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Abstract: Radio tomographic imaging (RTI) has emerged as a promising device-free localization
technology for locating the targets with no devices attached. RTI deduces the location information
from the reconstructed attenuation image characterizing target-induced spatial loss of radio frequency
measurements in the sensing area. In cluttered indoor environments, RF measurements of wireless
links are corrupted by multipath effects and thus less robust to achieve a high localization accuracy
for RTI. This paper proposes to improve the quality of measurements by using spatial diversity.
The key insight is that, with multiple antennae equipped, due to small-scale multipath fading,
RF measurement variation of each antenna pair behaves differently. Therefore, spatial diversity can
provide more reliable and strong measurements in terms of link quality. Moreover, to estimate the
location from the image more precisely and make the image more identifiable, we propose using a
new reconstruction regularization linearly combining the sparsity and correlation inherent in the
image. The proposed reconstruction method can remarkably reduce the image noise and enhance the
imaging accuracy especially in the case of a few available measurements. Indoor experimental results
demonstrate that compared to existing RTI improvement methods, our RTI solution can reduce the
root-mean-square localization error at least 47% while also improving the imaging performance.

Keywords: radio tomographic imaging; spatial diversity; compressive sensing; RSS;
indoor localization

1. Introduction

In many scenarios, for example, searching for survivors in the disaster area, rescuing hostages and
finding the criminals [1], it is critical to locate the target carrying no devices. Conventional device-free
localization (DFL) methods are mostly based on video camera, infrared and radar sensors, which are
subject to either low penetration capability or high cost. As an effective radio frequency (RF)-based DFL,
radio tomographic imaging (RTI) [2] using received signal strength (RSS) has attracted considerable
attention in the past decade since RSS measurements are readily available in most wireless commercial
off-the-shelf (COTS) devices. Thus, RTI can be implemented on the existing network without any
extra hardware, which offers a cost-effective DFL solution. Moreover, since radio signals can penetrate
walls and other non-metallic structures, RTI is able to find the target hiding behind obstacles. Recently,
RTI has been successfully applied to through-wall target tracking [3,4], residential monitoring [5,6],
roadside surveillance [7], obstacle mapping [8,9] and health care [10,11].

It is well understood that when the target obstructs the line-of-sight (LOS) path of a wireless
link, RSS of this link will undergo great loss. Inspired by this feature, Wilson [2] originally formulates
RTI linear-model method through capturing the RSS variations of wireless links and determining
the localization of the target from an attenuation map with a monitored wireless sensor network.
RTI achieves a good performance outdoors where multipath does not dominate the signal propagation.
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However, due to heavy multipath in indoor environments, the blockage of LOS path does not always
result in large attenuation of RSS. In fact, RSS can reduce, remain unchanged or even increase,
depending on whether the multipath is constructive or deconstructive to the LOS path of the received
signals. The ambiguity of RSS change greatly deteriorates the performance of RTI. To overcome this
difficulty, many efforts have been made to enhance the robustness of RSS variation in multipath-rich
environments. For example, Kaltiokallio [12] employs frequency diversity by measuring RSS on
multiple radio channels, in which the nodes are required to frequently switch from one channel to
another. Wei [13] proposes to use electronically switched directional antennae to reduce the influence
of multipath, but the specially designed antenna will surely increase the system cost. Bocca [14]
observes that optimizing the orientation of the antenna can improve the performance of RTI. However,
the process of orientation adjustment is time consuming because of its iterative nature.

In most prior work, the node is equipped with one single antenna. Consequently, when the
positions of the transmitting node and receiving node are fixed, the RSS variation keeps unchanged
and thus lacks diversity. In this paper, we explore the potential of spatial diversity to combat the
multipath and improve the performance of RTI in indoor environments. Specifically, to make use of
spatial diversity, each node is equipped with multiple antennae. Since wireless devices equipped with
multiple antennae are very common nowadays [15], spatial diversity can be achieved using COTS
devices. Compared to [12,14], the node does not require to change the operating channel or antenna
orientation, which is more bandwidth and time efficient. Considering a link comprised of a transmitting
node and a receiving node, any pair of antennae on both nodes can communicate with each other,
and thus the link contains a few of sublinks. Note that the received signals are the superimposition
of signals via different propagation paths. Therefore, owing to the minor place difference among
antennae, the propagation paths of sublinks vary slightly, which will surprisingly lead to large variation
of RSS on different sublinks. Averaging the RSS variations on all sublinks in terms of fade level [16]
will yield a more robust RSS loss estimator compared to the single antenna configuration.

