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Abstract

:

Due to the disturbance of wind field, it is difficult to achieve precise airship positioning and navigation in the stratosphere. This paper presents a new constrained unscented particle filter (UPF) for SINS/GNSS/ADS (inertial navigation system/global navigation satellite system/atmosphere data system) integrated airship navigation. This approach constructs a wind speed model to describe the relationship between airship velocity and wind speed using the information output from ADS, and further establishes a mathematical model for SINS/GNSS/ADS integrated navigation. Based on these models, it also develops a constrained UPF to obtain system state estimation for SINS/GNSS/ADS integration. The proposed constrained UPF uses the wind speed model to constrain the UPF filtering process to effectively resist the influence of wind field on the navigation solution. Simulations and comparison analysis demonstrate that the proposed approach can achieve optimal state estimation for SINS/GNSS/ADS integrated airship navigation in the presence of wind field disturbance.
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1. Introduction


The stratosphere, which is located at the bottom of the near space with the altitude between 10 km to 50 km, is a new region of human activities in space [1,2]. As a typical aircraft flying in the stratosphere, an airship has the advantages of high flight altitude, large coverage, and low-cost [2,3]. However, due to the disturbance of wind field in the stratosphere, airship positioning and navigation remain a challenging research problem.



The airship relies on an integrated navigation system for positioning and navigation. Inertial navigation system (INS)/global navigation satellite system (GNSS) integration is the most widely used integrated navigation system [4,5]. However, due to the near-far and ionosphere effects, satellite signals may be shielded or submerged. The signal reception rate declines to 60% or even lower in environments with valleys, underground areas, or business districts [5,6]. When satellite signals cannot be received normally, the error of INS will be accumulated over time, deteriorating the navigation accuracy [7,8,9].



The atmosphere data system (ADS) utilizes pressure, temperature, and geographic information (such as position calibration data, airspeed, airflow data, and time) provided by the atmospheric sensor to calculate the velocity and altitude of an aerial vehicle [10,11]. ADS does not rely on external conditions to obtain the navigation information. It has high reliability and its performance is not affected by height, topography, and other factors [11,12]. Given its advantages, ADS is an ideal auxiliary for INS/GNSS navigation to compensate the error of INS, especially when GNSS signal is poor, rendering INS/GNSS/ADS integration as a promising scheme to improve the navigation accuracy and reliability [13]. However, when using INS/GNSS/ADS integration for airship navigation, the navigation performance is significantly disturbed by wind field due to the long-span flexible balloon structure and low speed of the airship.



The performance of INS/GNSS/ADS integration is dominated by the filtering algorithm used [14,15,16]. The particle filter (PF) is an optimal recursive Bayesian filtering method based on Monte Carlo simulation by producing a sample of independent random variables according to a conditional probability distribution [17,18]. It is easy to implement, suitable for high-dimensional problems, and capable of handling nonlinear and non-Gaussian models [18,19]. However, the accuracy of PF relies on importance sampling. PF also requires the design of a proposal distribution to accurately approximate the posterior distribution, while in practice it is difficult to find such a proposal distribution [20,21].



The unscented Kalman filter (UKF) is able to generate a proposal distribution with larger high-order moment and the mean that is close to the true mean of the target distribution [22,23]. The combination of UKF into PF results in the so-called unscented particle filter (UPF), which is widely used in many fields including aircraft navigation, underwater navigation, GPS precise point positioning, nonlinear system identification, and audio source separation [24,25,26,27,28]. However, UPF is incapable of handling the disturbance of wind field for INS/GNSS/ADS integrated airship navigation. The robust adaptive UPF (RAUPF) is a method for system state estimation in the presence of abnormal observations and kinematic model noise [29,30]. This method adaptively determines the equivalent weight function according to robust estimation and adaptively adjusts the adaptive factor constructed from predicted residuals to inhibit the disturbances of abnormal observation and kinematic model noise. However, the wind field in the stratosphere has a unique form of disturbance, which is completely different from kinematic model noise and observation noise, requiring a special way to handle. Further, it cannot guarantee the covariance matrices in the filtering process are positive-definite, leading to the stability issue.



This paper presents a new constrained UPF for SINS/GNSS/ADS integrated airship navigation under the disturbance of wind field. A model of wind speed is established using ADS output information to describe the relationship between airship velocity and wind speed. Further, a mathematical model is also established for SINS/GNSS/ADS integrated airship navigation. Based on these models, a constrained UPF is developed to fuse SINS and GNSS measurements to generate the optimal state estimation for SINS/GNSS/ADS integration. This constrained UPF applies the wind speed model as a constraint to the UPF filtering process to effectively inhibit the influence of wind filed on the navigation solution. Simulations and comparison analysis have been conducted to comprehensively evaluate the performance of the proposed constrained UPF for SINS/GNSS/ADS integrated airship navigation in the presence of wind disturbance.




