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Abstract: Face reconstruction is a popular topic in 3D vision system. However, traditional methods
often depend on monocular cues, which contain few feature pixels and only use their location
information while ignoring a lot of textural information. Furthermore, they are affected by
the accuracy of the feature extraction method and occlusion. Here, we propose a novel facial
reconstruction framework that accurately extracts the 3D shapes and poses of faces from images
captured at multi-views. It extends the traditional method using the monocular bilinear model to
the multi-view-based bilinear model by incorporating the feature prior constraint and the texture
constraint, which are learned from multi-view images. The feature prior constraint is used as a shape
prior to allowing us to estimate accurate 3D facial contours. Furthermore, the texture constraint
extracts a high-precision 3D facial shape where traditional methods fail because of their limited
number of feature points or the mostly texture-less and texture-repetitive nature of the input images.
Meanwhile, it fully explores the implied 3D information of the multi-view images, which also
enhances the robustness of the results. Additionally, the proposed method uses only two or more
uncalibrated images with an arbitrary baseline, estimating calibration and shape simultaneously.
A comparison with the state-of-the-art monocular bilinear model-based method shows that the
proposed method has a significantly higher level of accuracy.

Keywords: 3D reconstruction; 3D vision; multi-view-based bilinear model; model matching;
3D shape modeling

1. Introduction

Three-dimensional (3D) face reconstruction is one of the most fundamental and challenging
problems in 3D vision systems, as it plays an important role in many fields such as face geometry
measurement [1–3], face recognition [4–6], face component transfer [7,8] and face replacement [9,10].
In the recent decades, significant progress has been made in 3D face reconstruction and a number of
methods have been proposed in the literature. These approaches can be divided into two categories:
active and passive. On one hand, the active method indirectly obtains high-quality 3D facial model
using depth maps captured from sensors, such as a laser scanner device (CyberwareTM) or depth
camera (Microso f t KinectTM) [11]. Unfortunately, the laser scanner device is harmful to human eyes
and is too expensive for many applications. Moreover, sensor errors and the properties of the face
surface mean that depth maps from depth sensors are often noisy [12]. Additionally, the active method
also needs to take sufficient time to complete the scanning process, during which the face must be kept
still for a few seconds. Hence, it is more suitable for static application scenes.

On the other hand, the passive method can obtain facial shapes using image sequences [13] or 3D
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morphable models [7]. It is generally used in dynamic application scenes. However, the image
sequence-based passive methods heavily rely on how the scene is presented and contain error
matches caused by luminance variation. They also fail in texture-less and texture-repetitive regions
where there is not enough visual information to obtain the correspondence. Moreover, they cannot
deal satisfactorily with fast motion and a wide range of distances. On the contrary, 3D morphable
model-based methods do not suffer from ambiguities in texture-less and texture-repetitive regions.
However, the number of feature points is very limited, and the methods use the 2D image location
information of face feature points to obtain the identity and expression weights, which often leads to
low quality and noise susceptibility.

It is clear that each 3D face reconstruction method is limited in some respects where other
approaches may be effective. Therefore, fusing different methods using their complementary
characteristics would undoubtedly make the obtained 3D face reconstruction more robust and improve
the quality. Here, we extend the traditional monocular bilinear model to the multi-view-based bilinear
model by fusing the complementary characteristics of the shape from stereo matching and the 3D
morphable model to obtain an accurate and robust 3D face mesh. The feature prior constraint and
texture constraint are formulated into our framework to obtain a much higher precision estimation
than that demonstrated in previous papers. The main contributions are as follows:

1. Feature pixels extracted from multi-viewpoints are used as the feature prior constraint, which is
treated as a face shape prior to estimating an accurate 3D face mesh contour. The rigid
transformation of the face mesh as well as the identity and expression weights in the
multi-view-based bilinear model can be estimated by minimizing the matching error between the
extracted feature pixels and the projections of the landmarks in multi-viewpoints. The proposed
constraint can estimate accurate contours of the generated 3D face mesh even with the effect of
occlusion, where previous methods often failed. This is possible because when some parts of
the face mesh are invisible in one viewpoint, they may be visible in other viewpoints, which can
provide accurate feature pixels to restore the facial contours.

2. An adaptive texture constraint is incorporated to extract a high-precision 3D facial shape,
where traditional methods fail because of the limited number of feature pixels or the mostly
texture-less and texture-repetitive input images. Meanwhile, it fully explores the implied 3D
information between multi-view images, which also enhances the robustness of the results.
The adaptive texture constraint is defined as the weighted sum of squared texture differences
between corresponding stereo-match pixels in the multi-viewpoint images. It assumes that the
stereo-match pixels in the projected face region between multi-view images should be projected
from the same vertex in the 3D face mesh and have a similar texture distribution.

The accuracy of the method is evaluated on ground-truth data and compared against the
state-of-the-art 3D face reconstruction method. It is shown how the feature prior and texture constraints
from the multi-view images facilitate the extraction of a 3D face mesh. Additional experiments validate
the pose invariance of the method on real-world face images. The proposed method works directly on
uncalibrated multi-viewpoints with an arbitrary baseline, to estimate the calibration and 3D face mesh
simultaneously by a GPU-based optimization.