Another challenge of RTI is to reconstruct the image based on the noisy measurements.
Due to the ill-posed problem, conventional RTI methods mostly utilize `2-norm regularization
(known as Tikhonov) [2,12,14], only considering the correlation property in the attenuation map.
Although Tikhonov regularization can achieve acceptable localization accuracy, the image result of it is
quite noisy and thus unfavorable to target detection. Actually, the target only occupies a few grid areas
(tens of grids) compared to the whole monitored region (usually thousands of grids), which suggests
that the image reconstruction problem has enough sparsity in nature. As such, compressive sensing
(CS) algorithms for sparse signal recovery will be more preferred and robust to noise if we only focus on
the target location. Many available CS-based solutions [17], including the least absolute shrinkage and
selection operator (LASSO) and orthogonal matching pursuit [18], have been proven to successfully
reconstruct the image. Under the framework of Bayesian statistics, Bayesian compressive sensing
(BCS) [19] exploits a priori distribution knowledge of attenuation image to improve the recovery
accuracy. However, it requires reasonable assumption of priori distribution and is computationally
intensive. It is also reported that the localization accuracy of BCS is less accurate than that of
Tikhonov [20], but the advantage of CS over Tikhonov is that the reconstructed image is more cleaner.
Few researchers have paid their attention to study the combination of above regularizations for
RTI. In this paper, we propose a new reconstruction method whose objective function is a linear
combination of `1-norm and `2-norm regularization, exploiting both the sparsity and correlation in the
image. The proposed reconstruction method achieves satisfactory localization performance while its
imaging performance is also comparable. The contributions of this paper are as follows:

• We propose to exploit spatial diversity by using multiple antennae. Benefiting from it,
different behaviors of RF measurement variation of each antenna pair can be captured to produce
more robust observations for localization.

• We propose to utilize both the sparsity and correlation inherent in the attenuation image.
By linearly combining the `1-norm and `2-norm regularization, our reconstruction method can
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estimate the target location more precisely from the enhanced image, especially in the case of only
a few available measurements. Moreover, the target’s profile also can be kept accurately.

• Real indoor experiments are conducted to validate the effectiveness of the proposed method.
The results show that both the localization accuracy and image quality can be improved by spatial
diversity and the proposed reconstruction method.

The rest of the paper is organized as follows. Section 2 gives a review of the related work of
RTI. Section 3 briefly describes the problem statement. The spatial diversity method is presented
in Section 4 and the new reconstruction method is introduced in Section 5. Section 6 shows the
experiment, followed by the results analyzed in Section 7. Section 8 discusses some related issues and
Section 9 concludes the paper.

2. Related Work

RF-based DFL systems exploit some handy wireless measurements from ubiquitous wireless
devices to localize targets without being equipped with any electronic devices or tags. Since there is
no need for target cooperation, extensive attention has been attracted on the development of RF-based
DFL systems. RF-based DFL can be mainly classified into two categories: fingerprint-based [21] and
model-based [2]. Since the former technique requires large time-consuming labor efforts of offline
RSS map establishment, we focus our interest on the model-based DFL method, more specifically,
radio tomographic imaging (RTI).

In model-based DFL systems, spatial models relating RSS measurements to the target location are
needed to be established. Original RTI [2] employs a simple linear model that is based on discretized
pixels. Following that, some pixel-free nonlinear models to directly associate the RSS measurement with
the target location, such as exponential model [22,23], magnitude model [24] and exponential-rayleigh
model [25], are empirically derived through large amount of experimental data fitting. Based on
diffraction theory, more complicated analytical models [26–29] are also developed. Although these
models are more precise than the linear model, they are usually computationally intensive and should
be combined with sequential Monte Carlo filtering techniques to infer the location information of
targets. This paper focuses on the improvement of the linear RTI method since it is more easily to
implement for pratical applications.