2. Mathematical Model of SINS/GNSS/ADS Integrated Navigation


2.1. Wind Speed Model


In the E–N–U (East-North-Up) geography coordinate system, the wind speed model can be expressed as


vW=vWc+vWr



(1)




where, vW is the wind speed, vWc is a random constant wind, and vWr is a random wind expressed as the first-order Markov process, and


vWE=vWcE+vWrEvWN=vWcN+vWrNvWU=vWcU+vWrUv˙Wci=0v˙Wri=−1τWrivWri+ωi



(2)




where vWi(i=E,N,U) stands for the projection of wind speed vW in the East, North, and Up directions, as shown in Figure 1; the symbols vWci and vWri have the similar meanings as vWi; and ωi(i=E,N,U) is the white noise in the corresponding direction.



As shown in Figure 2, via the wind speed, the airship velocity relative to the Earth can be expressed as


ve=va+vW



(3)




where ve and va denote the airship velocities relative to the Earth and atmosphere, α1 is the angle between the horizontal axis and wind speed vW, and α2 and α3 are the angles from ve and va to the horizontal axis, respectively.




2.2. System State Equation of SINS/GNSS/ADS Integrated Navigation


The base coordinate system for establishment of the system state model is the E–N–U geography coordinate system. The system state X(t) of SINS/GNSS/ADS is defined as


X(t)=[xSINS(t)xBD(t)xADS(t)]X(t)=[xSINS(t)xBD(t)xADS(t)]xSINS(t)=[ϕE ϕN ϕU δvSE δvSN δvSU δLS δλS δhS]TxGNSS(t)=[δvGE δvGN δvGU δLG δλG δhG]TxADS(t)=[δvWcE δvWcN δvWcU δvWrE δvWrN δvWrU]T



(4)




where ϕE, ϕN and ϕU represent the platform misalignment angle of SINS; δvSE, δvSN and δvSU the velocity error of SINS; δλS, δLS and δhS the position error of SINS; δvGE, δvGN and δvGU the velocity error of GNSS; δλG, δLG and δhG the position error of GNSS; δvWcE, δvWcN and δvWcU the constant wind speed error; and δvWrE, δvWrN and δvWrU the random wind speed error.



The system state equation is


X˙(t)=f(X(t))+W(t)



(5)




where f(X(t)) is a nonlinear function of the state and is expressed by


f(X(t))=[Cω−1[(I−Cnc)ω^inn+Cncδωinn−Cbcδωibb][I−(Cnc)T]Cbcf^sfb+(Cnc)TCbcδfsfb−(2δωien+δωenn)×v  −(2ω^ien+ω^enn)×δv+(2ωien+ωenn)×δv+δgvNRM+h−(vN−δvN)(RM−δRM)+(h−δh)vEsecLRN+h−(vE−δvE)sec(L−δL)(RN−δRN)+(h−δh)δvU−δvGE/τGvE−δvGN/τGvN−δvGU/τGvU−δLG/τGL−δλG/τGλ−δhG/τGhO3×1−δvWrE/τwE−δvWrN/τwN−δvWrU/τwU]



(6)




where Cω is the Euler platform error angle matrix; Cnc and Cbc are the attitude transformation matrices; δg is the errors of gravity; δωibb is the measurement error of the gyro; ωien is the rotational angular velocity of the Earth; ωenn is the angular velocity of the vehicle relative to the Earth; ωien is the rotational angular velocity of the Earth; ω^ien, ω^enn and ω^inn are the actual values of ωien, ωenn and ωinn in the actual navigation frame; δωien, δωenn and δωinn represent the corresponding errors; δvi represents the velocity error in the corresponding direction; L and h are the longitude and height of the airship; δL and δh are the errors of L and h, respectively; τi (i=E,N,U) is the relevant time; f^sfb and δfsfb are the specific force and its associated error, respectively; RM and RN are the meridian and prime vertical radiuses of curvature; and δRM and δRN are the errors of RM and RN, respectively.



The system noise vector W(t) is described as


W(t)=[Wi]T i=1,2,⋯,21



(7)




where Wi, i=1,2,⋯,21 are the random noise of the state.




2.3. Measurement Equation of SINS/GNSS/ADS Integrated Navigation


SINS/GNSS/ADS integration consists of the SINS/GNSS subsystem and SINS/ADS subsystem. The measurement equation of the SINS/GNSS subsystem is obtained based on the position information integration, which is expressed by


z1(t)=[(LS−LG)RM+VδL(λS−λG)RNcosL+VδλhS−hG+Vδh]



(8)




where LS, λS and hS are the latitude, longitude and altitude of SINS, respectively; LG, λG and hG are the latitude, longitude and altitude of GNSS, respectively; and VδL, Vδλ and Vδh are the errors of the GNSS. It should be noted that the errors of these sensors are considered to be known in this paper.