The remainder of this paper is organized as follows: Section 2 gives a summary of various
methods used for 3D face reconstruction. The details of the proposed method are discussed in
Section 3, while the evaluation results are presented in Section 4. Section 5 gives some conclusions for
the future work. Note that for notation clarity, in this paper, we focus only on restoring the 3D face
mesh from three viewpoints. However, the proposed method can easily be used to handle 3D facial
reconstruction from any multi-views.
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2. Previous Work

In recent years, the image sequence-based passive 3D face reconstruction method is regarded as a
hot area of 3D vision system [13]. According to the type of image information, it recovers the 3D facial
mesh from shading, motion, stereo matching, and the 3D morphable mode.

The shape from motion-based method (SFM) uses the image sequence to estimate the 3D structure
of the human face in a controlled motion [14]. It estimates the camera calibration parameters using the
matching feature pixels in each frame image and then restores the depth information of the human 3D
face geometry. Moons et al. [15] used a universal model to reconstruct a 3D face model from a video
sequence. Torresani et al. [16] estimated the 3D model of non-rigid objects from a video sequence
recording human speech and used the probabilistic principal components analysis method to learn the
3D model of human face. Garrido et al. [17] proposed a novel algorithm for the automatic creation
of a personalized high-quality 3D face rig of an actor from just monocular video data. Their rig is
based on three distinct layers that allow them to model the actor’s facial shape as well as capture
his person-specific expression characteristics at high fidelity. However, because the method relies
heavily on the local texture information to find matching feature pixels between frames, SFM does
not perform well in dynamic scenes and is easily affected by illumination variation, fast movement,
motion blurring and occlusion between adjacent frames.

The shape from shading-based method (SFS) estimates the 3D facial face shape through a nonlinear
partial differential equation, which indicates the relationship between the intensity of each 2D image
pixel and normal reflectivity. Tanasai et al. [18] recovered a 3D face model from a single shaded face
image. The key to their work was to find a possible relationship between an image subspace and a 3D
subspace. Kemelmacher et al. [19] combined the shading information along with prior knowledge
(such as the lighting conditions, the reflectance characteristics of the object, and boundary conditions)
of a reference model to obtain the 3D shape of a novel face from a single image. This prior information
is part of the sought 3D shape and is often not available. This limits the applicability of the SFS method
to restricted setups.

The goal of shape from stereo matching-based method (SFSM) is to estimate a high-resolution
dense depth map by finding corresponding pixels in image pairs taken simultaneously from different
viewpoints [20]. Sun et al. [21] proposed a fast framework for 3D face reconstruction by using
uncalibrated photometric stereo. With a reference face model, lighting parameters were estimated
from input face images lit by unknown illumination, which can be used in classical photometric
stereo to estimate the surface normal and albedo. Nigam et al. [22] proposed an automatic 3D
face reconstruction approach from rectified stereo images. Three enhancements adaptive histogram
equalization, horizontal gradient ordinal relationship pattern and steerable filter were employed to
improve the contrast of face images, handle poor illumination and reduce noise. The SFSM methods
heavily rely on the features (e.g., color, color gradients, edges), the radiometric variations and the
presentation of the human face. However, the human face is relatively texture-less or texture-repetitive
except for a few edges (such as wrinkles, the mouth, and the eyes). Where there is not enough
visual information to obtain a correspondence, the extraction of high-quality surfaces with general
correlation-based methods is virtually impossible. Hence, the results of the SFSM method are relatively
low in terms of accuracy and contain error matches caused by luminance variation and occlusion [23].

Another passive method indirectly obtains facial reconstruction using a 3D morphable model
(3DMM) that does not suffer from ambiguities in texture-less and texture-repetitive regions. As a classic
statistical model of 3D facial shape, 3DMM derives a morphable face model, learned from a database of
facial scans, as a vector space representation that is used to describe the procedure of constructing a 3D
face. The 3DMM has two significant benefits: on one hand, a point-to-point correspondence between
the reconstruction and all other models; on the other hand, modeling underlying transformations
between face types (amazement, fear, smiling, etc.). Blanz et al. [24] derived a 3D morphable model
based on a set of 200 3D face models describing shapes and textures. Their method computed
the correspondences using optical flow between the reconstructed face and the input still image.
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Although reconstructing realistic 3D face reconstruction from a single still image, it is highly
computationally expensive and only effective under constrained settings because of the non-linear
optimization. To overcome this weakness, Vlasic et al. [25] used a multilinear model to represent the
combined effect of identity and expression variation on the facial shape. Dale et al. [26] proposed
a 3D multilinear model to track the corresponding 3D facial geometry in both space and time from
the source to the target face performance in a video sequence. Bolkart et al. [27] showed how such a
multilinear model can be estimated directly from 3D scans using joint optimization over the model
parameters and groupwise registration of 3D scans.

Among the plethora of 3DMM methods [28], the monocular bilinear model [7] is probably the
most well-known and widely applied method used to reconstruct 3D face shapes. It assembles the
dataset into a rank-three data tensor, which is arranged in an obvious fashion so that it represents
the 3D face by forming linear combinations of the prototypes. Moeini et al. [29] obtained expression
insensitive face recognition from only a 2D single image in a gallery including any facial expressions.
However, because it represents the 3D face mesh from a single image, the required information for
high-precision 3D face reconstruction used in the monocular bilinear model (such as shape, texture,
illumination conditions and camera attributes) is limited, so the recovery of 3D face geometry is
ill-posed and uncertain. Furthermore, the feature point detection in the monocular bilinear model is a
crucial task and may be inaccurate, especially when the image contains various lighting conditions,
facial expressions, wrinkles and so on. Moreover, the feature pixels are affected by the occlusion,
which results in low accuracy and affects the shape estimate [30]. So, obtaining a 3D face reconstruction
with a single face image is still an ill-posed problem.