The ability of RTI methods to realize a high localization accuracy in indoor scenarios is limited
by a multipath effect. When multipath propagation dominates the way radio signals are transmitted,
target-induced RSS change of LOS of a link will become ambiguous rather than significantly attenuated.
Many efforts have already been devoted to reduce this uncertainty. Kaltiokallio [12] exploits channel
diversity to improve link quality in frequency domain by averaging the RSS over link-specific strong
channels based on fade level criterion. Multi-frequency sub 1-GHz RTI [30,31], which is less susceptible
to multipath effects, is investigated to be feasible for large-scale environments. Wei [13] implements a
directional RTI to improve localization accuracy by using electronically switched directional antennae
instead of omni-directional counterparts. Furthermore, an E-shaped patch antenna is specially
designed to achieve 43% accuracy improvement for through-wall RTI [32]. In Ref. [14], RF sensors
are iteratively rotated to optimize antenna orientation for best performance. A novel mmRTI using
highly-directional 60 GHz sensing networks, is presented in Ref. [33] to locate targets accurately in
rich multipath environments. All above improvements are aimed at making the RSS of the LOS
path more robust. In this paper, we also achieve this goal using spatial diversity through multiple
antennae mounted.

RTI usually uses `2-regularized methods [34] to reconstruct the attenuation image from which
the target’s location can be inferred. Since the target distributes sparsely in the monitored area,
CS-based image reconstruction methods can be suitable for RTI, especially when a few measurements
are available. Efficient CS algorithms for sparse signal recovery have been extensively surveyed and
compared in Refs. [17,35]. Kanso [36] first implements CS-based RTI and presents the performance of
LASSO and OMP. A novel Bayesian greedy matching pursuit [37] is proposed for image reconstruction
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from a small set of measurements. Ref. [38] explores the BCS method to achieve compressive obstacle
mapping. By incorporating heterogeneous noise prior models into BCS, heterogeneous BCS [20] is
developed to enhance the compressive RTI performance. Although CS-based reconstruction methods
enable RTI more efficient and improve the localization accuracy to a certain extent, the target’s profile
in the attenuation image would be destroyed. In this paper, we take care both the localization accuracy
and image quality through the combination of `1-norm and `2-norm regularization, which is expected
to allow a high localization accuracy while maintaining a clearly identifiable image.

3. Problem Statement

As illustrated in Figure 1, K nodes with their positions (xk, yk), k = 1, 2, ..., K known a priori are
fixed around the perimeter of the monitored region. In the network, each pair of nodes can comprise
a link, leading to L = K (K− 1) bidirectional links in total. In addition, to achieve spatial diversity,
each node is equipped with nA antennae which can work independently, shown in Figure 1b. Therefore,
each pair of nodes includes M = n2

A links, which are called sublinks to avoid confusion. The node can
provide the RSS measurement of each sublink. When the target moves in the monitored region, the RSS
of links will change due to the diffraction, reflection or scattering of the target. In particular, when the
target blocks the wireless links, the RSS of these links will experience large attenuation, which allows
us to localize the device-free target.

Sensor node

Fusion node Terminal

(a)

#1

#2

#3

#1

#2

#3
Tx Rx

(b)

Figure 1. The proposed RTI localization scheme: (a) a typical RTI network illustration; (b) each wireless
link consists of multiple sublinks. In (a), the double arrow indicates the bidirectional link and the blue
color represents the links obstructed by the target. In (b), each node is equipped with three antennae,
resulting in a link with nine sublinks.

4. Spatial Diversity

The first step of RTI is to measure the RSS variation of all sublinks. For clarity, we denote r̄m
l as

the RSS of the m-th (m = 1, 2, ..., M) sublink of the l-th (l = 1, 2, ..., L) link when the target is absent.
According to the path loss model [39], r̄m

l can be written as

r̄m
l = PT − 10np lg dm

l + vm
l , (1)

where PT is transmit power, np is the path loss exponent, dl is the distance between the two nodes of
link l, and vm

l is the noise due to the multipath fading and shadow fading in the environment.
When the target is in the monitored region, the target will obstruct some wireless links, resulting in

a great drop of the RSS of those links. In addition, the target will also affect multipath signals, which also
contributes to the RSS variation. Thus, the corresponding RSS can be represented as

rm
l,t = PT − 10np lg dm

l − Sl,t + vm
l − nm

l,t, (2)

where Sl,t is the RSS loss induced by the blockage of the target and nm
l,t is the noise attributing to the

target’s influence on multipath. Therefore, by subtracting Equation (1), we can obtain the RSS variation
due to the presence of the target as
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∆rm
l,t = r̄m

l − rm
l,t = Sl,t + nm

l,t. (3)