The measurement equation of SINS/ADS subsystem is expressed by


vA=[1ϕU−ϕN−ϕU1ϕEϕN−ϕE1][vE+vwcE+vwrEvN+vwcN+vwrNvU+vwcU+vwrU]



(9)






vAE=vE+vwcE+vwrE+ϕUvN+ϕUvwcN+ϕUvwrN−ϕNvU−ϕNvwcU−ϕNvwrUvAN=−ϕUvE−ϕUvwcE−ϕUvwrE+vN+vwcN+vwrN+ϕEvU+ϕEvwcU+ϕEvwrUvAU=ϕNvE+ϕNvwcE+ϕNvwrE−ϕEvN−ϕEvwcN−ϕEvwrN+vU+vwcU+vwrU



(10)






z2(t)=[vSE−vADSEvSN−vADSNvSU−vADSU]=[δvE−vwcE−vwrE−ϕUvN−ϕUvwcN−ϕUvwrN+ϕNvU+ϕNvwcU+ϕNvwrU+VvEδvN+ϕUvE+ϕUvwcE+ϕUvwrE−vwcN−vwrN−ϕEvU−ϕEvwcU−ϕEvwrU+VvNδvU−ϕNvE−ϕNvwcE−ϕNvwrE+ϕEvN+ϕEvwcN+ϕEvwrN−vwcU−vwrU+VvU]



(11)




where vEI, vNI and vUI are the velocities of SINS and vEA, vNA and vUA are the velocities of ADS. It should be noted that the velocity used in this paper is relative to the geographic frame and is calculated from the airspeed.



The system measurement equation of SINS/GNSS/ADS integration is described as


Z(t)=[z1(t)z2(t)]=h(X(t))+V(t)



(12)




where


h(X(t))=[RM⋅δLRNcosL⋅δλδhδvE−vwcE−vwrE−ϕUvN−ϕUvwcN−ϕUvwrN+ϕNvU+ϕNvwcU+ϕNvwrUδvN+ϕUvE+ϕUvwcE+ϕUvwrE−vwcN−vwrN−ϕEvU−ϕEvwcU−ϕEvwrUδvU−ϕNvE−ϕNvwcE−ϕNvwrE+ϕEvN+ϕEvwcN+ϕEvwrN−vwcU−vwrU]



(13)






V(t)=[VδL Vδλ Vδh VvE VvN VvU]T



(14)







Thus, (5) and (12) provide the mathematical model for SINS/GNSS/ADS integrated navigation.




2.4. Wind Field-Based Constraint Model


In the most cases of airship flight, the vertical wind speed in the stratosphere is stable and close to a constant value (~20 km/s), and the airship does not change the altitude often. Thus, for simplicity, the vertical wind speed is neglected and it is also assumed that the altitude of the airship remains constant. Based on this, the airship state error equation can be written as [31]


{δx˙=δvacosα3+δvWE=δvecosα2δy˙=δvasinα3+δvWN=δvesinα2



(15)




where δx˙ and δy˙ are the airship velocity error on the x and y axes, respectively; δva and δve are the airship velocity errors relative to the atmosphere and Earth; δvWE and δvWN are the projections of the wind speed on the East and North directions, respectively, and ω is the angle rate.



By combining (15) with (4), the constraint equation can be expressed as


DX=d



(16)




where the state constraint matrix D and the constraint vector quantity d are expressed as


D=[000cosϕU000000000sinϕU0000]



(17)






d=[δvWE+δvacosϕUδvWN+δvasinϕU]T



(18)




where δvWE and δvWN are the wind speeds in the East and North directions, respectively.





3. Constrained Unscented Particle Filter


3.1. Conventional Unscented Particle Filter


Consider the state equation of a discrete system


Xk=f(Xk−1)+Wk



(19)




where Xk−1 denotes the state vector at epoch k−1, f(⋅) is a nonlinear function, and Wk is the process noise.



The measurement equation of the discrete system is


Zk=h(Xk)+Vk



(20)




where Zk denotes the measurement vector, h(⋅) is also a nonlinear function, and Vk is the measurement noise.



The conventional UPF includes the following steps.



Step 1. Initialization: k=0



For i=1,2,⋯,N, draw the states X0i from the prior p(X0i) and let


X¯0i=E[X0i]



(21)






P0i=E[(X0i−X¯0i)(X0i−X¯0i)T]



(22)







The sigma points can be selected as


{ω0(m) = 1na+λω0(c)= 1na+λ+(1+α2+β)ωi(m)=ωi(c)=12(na+λ)i=1,2,…,2N



(23)




where ωi(m) and ωi(c) are the importance weights of the mean and covariance; α is a coefficient to control the distribution of sampling points; β is a non-negative weighting coefficient for describing the prior distribution of X; λ is a scaling parameter; and na=nX+nW+nV is the dimension of the augmented state, where nX, nW and nV are the dimensions of state vector Xk, process noise Wk and measurement noise Vk, respectively.