Instead, multi-view geometry is a common procedure to reconstruct 3D shapes from several single
images or video frames. It has become a hotspot in recent years. The 3DMM based on multi-view
can significantly utilize redundant data from multiple images of a person to obtain robustness and
reliability. Zhu et al. [31] proposed a robust method using multi-feature framework which included
SIFT feature, pixel intensity and contours. Because the SIFT feature is invariant to uniform scaling,
orientation, and partially invariant to affine distortion and illumination changes, their method can
locate the facial components successfully. Lin et al. [32] proposed an improved 3DMM for multi-view
3D face reconstruction. They significantly reduced tens of thousands of image intensities in the
3DMM to dozens of sparse facial feature points. However, due to the small number of feature points,
the reconstruction process is prone to overfitting. Booth et al. [33] improved the texture of 3DMM
by learning in-the-wild feature-based texture model. Meanwhile, Tran et al. [34,35] proposed an
innovative framework to regress robust and discriminative 3DMM representation from a large set of
unconstrained multi-view face images. Fyffe et al. [36] presented a multi-view reconstruction method
that directly obtains a complete high-fidelity head model with a consistent facial mesh topology.
While existing techniques separate shape estimation from facial tracking, their framework jointly
optimizes 3D constraints and provides consistent mesh parameterization. Dai et al. [37] propose a novel
“coarse-to-fine” multi-view 3D face reconstruction method by taking advantage of the complementarity
between facial feature points and occluding contours. Multi-view face images with visual angle
differences were employed to calculate the 3D coordinates of facial feature points to generate 3D face
models. However, these methods generally depended on a generic 3D face model, while a lot of the
texture information is always ignored.

According to the above discussion, each 3D face reconstruction method is limited in some aspects,
and other methods may be effective. Therefore, the fusion of different methods and the use of their
complementary features will undoubtedly make the 3D face reconstruction more robust and improve
the quality.
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3. Methods

The proposed method can be partitioned into three phases: model definition, feature pixels
extraction and model matching. The inputs are the texture images (IL, IC and IR) of the left, center and
right viewpoints, and the output is the generated 3D face reconstruction mesh. As shown in Figure 1,
during the model definition, the FaceWarehouse [7], a database of 3D face meshes for visual computing,
is used to build the face bilinear model. This database consists of the facial geometry and texture
of 150 persons, which contains 47 expression blendshapes for each person, capable of representing
most expressions of the human face. All of these face blendshapes share the same topology and thus
the same number of vertices. They are assembled into a rank-three tensor data (11K vertices × 150
identities × 47 expressions), and are arranged in an obvious fashion, so that each slice with varying
second factor and a fixed third factor contains face vectors with the same expression (for different
identities), and each slice with a varying third factor and a fixed second factor contains face vectors
with the same identity (with different expressions). Any facial expression of any person (V) can be
approximated by the tensor as:

V = Cr ×2 Wid ×3 Wexp (1)

where Cr is the reduced core tensor produced by keeping the top-left corner of the original core tensor.
Wid and Wexp are the vectors of identity weights and expression weights.

Database of 
Facial Scans

OnlineOffline

Model 
Definition

Bilinear 
Model

Feature Pixels Extraction

Center 
Viewpoint Image

Right 
Viewpoint Image

Left 
Viewpoint Image

Feature 
Pixels Model Matching

Texture
Constraint

3D Face 
Model

Input Process

Constraint Output

Figure 1. The conceptual flow diagram of the proposed method.

In the feature pixels extraction phase, we used the method described in [38] to locate 65
feature pixels on each viewpoint image, including the face contour, eye corners, brow boundary,
mouth boundaries, nose contours and tip. These feature pixels were formulated as a shape prior to
allow us to estimate accurate 3D facial contours.

The model matching phase is the main contribution of this study. In this phase, we combined the
complementary characteristics of shapes from stereo matching and the 3D morphable model to extend
the traditional monocular bilinear model to the multi-view-based bilinear model. An energy function
with the feature prior constraint and texture constraint that were learned from multi-view images was
formulated to obtain the rigid transformation of the face mesh as well as the identity and expression
weights in the bilinear model.

3.1. Energy Formulation

The estimated 3D face mesh using the multi-view based bilinear model is denoted as:

M(Wid, Wexp) =
m

∑
i=1

n

∑
j=1

cr(i,j) ×Wid(i)×Wexp(j) (2)
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where Wid is the m-dimensional vector of the identity weight and Wexp is the n-dimensional vector of
the expression weight. As described in [7], m and n are equal to 50 and 25 in this paper. In addition,
Mk(Wid, Wexp) is the k-th mesh vertex in the 3D face mesh estimated according to Wid and Wexp.
As shown in Figure 2, the initialization of the bilinear model is the average 3D face mesh of all the face
blendshapes (almost 3000) in the FaceWarehouse database.