We can see that the RSS loss is corrupted by multipath noise. Since the variance of noise closely
depends on the number of multipath in the environment, the more cluttered the environment, the larger
the noise and vice versa. Moreover, it is well known that the received signal is the phasor sum of the
duplicated signals from all propagation paths, meaning that small variation of a propagation path can
cause a large change of the RSS. In other words, the RSS variation is sensitive to multipath. Note that,
in the multi-antenna configuration, while the propagation paths of the sublinks slightly vary, the RSS
variations of sublinks will remarkably differ. That is the foundation on which the spatial diversity is based.

To demonstrate the impact of multipath on the variation of RSS, we collect the RSS variations of a
link when it is crossed by a person. In this simple experiment, each node has three antennae, and there
are 3× 3 = 9 sublinks for this link. Figure 2 plots RSS measurements of the nine sublinks. We can
conclude two important facts from the experiment measurement. First, due to multipath, not all the
sublinks’ RSS undergo large attenuation when the target obstructs the link. For example, the RSS of
the sublinks 3 and 5 do not change much when the link is blocked, and the RSS of the sublink 4 even
increases. Therefore, we can imagine that if the link happens to be one of the sublinks 3, 4 or 5 in the
single antenna configuration, it will be difficult to localize the target.
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Figure 2. Temporal variation of RSS measured on nine sublinks of the link between node 6 and node 9
with human movement. (a) sublink #1; (b) sublink #2; (c) sublink #3; (d) sublink #4; (e) sublink #5;
(f) sublink #6; (g) sublink #7; (h) sublink #8; (i) sublink #9.
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Second, the RSS variation of the sublink is also closely related to the static RSS (i.e., when the link
is not blocked) of the sublink itself. Generally, the larger the sublink’s static RSS, the more preferable
RSS variation obtained when the sublink is blocked by the target. For example, as shown in Figure 2,
the RSS of any sublink experiencing large shadowing loss is larger than −50 dBm. To explain and
exploit this feature, Refs. [40,41] propose the concept of fade level which is a function of RSS to evaluate
the link quality. The fade level of a sublink in our paper is defined as

Fm
l = r̄m

l −min
m

r̄m
l . (4)

From the definition of the fade level, we can see that the larger RSS of the sublink, the higher its
fade level. To reduce the impact of noise on the RSS variation, we propose to weight RSS variations of
the sublinks in terms of the fade level, which yields

∆rl,t =
1

∑M
m=1 Fm

l

M

∑
m=1

Fm
l ∆rm

l,t = Sl,t + nl,t, (5)

where nl,t =
1

∑M
m=1 Fm

l

M
∑

m=1
Fm

l nm
l,t.

5. Image Reconstruction

The following step of RTI is to reconstruct the image based on RSS variations. RTI assumes that
the RSS loss is a spatial integration of the value occurred in the propagation field of the monitored
region. Thus, if the monitored area is uniformly divided into grids, the integration can be written as [2]

∆rl,t =
N

∑
j=1

wl,j∆xj,t + nl,t, (6)

where ∆xj,t denotes the RSS loss occurred in the j-th grid and wl,j is the weight of the j-th grid with
respect to the l-th link and N is the number of grids. Intuitively, since radio signals mainly propagate
along the LOS path in the absence of multipath, the closer the grid is to the LOS path, the larger weight
should be assigned to the grid. To model this fact, a spatial elliptical model is proposed in Ref. [42],
in which the weight can be approximately calculated as

wl,j =

{
1, dl,j (1) + dl,j (2) < dl + λ,

0, otherwise,
(7)

where dl,j (1) and dl,j (2) are the distances between the j-th grid and the two nodes comprising the link
l, respectively, and λ is a tunable parameter controlling the width of the ellipse. Actually, in accordance
with Fresnel diffraction theory, the attenuation primarily occurs within the first Fresnel zone of the
link [39]. As a result, the parameter λ can be chosen as one half of the wavelength, which is equal to
0.0625 m if the nodes operate at a 2.4 GHz band.

