effective in improving the color accuracy and information content in badly-illuminated regions of
underwater images with non-uniform illumination, which are commonly seen in deep-sea researches
and operations.
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Appendix A Quantitative Evaluation Scores of Individual Images in Section 4

Table A1. UICM, UISM, UIConM and UIQM scores of original BV images and corresponding enhanced
images of tested methods.

Original Ancuti Galdran Peng Ours

UICM

BV-1 4.2379 4.8382 4.7165 5.6624 7.2188
BV-2 3.2439 3.2660 3.6066 3.9531 5.5196
BV-3 3.2474 6.9919 4.4179 5.4154 7.9651
BV-4 2.2081 7.1829 4.1371 5.6324 7.5185

UISM

BV-1 0.0051 0.1469 0.0127 1.3273 0.4114
BV-2 0.0051 0.4581 0.0132 0.8543 0.4969
BV-3 0.0039 0.0053 0.0066 0.0048 0.0404
BV-4 0.0020 0.0038 0.0071 0.0038 0.2010

UIConM

BV-1 0.1518 0.1518 0.1518 1.7274 2.2891
BV-2 0.1518 0.1854 0.3099 1.1367 3.3554
BV-3 0.1521 0.1521 0.1521 0.4462 2.8458
BV-4 0.1515 0.1515 0.1515 0.1515 1.7980

UIQM

BV-1 0.6639 0.7227 0.6796 6.7275 8.5091
BV-2 0.6358 0.8904 1.2136 4.4277 12.2988
BV-3 0.6364 0.7424 0.6703 1.7493 10.4113
BV-4 0.6046 0.7454 0.6605 0.7017 6.6997
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Table A2. UICM, UISM, UIConM, UIQM and color board MSE scores of original EP images and
corresponding enhanced images of tested methods.

Original Ancuti Galdran Peng Ours

UICM

EP-1 8.4246 10.7532 8.0766 11.9112 6.5124
EP-2 8.0984 8.6927 8.0727 12.6849 8.2544
EP-3 2.4301 3.1563 2.8046 2.4072 4.7343
EP-4 1.1803 2.9416 2.2895 2.0720 2.5635

UISM

EP-1 0.0007 0.0003 0.0007 0.9312 0.0005
EP-2 0.2219 0.0004 0.2220 0.2045 0.3437
EP-3 0.0033 0.0020 0.0033 0.0028 0.0024
EP-4 0.2450 0.0014 0.2002 0.1854 0.0017

UIConM

EP-1 0.8004 0.7899 0.8574 5.2734 0.7899
EP-2 1.8839 0.7899 4.9738 3.6223 2.2100
EP-3 4.6511 0.7899 9.2699 4.1454 4.3392
EP-4 9.6370 0.9164 12.9814 9.2959 0.9164

UIQM

EP-1 3.0993 3.1275 3.2934 19.4650 3.0079
EP-2 7.0295 3.0694 18.0759 13.3689 8.2357
EP-3 16.6985 2.9137 33.2227 14.8899 15.6480
EP-4 34.5609 3.3597 46.5362 33.3487 3.3491

MSE

EP-1 4957 6228 4046 3890 2454
EP-2 6413 3901 6642 4117 2039
EP-3 10158 5740 11138 9222 4172
EP-4 8201 4902 9310 9186 4690

Table A3. UICM, UISM, UIConM, and UIQM scores and entropies of original DS images and
corresponding enhanced images of tested methods.

Original Ancuti Galdran Peng Ours

UICM
DS-1 4.4438 4.1235 4.3040 6.5791 3.4382
DS-2 3.8316 4.0959 3.5961 5.5181 3.9264
DS-3 4.4177 5.9976 4.6412 6.7406 2.9886

UISM
DS-1 0.5532 0.0023 0.2578 0.3726 0.1347
DS-2 0.0034 0.0017 0.3608 0.4498 0.0967
DS-3 0.0042 0.0020 0.4522 0.4494 0.0080

UIConM
DS-1 1.5033 0.2127 0.9931 2.2727 1.2113
DS-2 0.1502 0.1502 0.3078 0.9686 0.5435
DS-3 0.1502 0.1502 0.2461 0.4290 0.1924

UIQM
DS-1 5.6635 0.8773 3.7481 8.4210 4.4674
DS-2 0.6459 0.6529 1.3084 3.7516 2.0824
DS-3 0.6627 0.7066 1.1443 1.8566 0.7746

Entropy
DS-1 6.9979 7.2007 7.0056 6.5553 7.3432
DS-2 6.9299 7.2192 6.9439 7.5355 7.4390
DS-3 7.0536 7.4894 7.0830 6.8783 7.5001
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