(a) (b)

Figure 2. (a) The extracted feature pixels (green pixels) in the left, center and right viewpoints. (b) The
initial average 3D face mesh and its corresponding landmarks (yellow points) located manually.

To establish the connection between the 3D face mesh and the input multi-view images, we need
to simulate the imaging projection principle of the cameras. Each camera is modeled as a pinhole
camera and described by a rigid transformation consisting of the scaling factor si, the 3D rotation
matrix Ri, and the translation vector Ti. The superscript i = {L, C, R} indicates the left, center and
right cameras. For the sake of simplicity, we assume that the camera projection is weakly perspective.
Each 3D face mesh vertexMk(Wid, Wexp) is projected to the image space as:

Pi(Mk(Wid, Wexp)) = si × Ri ×Mk(Wid, Wexp) + Ti (3)

Based on the discussion above, in order to estimate an accurate 3D face reconstruction mesh,
the energy function with the multi-view-based bilinear model, which incorporates the feature prior
constraint E f , the texture constraint Et, and the regularization constraint Er, learned from the
multi-view images and 3D facial scanning database, can be expressed as:

E = λ f × E f + λt × Et + λr × Er (4)

where the weights λ f = 0.4, λt = 0.3 and λr = 0.3 define the relative importance of each constraint.
The unknowns that need to be determined are the identity weight vector Wid and the expression
weight vector Wexp of the multi-view-based bilinear model as well as the camera calibration parameters
(si, Ri, Ti, i = {L, C, R}) of each viewpoint. The energy function Equation (4) can be easily minimized
using the L-BFGS-B [39] optimization method. Each constraint is discussed in detail later.

3.2. Feature Prior Constraint

As described in the feature pixel extraction phase, the extracted feature pixels (green pixels) in
each viewpoint are shown in Figure 2a. Each viewpoint image contains the same number and the same
extraction order of the feature pixels. For example, the first feature pixel in the left viewpoint image
corresponds to the first feature pixels in the center and right viewpoint images. It is clear that the
extracted feature pixels located on the face contours, eye corners, brow boundaries, mouth boundaries,
nose contours, and nose tip cover all of the important human facial parts and can be used to describe
the human facial contours. Hence, the extracted feature pixels are used as the feature prior constraint,
which is treated as a face shape prior to estimating accurate 3D face mesh contours.

To calculate the prior, we first localize a set of facial feature points (defined as landmarks and
marked as yellow in Figure 2b) on the initial average 3D facial mesh following the same order of the
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extracted feature pixels in the images. Each landmark is a mesh vertex denoted byMj(Wid, Wexp),
where j is the order index of landmarks. Note that because the location and extraction order of feature
pixels is the same for any input viewpoint image, we only need to manually localize all landmarks
in the initial average face mesh once at the beginning. To estimate a new 3D facial mesh next time,
we can only directly use the landmark information.

According to the imaging projection principle of cameras, as shown in Figure 3, the j-th extracted
feature pixels in different viewpoint images (green pixels in Figure 3a–c) can be viewed as different
projections of the same j-th landmark (yellow pixels in Figure 3d) in the 3D facial mesh. Hence,
the projection of the j-th landmark (yellow pixels in Figure 3a–c) should have the same coordinates
as the j-th extracted feature pixel (green pixels in Figure 3a–c) in each image. Based on the above
assumption, the feature prior constraint penalizes the distance between the projected coordinates of
the landmarks and the coordinates of their corresponding extracted feature pixels. This is treated as
a shape prior to obtain an accurate 3D face mesh contour and provides an estimate of the camera
parameters. One feature prior constraint per viewpoint is used:

E f =
{L,C,R}

∑
i

64

∑
j=0
||Pi(Mj(Wid, Wexp)− pi

j||2 (5)

(a)

(b)

(c)

(d)

Figure 3. The schematic diagram of the feature prior constraint. In each viewpoint image, the projection
of landmarks (yellow pixels in (a–c)) should have the same coordinate as the extracted feature pixels
(green pixels).

Here, Pi is the projected position of the j-th landmark (Mj(Wid, Wexp)). pi
j is the coordinate of

the j-th extracted feature pixel. The conventional monocular bilinear model often restores a 3D face
mesh using the 2D image location information of the extracted feature pixels from a single image.
They do not suffer from ambiguities in texture-less or texture-repetitive regions and light illumination
variation. Although the extracted feature pixels of a single viewpoint image are located at the face
contours, eye corners, brow boundaries, mouth boundaries, nose contours, and nose tip, which covers
all important human facial parts, the number of extracted feature pixels is limited. More seriously,
the features are often affected by occlusion, which leads to inaccurate feature extraction. Hence,
their results are low quality and noisy. The contours of the generated 3D face mesh may contain
serious deformation because the position of extracted feature pixels is incorrect when occlusion occurs.
On the contrary, we estimate the rigid transformation of the face mesh as well as the identity and
expression weights in the multi-view-based bilinear model to minimize the matching error between the
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extracted feature pixels and the projections of the landmarks in multi-view images. This method uses
the information of multi-view images to eliminate the effect of occlusion. This is possible because when
some parts of the face mesh are invisible in one viewpoint, they may be visible in other viewpoints,
which can provide accurate feature pixels to restore the facial contours.