If we take into consideration L links within the monitored region, Equation (6) can be rewritten as

∆rt = Wxt + nt, (8)

where the RSS variation vector ∆rt = [∆r1,t, ∆r2,t, ...., ∆rL,t]
T ∈ RL, the noise vector nt =

[n1,t, n2,t, ...., nL,t]
T ∈ RL, the RSS attenuation vector to be estimated xt = [∆x1,t, ∆x2,t, ...., ∆xN,t]

T ∈ RN ,
the weight matrix W = [w1, w2, . . . , wL]

T ∈ RL×N , wl = [wl1, wl2, . . . , wlN ]
T ∈ RN .
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Since the weight matrix W is rank deficiency (L� N), regularization should be imposed to make
the solution stable. In the original form of RTI [2], Tikhonov regularization is inserted, whose objective
function takes the form of

min
xt
G (xt) = ‖∆rt −Wxt‖2

2 + µ2xT
t C−1xt, (9)

where C ∈ RN×N is a prior covariance matrix of xt and µ2 is the `2-norm regularization parameter.
The prior knowledge of xt is a reasonable assumption that the distribution of the attenuation map is a
Gaussian process [12,14], an exponential decaying function is employed to approximately calculate the
covariance matrix, i.e.,

[C]ij ≈ exp
(
−

dij

δ

)
, (10)

where dij is the Euclidean distance between the i-th grid and the j-th grid, and δ is the
decaying parameter.

The imaging result of Tikhonov regularization is usually blurred with the noise. In fact, the target
occupies only a little space compared to the whole monitored area, suggesting that xt is sparse in
nature. Using the sparsity can further reduce the impact of the noise. CS is a popular method in the past
decade to recover the signal owning sparse property, in which `1-norm of the signal is incorporated.
For example, Kanso [36] proposes the LASSO method, which solves

min
xt
G (xt) = ‖∆rt −Wxt‖2

2 + µ1‖xt‖1, (11)

where ‖xt‖1 is `1-norm of xt defined as ‖xt‖1 = ∑N
j=1
∣∣xj,t

∣∣. Equation (11) does not consider the
correlation of xt, which will increase the localization error. Therefore, we propose a new image
reconstruction method considering both the correlation and sparsity of xt, and hence the objective
function can be rewritten as

min
xt
G (xt) = ‖∆rt −Wxt‖2

2 + µ2xT
t C−1xt + µ1‖xt‖1, (12)

where µ1 is `1-norm regularization parameter.
Sorting Equation (12), we have

G (xt) = xT
t

(
WTW + µ2C−1

)
xt − 2xT

t WT∆rt

+ µ1 ‖xt‖1 + ∆rT
t ∆rt.

(13)

Since WTW + µ2C−1 is positive definite, the Cholesky decomposition is

WTW + µ2C−1 = QTQ, (14)

where Q ∈ RN×N . Substituting Equation (14) into Equation (13), the objective function becomes

G (xt) = xT
t QTQxt − 2xT

t WT∆rt + µ1‖xt‖1 + ∆rT
t ∆rt

= xT
t QTQxt − 2xT

t QT
(

QT
)−1

WT∆rt + µ1‖xt‖1

+ ∆rT
t ∆rt

= ‖bt −Qxt‖2
2 + µ1‖xt‖1 − bT

t bt + ∆rT
t ∆rt

= ‖bt −Qxt‖2
2 + µ1‖xt‖1 + C,

(15)

where bt =
(
QT)−1 WT∆rt ∈ RN and C = ∆rT

t ∆rt − bT
t bt are constants independent of xt.

Comparing Equation (15) with Equation (11), we can see that the objective function has been
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transformed to the standard form of LASSO method. The above objective function is convex,
meaning that it can be efficiently solved by convex programming. At present, there are already
some powerful solvers for this type of problem, for example, l1-ls [43], CVX [44,45] and so on.

When there is only one target to be located, the largest entry in xt reveals the position of the
target, i.e.,

It = arg max
j

xj,t. (16)

Thus, the coordinate of the grid It can be viewed as the position estimation of the target.
When considering multiple targets in the monitored region, the targets will correspond to different
blobs in the reconstructed image, from which the localization of multiple targets can be accomplished
by clustering techniques, for example, k-means clustering or hierarchical agglomerative clustering
(HAC) [41]. The center of the clusters can be estimated as the position of the targets.

6. Experimental Validation

In this section, we describe the details of experimental settings and present numerical metrics for
performance evaluation.

6.1. Experimental Setup

We conduct experiments in a typical conference room as shown in Figure 3a, which is furnished
with a large number of objects including desks, chairs and concrete walls. The monitored region
covering an area of 4.8 m× 2.4 m = 11.52 m2 is surrounded by 12 stands with a height of 0.9 m,
evenly spaced by 1.2 m. Wireless nodes we employed are TI CC2530 half-duplex radios, which use
the 2.4 GHz ISM frequency band and omni-antennae. Three nodes are placed on each stand in order
to achieve spatial diversity. Therefore, in this configuration, we have a total of 12× 11 = 132 direct
links and 3× 3 = 9 sublinks per link. We pick up 21 test positions uniformly distributed within the
monitored region, as shown in Figure 3b. Nodes are programmed to run a single-channel token passing
communication protocol. At each test position, a person stand still for about 15 s. RSS measurements
of a link are averaged over time to reduce the impact of measurement noise.

(a)

sensors

test points

1 2 3 4 5

6

0.6m

0.6m

78910

12

11

1.
2m

1.2m

L1

L3

L19

L21

(b)

Figure 3. Conference room: (a) photography; (b) layout. In the test, the orientation of the target is
perpendicular to the y-axis.

6.2. Numerical Metrics

We introduce two metrics to evaluate the performance of our proposed method.
For localization accuracy, We use root mean square error (RMSE) to assess the localization

performance, which is defined as

εl =

√√√√ 1
NT

NT

∑
k=1
‖zk − ẑk‖2, (17)
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where NT is the number of test positions and ‖zk − ẑk‖ is the Euclidean distance between the true
coordinate zk and estimated coordinate ẑk of the k-th test position.

For image quality, we adopt the mean square error (MSE) of an image which quantifies the
intuitive dissimilarity between the reconstructed image x̂r and the true image xt, which is calculated by

σi = 10log10

(
‖xt − x̂r‖2

N

)
. (18)

Note that both image values are scaled in the range [0, 1]. RMSE of all the image of test positions
is expressed as

εi =

√√√√ 1
NT

NT

∑
k=1

σ2
i . (19)

The true image xt can be obtained by modeling the cross section of the person as a rectangle of
40 cm by 20 cm, which is given by [2]

[xt]j =

{
1, if the person occupies grid j,

0, otherwise.
(20)

7. Performance Analysis

In this section, we evaluate the effectiveness of our proposed RTI method with experimental
data, and compare it against the traditional RTI [2], channel diversity RTI [12], and rotating RTI [14]
in terms of localization accuracy and image quality. For simplicity of description, all the mentioned
RTI algorithms are abbreviated as SD-RTI, RTI, CD-RTI, and RO-RTI in respective order. In addition,
we also present performance comparison between our proposed integrated image reconstruction
solution (`1 + `2) and the `2-norm solution of Tikhonov regularization and the `1-norm solution of
LASSO method. In the simulation, the size of the grid is 0.1 m× 0.1 m, the decaying parameter is set
to δ = 10, the regularization parameters for `1-norm term and `2-norm term are set to µ1 = 10, µ2 = 1,
respectively. All the image reconstruction parameters are optimized by the grid search method.