3.3. Texture Constraint

As described above, although the feature prior constraint is viewed as a shape prior to estimating
accurate 3D facial contours, the number of features is limited so that there is not enough information to
estimate an accurate entire 3D face mesh (such as the cheeks) except for the face contours. In contrast,
traditional shapes from stereo matching-based methods can obtain a high-quality 3D face depth map
by comparing the textural difference of matching pixels between neighboring images, but they usually
fail in the texture-less and texture-repetitive regions, where there is not enough visual information to
obtain the correspondence.

To enhance the accuracy and robustness of the estimated 3D face mesh, an adaptive texture
constraint is incorporated by fully exploring the implied 3D information between multi-view
images. This assumes that the stereo-match pixels in the projected face region between multi-view
images should project from the same vertex in the 3D face mesh and have a similar texture
distribution. The adaptive texture constraint is the weighted sum of squared texture differences
between corresponding stereo-match pixels in the multi-viewpoint images, where the correspondence
is determined by the current 3D face mesh (depending on the identity weight vector Wid and
the expression weight vector Wexp of the bilinear model as well as the camera parameters
(si, Ri, Ti, i = {L, C, R})).

Each 3D face mesh vertex Mk(Wid, Wexp) (denoted as Vk, marked as yellow in Figure 4) is
projected to each viewpoint image Pi(Vk) according to the camera parameters (si, Ri, Ti, i = {L, C, R}).
Because they are projected from the same 3D mesh vertex, the projected pixels (PL(Vk), PC(Vk), PR(Vk))
in the multi-view images are the corresponding stereo-match pixels. We first define a surrounding
neighborhood patch N(Pi(Vk)) (with a radius of, for example, 5 pixels) centered at each projected
pixel (Pi(Vk)). Let (u, v) and (u′, v′) be the image coordinates of Pi(Vk) and its neighboring pixel in
N(Pi(Vk)). The texture variance center at pixel (u, v) is calculated as:

Ii(u, v) =
∑(u′ ,v′)∈N(Pi(Vk))

Ψi(u, v, u′, v′)× Ci(u′, v′)

∑(u′ ,v′)∈N(Pi(Vk))
Ψi(u, v, u′, v′)

(6)

Ψi(u, v, u′, v′) = D(u, v, u′, v′)H(u, v, u′, v′) (7)

where Ci(u′, v′) is the color value in the RGB channel, and Ψi(u, v, u′, v′) is the bilateral weight.
D(u, v, u′, v′) and H(u, v, u′, v′) are the distance and color weights, respectively, which are defined as:

D(u, v, u′, v′) = exp(− (u− u′)2 − (v− v′)2

2σ2
D

) (8)

H(u, v, u′, v′) = exp(−||C
i(u, v)− Ci(u′, v′)||2

2σ2
H

) (9)

where σD and σH are the standard deviation of the image coordinate and the image texture space.
The texture constraint is then applied to penalize the dissimilarity of the corresponding stereo-match
pixel pairs, whose texture variance should be similar in all image pairs. This is calculated using the
second-order texture variance term as follows:
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Et = ∑
Vk

(||IC(PC(Vk))− IR(PR(Vk))||2)

− 2×∑
Vk

(||IL(PL(Vk))− IR(PR(Vk))||2)

+ ∑
Vk

(||IC(PC(Vk))− IL(PL(Vk))||2)

(10)

Figure 4. The projection of 3D face mesh vertex (yellow points) and its surrounding neighborhood
patch (green pixels).

3.4. Regularization Constraint

The regularization constraint is applied to prevent over-fitting of the identity weight and
the expression weight. The FaceWarehouse [7] database contains more than 3000 human face
blendingshapes. Because each blending shape can be approximated by the bilinear model as described
in Equation (2), so we can obtain the identity weight (Wm

id ) and the expression weight (Wm
exp) for the

m-th blending shape as: 
M1

m(Wm
id , Wm

exp) = V1
m

M2
m(Wm

id , Wm
exp) = V2

m
...........
MN

m (Wm
id , Wm

exp) = VN
m

(11)

where Vk
m is the k-th 3D face mesh vertex from the m-th scanning mesh blendingshape of the face

database. Mk
m(Wm

id , Wm
exp) is the k-th mesh vertex estimated from the bilinear model of the m-th

mesh blendingshape using its corresponding identity weight (Wm
id ) and expression weight (Wm

exp).
When obtaining all identity weights and expression weights of entire blendshapes, we compute the
mean vector and standard deviation vector of the identity and expression weights (µid, µexp, σid, σexp)
that are denoted as the regularization term. We restrict the estimated weight vectors ( Wid, Wexp) of the
multi-view-based bilinear model to be distributed around the regularization term as:

Er =
50

∑
i=1

(
Wid(i)− µid(i)

σid(i)
)2

+
25

∑
j=1

(
Wexp(j)− µexp(j)

σexp(j)
)2

(12)
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3.5. GPU-Based Optimization

The unknowns that need to be determined in the energy function Equation (4) are the identity
weight vector Wid and the expression weight vector Wexp of the multi-view-based bilinear model as well
as the camera calibration parameters (Pi = {si, Ri, Ti, i = {L, C, R}}) of each viewpoint. Because the
energy function is a nonlinear discontinuous function of the parameters, the direct optimization
solution is not realistic and the iterative method is adopted.

First, we initialized all parameters. For the projection matrix, the camera calibration parameters are
initialized as identity vectors. For face shape parameters, they are initialized to the shape parameters
(Wid and Wexp) of the average human face model that can be obtained by averaging 3000 human face
blendingshapes in the database.

Secondly, nonlinear optimization is at the heart of many algorithms in engineering. Recently,
due to the rise of general purpose graphics processing unit, it is promising to investigate the
performance improvement of optimization methods after parallelization. So, the parallelized
implementation of the Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) on the GPU [39] is used to
iteratively obtain each optimized parameters.

4. Results and Discussion

Here, a series of experiments were performed to verify the effectiveness and accuracy of the
proposed method. The evaluation was composed of qualitative and quantitative analyses.

4.1. Quantitative Evaluation Using the ESRC Image Dataset

The first dataset is the neutral expression part of the ESRC image dataset [40] that contains images
of 99 subjects (45 males, 54 females) from three viewpoints with ambient only lighting (see Figure 5).
This should be a difficult dataset for monocular fitting, as monocular shape estimation depends on a
single viewpoint image that is easily affected by having a limited number of extracted feature points
and noise. Here, we performed a quantitative analysis of the proposed method using the ESRC image
dataset to determine the influence of each constraint on the proposed method and these methods
were compared against the monocular method [7]. Because the ESRC image dataset only provides the
groundtruth of the front face (See Figure 5c), we just evaluated the metrics between the front face of
our results and the groundtruth. We first reconstructed the 3D front face meshes from the ESRC image
dataset and aligned them rigidly with the ground truth. Then the vertex error and the model error
were used as the evaluation metrics. The vertex error whose units are millimeters (mm) is denoted
as the distance between the vertices between of the reconstruction and their closest points on the
groundtruth. For the model error that is denoted as the mean of all vertex errors, a lower value is
better than a higher one.

(a) (b) (c)

Figure 5. The neutral expression part of the ESRC image dataset. (a) From left to right is the left, center
and right viewpoint images. (b) Raw data from depth camera. (c) The groundtruth of front face.

One of the results of this comparison is shown in Figure 6b,e. Because the 3D face mesh was
obtained from a single image, the conventional method using the monocular bilinear model [7]
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contains few useful face feature pixels. Moreover, its result mainly depends on the accuracy of
the extracted feature pixels, which is often affected by occlusion that leads to inaccurate feature
extraction. The corresponding reconstructed 3D face mesh usually contains serious deformation when
the positions of the extracted feature pixels are wrong. Furthermore, it can only use the 2D image
location information of face feature pixels and ignores the plentiful texture information of images,
which results in low accuracy and noise (blue rectangles in Figure 6b). On the contrary, the proposed
method contains the extracted feature pixels from multi-view images. It uses the information from
multi-view images to eliminate the effect of occlusion. That is to say, when the location of one feature
pixel is wrong or invisible in one viewpoint, its corresponding feature pixels in other viewpoints
may be correct or visible. Hence, our method yields a lower error than the monocular bilinear model
(See Figure 6e).

(a) (b) (c) (d) (e) (f)

0 10

Figure 6. Comparison results. The vertex error (mm) is indicated by color according to the color bar.
(a) Three viewpoint images. (b) Result using method [7] and its comparison result. (c) Result using the
proposed method without texture constraint and its comparison result. (d) Result using the proposed
method without feature prior constraint and its comparison result. (e) Result using the proposed
method with all constraints and its comparison result. (f) The ground truth of front face.

Figure 7 sums up the results over all subjects in the dataset, showing that the proposed method
has higher accuracy than that of the conventional method using the monocular bilinear model [7].
We can see that, on one hand, for the low vertex error region (the percentage of vertices for which the
error is less than or equal to 2.4822 mm), the proposed method is the highest. A higher percentage is
better. This means that our method mostly produces a low vertex error. On the other hand, for the
high vertex error region (the percentage of vertices for which the error is larger than (2.4822 mm),
the proposed method is also the lowest. A lower percentage indicates a better fitting. Furthermore,
the model error in the ESRC image dataset is listed in Table 1. Compared with the average model error
2.8291 mm of the previous state-of-the-art monocular bilinear model [7], our method provides a model
error of 2.4822 mm over all mesh vertices (nearly 400,000 vertices) for all meshes in the ESRC image
datasets, which shows that our method performs almost 14% better than the conventional method
with respect to precision.
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Figure 7. The vertex error distribution of all vertexes of ESRC dataset using different methods.
The horizontal axis is the vertex error whose unit is millimeter (mm), vertical axis is the percentage of
vertexes under a error threshold. For example, (4.4, 0.02) means that the percentage of vertexes with
error 4.4 mm is nearly 2%. Color numbers are the model error.

Table 1. The model error over all mesh vertices (nearly 400,000 vertices) for all meshes in the ESRC
image datasets.

Method Model Error (mm)

Monocular [7] 2.8291
Without Feature Prior Constraint 3.3464

Without Texture Constraint 2.7563
Proposed Method 2.4822

Furthermore, in order to verify the precision of our method, we compared it with other
state-of-the-art monocular- [41–43] and multi-view-based [30,37,44] approaches. According to the
quantitative and qualitative evaluation results shown in Table 2 and Figure 6, it can be concluded that
the proposed method is successful in the following aspects:

1. Because the feature pixels extracted from multi-viewpoints are used as the feature prior constraint,
the proposed method estimates accurate contours of the generated 3D face mesh even with the
effect of occlusion, where previous methods often failed. This is possible because when some
parts of the face mesh are invisible in one viewpoint, they may be visible in other viewpoints,
which can provide accurate feature pixels to restore the facial contours.