First, we study the advantage of the use of spatial diversity. One additional experiment is
performed with placing one node at each stand for original RTI and CD-RTI. A multi-channel protocol
with a list of eight specified channels ({11, 13, 15, 17, 19, 21, 23, 25}) with 10 MHz apart is used for
CD-RTI, and measurements of channel 11 are selected for original RTI. We optimize antenna orientation
of one link for RO-RTI by finding the strongest sublink among the total of nine sublinks. For all the RTI
algorithms to be compared, the proposed regularization method is applied for location determination
and image reconstruction. Table 1 tabulates the RMSE, median and standard deviation of localization
and imaging results with different RTI algorithms. Figure 4 also shows the localization error at
individual test positions. Compared to the original RTI, the localization accuracy and image quality are
both significantly improved by using spatial diversity. From Figure 4, we can see that, without spatial
diversity, the localization error at some positions (e.g.,L6, L7) can be up to 2 m. The poor performance
achieved is primarily due to serious multipath fading at these positions. On the other hand, there is
no large localization error for SD-RTI, which confirms that the RSS variation is less sensitive to
multipath after weighted averaging the RSS variation of sublinks with respect to fade level. While other
improvements with channel diversity (CD-RTI) and orientation optimization (SD-RTI) estimate the
target location more accurately, SD-RTI also performs better than them. On average, SD-RTI improves
the localization accuracy by 88% (compared to RTI), 55% (compared to CD-RTI) and 47% (compared to
RO-RTI), respectively. As for image quality, using spatial diversity reconstructs the best attenuation
image, approximately 5 dB lower than the original RTI in terms of RMSE. Although the promotion
is not very substantial compared against CD-RTI (5%) and RO-RTI (6%), the deviation of imaging
accuracy with SD-RTI is smallest, achieving a higher overall imaging performance.
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Next, we evaluate the performance of our proposed reconstruction method. RSS measurements
we used for all the image reconstruction methods are provided by SD-RTI. Table 2 lists localization and
imaging results of Tikhonov, LASSO and proposed reconstruction methods, respectively. From Table 2,
we can observe that the Tikhonov method achieves the satisfactory localization accuracy but with
the largest imaging error. On the contrary, the LASSO method gives the best image performance but
has a larger localization error than that of the Tiknohov method. Combining the advantages of both,
the proposed reconstruction method gets the best localization performance while image quality of it is
also comparable to that of the LASSO method (only reduced by 2%). As an example of illustration,
Figure 5 shows the image of three reconstruction methods when the target is located at a certain
position L16 (3.6 m, 0.6 m). We can see that the image of `2 regularization is blurred and corrupted by
noise. Even worse, due to multipath effects, there is a large bright part at the top edge of the image,
originated from unexpected RSS changes of some links not blocked by the target. By contrast, using the
LASSO and proposed method, the image is reconstructed to be more clean and includes no much
noise. More importantly, our proposed method also keeps accurately the profile of the target while
the other two methods fail to capture that. This enhancement is helpful for the applications of target
detection and interest of area mapping.
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Figure 4. Localization error at individual test locations. SD-RTI achieves the best localization results.

Table 1. Performance evaluation indicators of different RTI algorithms.

RTI CD-RTI RO-RTI SD-RTI

Localization
Accuracy [m]

RMSE 0.7324(88%) 0.1858(55%) 0.1581(47%) 0.0831
Median 0.1581 0.1581 0.0707 0.0707
Standard Deviation 0.5989 0.0975 0.0885 0.0263

Image
Quality [dB]

RMSE −16.9590(27%) −20.3113(6%) −20.5741(5%) −21.6545
Median −17.5586 −20.5984 −20.9777 −21.8022
Standard Deviation 2.9471 2.3440 1.3634 0.6691
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Figure 5. The attenuation image reconstructed using (a) Tikhonov (`2-norm); (b) LASSO (`1-norm);
and (c) proposed (`1 + `2). The image quality of the proposed method is more clear and accurate than
the other two methods.
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Table 2. Performance evaluation indicators of different regularization algorithms.

Tikhonov LASSO Proposed

Localization
Accuracy [m]

RMSE 0.0886(6%) 0.1282(35%) 0.0831
Median 0.0707 0.0707 0.0707
Standard Deviation 0.0313 0.0664 0.0263

Image
Quality [dB]

RMSE −14.9858(44%) −22.1956(−2%) −21.6545
Median −14.9986 −22.0116 −21.8022
Standard Deviation 1.2716 0.9476 0.6691

8. Discussion

In this section, we discuss the effect of the degree of spatial diversity on the performance and
system cost of our proposed method. Moreover, future promising research directions are also presented.