2. Because the adaptive texture constraint is incorporated to fully explore the implied 3D information
between multi-view images, the proposed method enhances the robustness and removes the
errors caused in the texture-less and texture-repetitive regions. It assumes that the stereo-match
pixels in the projected face region between multi-view images should be projected from the same
vertex in the 3D face mesh and have a similar texture distribution.

Table 2. Comparison of results with other state-of-the-art approaches. Model error over all mesh
vertices (nearly 400,000) for all meshes in the ESRC datasets.

Method Thies Shi Aissaoui Hernandez Piotraschke Dai Proposed
et al. [41] et al. [42] et al. [44] et al. [43] et al. [30] et al. [37] Method

Model Error (mm) 2.7532 2.9146 2.6557 3.0015 2.3714 2.8655 2.4822
RMSE 1.7043 1.7912 1.3881 2.1514 1.8225 1.9543 1.0009
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It is clear that the proposed method is superior to other methods with respect to the mean error
rate (the accuracy increased almost 16%). Furthermore, our RMSE changes are small, which means
that our method is more robust.

In addition, we evaluated the performance of each constraint of our proposed scheme. In each
experiment, we omitted one part of our method and retained the remaining parts. First, we omitted
the texture constraint. In this case, although the extracted feature pixels are located at the face contour,
eye corners, brow boundary, mouth boundary, nose contour, and nose tip, which covers all important
human facial parts, they only cover the face contours, not the entire face. Hence, the results are easily
affected by noise and low quality except in the facial contour regions, which leads to reconstruction
errors in the cheek region (yellow rectangles in Figure 6c) and causes the model error over the ESRC
image dataset to increase sharply to 2.7563 mm, which almost decreased 11% in accuracy.

Next, we omitted the feature prior constraint, meaning that the 3D face mesh is estimated by
the shape from stereo matching. Without the feature prior constraint to provide the prior knowledge
of face shape contours, the results are often affected by the lighting variation. Hence, this method
fails in the texture-less and texture repetitive regions where there is not enough visual information to
obtain the correspondence. This leads to errors in the generated face shape contours and texture-less
or texture-repetitive regions (red rectangles in Figure 6d). As listed in Table 1, the model error over the
ESRC image dataset increased sharply to 3.3464 mm, which almost decreased 35% in accuracy. It is
thus clear that our method significantly increases reconstruction accuracy and enhances the robustness,
resulting in much better 3D face mesh when all constraints are applied. It fuses the complementary
characteristics of the shape from stereo matching and the 3D morphable model to obtain better results.
The feature prior constraint is used as a shape prior to allow us to estimate accurate 3D facial contours.
Furthermore, the texture constraint extracts a high-precision 3D facial shape where traditional methods
fail because of their limited number of feature points or the mostly texture-less and texture-repetitive
nature of the input images.

Some reconstruction results are shown for a representative set of examples in Figure 8.
They demonstrate that the proposed method results in a significant increase in reconstruction accuracy,
resulting in a much better 3D face mesh. Meanwhile, it fully explores the implied 3D information of
multi-view images, while also enhancing the robustness of the results.

4.2. Quantitative Evaluation Using the Morphace Image Dataset

Reconstructing the shape of a 3D face seen under varying poses should always result in the same
face mesh. To investigate the robustness to varying positions and occlusions, we used the above
assumption to test our method on the Morphace dataset [45], which consists of eight expressions
with varying pose of 100 subjects. This dataset has the extracted feature pixel information marked in
two face images of each viewpoint, so we omitted the feature extraction in the proposed method and
directly used the provided feature pixel information in this experiment. We firstly estimated the 3D
face mesh of each pose. Then, because there is no ground truth in this dataset, we used pose0 as the
reference position and the others as the testing positions. Similarly, the estimated 3D face mesh of pose0
and the other poses were viewed as the reference mesh (Figure 9a) and testing meshes (Figure 9b–h),
respectively. To quantify the robustness of our method, we computed the shape similarity between the
reference mesh and each testing mesh. As is well-known, the distance between two vectors is defined
as [46].

d(α1, α2) =
α1 × α2

||α1||2 × ||α2||2
(13)
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Figure 8. The comparison results. The range of vertex error is from 0mm to 10 mm as the color strip
varies in the color bar. (a) Three viewpoint images. (b) Result using method [7] and its comparison
result. (c) Result using the proposed method without texture constraint and its comparison result. (d)
Result using the proposed method without feature prior constraint and its comparison result. (e) Result
using the proposed method with all constraints and its comparison results. (f) The groundtruth.
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Figure 9. Reconstruction results under varying pose. Each column, from (a–h), is images captured
simultaneously from two viewpoints (row 1 and 3) and their reconstruction meshes (row 2 and 4) from
pose0 to pose7 using the proposed method.

The scope of the distance d was between −1 and 1. A higher value indicates a higher similarity.
Using this definition, we defined the shape similarity (S(r,i)) of the 3D face mesh weight vector between
the reference meshes (Wr

id and Wr
exp) and the i-th testing meshes (Wi

id and Wi
exp, i = 1, 2...6, 7) as:

S(r,i) = 0.5× d(Wr
id, Wi

id) + 0.5× d(Wr
exp, Wi

exp) (14)

The reconstruction results under each pose are shown in Figure 9 (the second and fourth rows).
We compared the shape similarity between the reference mesh (pose0) and other testing meshes (pose1
to pose7) using different methods. Figure 10 clearly shows that the shape similarity is a little low in
pose3, pose4, and pose5. That is because there are occlusions in these poses. So the number of available
extracted feature pixels is very small. For example, the first row face image of pose4 only contains
half of a human face (Figure 9e), which leads to low accuracy in feature pixel extraction. Because it
hardly handles the occlusion, the accuracy of conventional monocular bilinear model-based method [7]
is shapely decreased from pose3 to pose5. However, our method can obtain satisfactory result by
considering the feature information from viewpoint images, which indicates the robustness against
the occlusion. Furthermore, as listed in Table 3, the proposed method performs the best (highest
shape similarity) in each pose and maintains a high similarity over all poses, which also indicates its
robustness against varying positions of the proposed method.

Figure 10. The Average Shape Similarity Distribution with Varying Pose of 100 Subjects.
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Table 3. The average shape similarity of 100 subjects under each pose using different methods.

Average Shape Similarity

Monocular [7] Without Feature Without Texture Proposed
Prior Constraint Constraint Method

Pose 1 0.8913 0.8434 0.9150 0.9573
Pose 2 0.8549 0.8117 0.8846 0.9238
Pose 3 0.7912 0.7331 0.8328 0.8562
Pose 4 0.7530 0.6946 0.7820 0.8225
Pose 5 0.8046 0.7251 0.8244 0.8695
Pose 6 0.8274 0.7860 0.8620 0.9194
Pose 7 0.8351 0.8032 0.8677 0.9202

4.3. Quantitative Evaluation with Deep Learning-Based Methods Using the ESRC and the Morphace
Image Dataset

As listed in Tables 4 and 5, we compared the performances of the proposed method and other
state-of-the-art deep learning-based methods that have achieved satisfactory results. In these two
tables, we can see that our results are comparable to the state-of-the-art deep learning-based algorithms.
This indicates that our method is generally accurate.

Table 4. Comparison results with other state-of-the-art deep learning-based approaches using the
ESRC datasets. Model error over all mesh vertices (nearly 400,000) for all meshes in the ESRC datasets.

Method Chang et al. [47] Feng et al. [48] Jackson et al. [49] Tran et al. [34] Dou et al. [50] Proposed Method

Model Error (mm) 2.4149 2.5282 2.1375 2.1153 2.3918 2.4822

Table 5. Comparison results with other state-of-the-art deep learning-based approaches using the
Morphace datasets. The average shape similarity of 100 subjects under each pose.

Method Average Shape Similarity

Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7

Chang et al. [47] 0.9779 0.9221 0.9047 0.8666 0.8946 0.9114 0.9338
Feng et al. [48] 0.9634 0.9134 0.8992 0.8576 0.8839 0.9054 0.9265

Jackson et al. [49] 0.9810 0.9542 0.9317 0.8996 0.8845 0.9233 0.9503
Tran et al. [34] 0.9804 0.9487 0.9362 0.9003 0.9015 0.9277 0.9500

Proposed Method 0.9573 0.9238 0.8562 0.8225 0.8695 0.9194 0.9202

4.4. Qualitative Evaluation with Various Expressions

The third dataset is the emotional expression part of the ESRC image dataset [40] that contains
images of six emotional expressions (amazement, happy, excited, hate, angry, fear) from 99 subjects
(45 males, 54 females) captured from different viewpoints. Figure 11 shows some results using the
proposed method. No ground truth is available for this dataset part, but we can see that our method
achieves more qualitative data, which means that our method generates more realistic results that are
robust against different emotional expressions.
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Figure 11. Some reconstruction results of six emotional expressions.

4.5. Discussion

The evaluations demonstrated that the proposed method obtains robust and accurate 3D face
reconstruction results. However, similar to most methods of the 3D morphable model methods,
our work also used the existing FaceWarehouse [7] mesh database to build the face multi-view bilinear
model. In order to reconstruct more faces with different contour features and different expressions,
we need to keep enlarging the database. The proposed algorithm was implemented on a PC with
Legacy Intel R© CoreTM Processors i5-2500 (Santa Clara, CA, USA). It took approximately 0.5–1 s to
obtain results for the ESRC data and Morphace datasets.

5. Conclusions

In this paper, we proposed a novel 3D face reconstruction method using the multi-view-based
bilinear model. It incorporates the feature prior constraint and the texture constraint to explore the
implied 3D information of uncalibrated multi-view images of a person. The feature prior constraint
is used as a shape prior to estimate accurate 3D facial contours. Meanwhile, the texture constraint
extracts high-precision 3D facial shapes where traditional methods fail. These results show a significant
improvement in reconstruction accuracy, as demonstrated using ground truth data and the pose
variation dataset, respectively. The evaluation results show that the proposed method can obtain
satisfying results compared to the conventional methods. In the future, we intend to transform our
method to a deep learning-based implementation and optimize the method so that it can be used on
mobile devices.
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