8.1. Impact of Number of Sublinks

We consider the number of sublinks as the degree of spatial diversity. How the localization and
imaging performance are influenced by the used number of sublinks is shown in Figure 6. We traverse
all combinations of ( 9

m) sublinks for m ∈ {1, 2, · · · , 9} and then calculate the average RMSE over all
combinations for m. When m > 4, the performance improvement tends to be smooth, which means
that a few number of sublinks is enough to enjoy the benefits of space diversity. In some application
scenarios where there are lack of sufficient informative sublinks, the performance of RTI can be
enhanced by this advantage. As shown in Figure 6a, the localization performance gap between the
proposed regularization and Tikhonov shrinks down with the increasing number of sublinks. In the
case of only a few sublinks available, the localization accuracy of the proposed method is much better
than that of Tikhonov. The reason is that the proposed reconstruction method utilizes the sparsity
of xt, excludes some unexpected interference and thus is robust to noise, especially for the case of
the small number of sublinks. When the number of sublinks is more than six, RMSEs of the two
methods are almost the same. However, Figure 6b illustrates that the image quality of the proposed
reconstruction is always much higher than that of Tikhonov, achieving an enhancement of about
7 dB regardless of the number of sublinks. Moreover, from Figure 6, we can see that, exploiting the
correlation property of xt, the proposed reconstruction method can locate the target more accurately
than LASSO regularization while image quality of them is very close. As the number of sublinks
increases, performance gaps between them become gradually narrowing. In summary, compared to
Tikhonov and LASSO, the proposed reconstruction method makes a good compromise between the
localization and imaging performance.
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Figure 6. Impact of the number of sublinks on (a) localization accuracy; and (b) image quality.
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8.2. System Cost

From above analysis, we can know that performance gains from our spatial diversity are at the
expense of multiple antennae used. In this paper, we emulate it through multiple nodes arranged
in place, which can be regarded as one node with multiple antennae. It may be worried that this
system will require more nodes so as to achieve desired accuracy. This can increase the system cost
and make it impractical. However, there is no need to concern this problem. First, we have already
demonstrated that the number of sublinks required is not too large for better performance. Second,
nowadays our surroundings are full of ubiquitous WiFi devices, which are generally equipped with
three or more antennae. Therefore, our system can be easily implemented in commodity devices and
poses no additional cost. Finally, our system only employs the multiple antenna configuration and
can avoid shortcomings of frequent channel switching procedure in CD-RTI and intractable antenna
orientation adjustment process in RO-RTI. In addition, computational complexity of our proposed
reconstructed method is comparable to LASSO because of the same equivalent form.

8.3. Future Work

RTI usually leverages RSS as RF measurements to realize target localization. RSS is a coarse
indicator of signal feature quantity obtained from the MAC layer, which characterizes the total power of
synthesized signal. When we implement our system with existing WiFi devices, with the help of some
powerful tools, we can extract extensive informative information describing channel characteristics in
physical layer between multiple antennae, i.e., fine-grained CSI samples including magnitude and
phase [15]. Currently, CSI is mostly used in fingerprint-based DFL. Therefore, one promising direction
of research is to examine the ability of CSI for RTI. We believe that CSI-based RTI will outperform
RSS-based RTI, since CSI (1) is more robust to multipath fading; (2) supports the channel diversity and
spatial diversity simultaneously; and (3) provides raw information containing angle of arrival to be
further studied.

Another challenging problem in RTI research is the localization and tracking of more than one
target. Since multi-target-induced shadowing is more difficult to model theoretically than one target,
most research focused on multiple targets localization assume that RSS variation observed is simply
the superimposition of that of single-target and requires some clustering algorithms to distinguish
them separately. In future research, we will investigate how the correlated effect of multiple targets
is reflected on RF measurements of multiple antennae and seek to achieve accurate multi-target RTI
localization using a minor path difference caused by spatial diversity.

9. Conclusions

In this paper, we have presented some improvements to the localization and imaging performance
of RTI in challenging environments. We first propose using spatial diversity for RSS attenuation
modeling and then explore the combination of `1-norm and `2-norm regularization for image
reconstruction. In spatial diversity, due to the minor position difference of the antennae, RSS variations
on the sublinks caused by the target significantly vary. A more robust RSS variation estimator can
be obtained through averaging the RSS variations on the sublinks with respect to link quality level.
To enhance the attenuation image quality, by incorporating the sparseness and correlation implied in
the image, our new reconstruction method can preserve the cross section outline of the target clearly
as well as achieve accurate localization estimation. This multiple antenna configuration can be easily
deployed in real applications with commodity devices. We also have shown that spatial diversity is
more suitable for cases where a few measurements are available. Experimental results confirm that
the localization accuracy and image quality can be further improved with spatial diversity and the
proposed reconstruction method compared to existing RTI methods.
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