Step 2. For k=1,2,⋯

	(I)

	
Importance sampling



For i=1,2,⋯,N, update the particles with UKF:

	(a)

	
Calculate the sigma points


χk−1i=[X¯k−1i X¯k−1i+(na+λ)Pk−1i X¯k−1i−(na+λ)Pk−1i]



(24)








	(b)

	
Time update


χk−1i=f(χk−1iX,χk−1iW)



(25)






χk−1i=f(χk−1iX,χk−1iW)



(26)






Pk|k−1i=∑j=02nawj(c)[χj,k|k−1iX−X¯k|k−1i][χj,k|k−1iX−X¯k|k−1i]T



(27)






Zk|k−1i=h(χk|k−1iX,χk−1iV)



(28)






Z¯k|k−1i=∑j=02nawj(m)Zj,k|k−1i



(29)








	(c)

	
Measurement update


PZ=∑j=02nawj(c)[Zj,k|k−1i−Z¯k|k−1i][Zj,k|k−1i−Z¯k|k−1i]T



(30)






PXZ=∑j=02nawj(c)[χj,k|k−1i−X¯k|k−1i][Zj,k|k−1i−Z¯k|k−1i]T



(31)






Kk=PXZPZ−1



(32)






X¯ki=X¯k|k−1i+Kk(Zk−Z¯k|k−1i)



(33)






P^ki=Pk|k−1i−KkPZKkT



(34)







The particles are sampled by X^ki∼q(Xki|X0:k−1i,Z1:k)=N(X¯ki,P^ki). Subsequently, set X^0:k−1i∼(X0:k−1i,Xki) and P^0:k−1i∼(P0:k−1i,Pki), and normalize the importance weights.


ωki=ωk−1ip(Zk|X^ki)p(X^ki|Xk−1i)q(X^ki|X0:k−1i,Z1:k)



(35)






ω˜ki=ωki/(∑j=0Nωkj)



(36)














	(II)

	
Resampling



Ignore the samples X^0:ki with low importance weights. To obtain N random samples X0:ki approximately distributed according to p(X^0:ki|Z1:k), we duplicate the particles having high weights and set ω˜ki=ωki=N−1.




	(III)

	
Output


X˜ki=∑i=1NωkiXki



(37)






Pki=∑i=1Nωki(Xki−X˜ki)(Xki−X˜ki)T



(38)














3.2. Convergence of Constrained UPF


Suppose system state X is subject to the following constraint


DX=d



(39)




where D denotes the state constraint matrix and d the constraint vector quantity.



If the estimate X˜ki of UPF is projected on the constraint surface, this minimum projection X˜ki* is given as (for clarity, we substitute X˜ki and X˜ki* with x˜ and x˜*, respectively)


x˜*=min(x˜*−x˜)TΣ−1(x˜*−x˜)



(40)




such that


Dx˜*=d



(41)







To solve the above minimum problem, the Lagrange function is constructed as


L=(x˜*−x˜)TΣ−1(x˜*−x˜)+2λT(Dx˜*−d)



(42)







From (42), we get


Σ−1(x˜*−x˜)+DTλ=0



(43)




and


Dx˜*−d=0



(44)







According to (43), we obtain


Σ−1(x˜*−x˜)+DTλ=0Σ−1(x˜*−x˜)=−DTλx˜*−x˜=−ΣDTλ



(45)







From (45), we readily have


x˜*=D−1d



(46)







Substituting (46) into (45) yields


D−1d−x˜=−ΣDTλd−Dx˜=−DΣDTλDΣDTλ=Dx˜−dλ=(DΣDT)−1(Dx˜−d)



(47)







From (45) we also have


x˜*=x˜−ΣDTλ



(48)







Substituting (47) into (48) yields


x˜*=x˜−ΣDT(DΣDT)−1(Dx˜−d)



(49)







Thus, the state estimate by the constrained UPF can be obtained as


X˜ki*=X˜ki−ΣDT(DΣDT)−1(DX˜ki−d)



(50)




where X˜ki denotes the system state estimation from UPF.



From the above it can be seen that the state estimate given by (50) is actually an optimal solution under the constraint of the wind field model expressed by (16).




3.3. Convergence of Constrained UPF


Lemma 1.

For the nonlinear dynamic system described by (19) and (20), the relationship among nonlinear functionf, prior distributionppo(k−1|k−1), and posterior distributionppr(k|k−1)of stateXcan be expressed as


(ppo(k|k−1),f)=∫ppo(k−1|k−1)ppr(k|k−1)fdx=(ppo(k−1|k−1),ppr(k|k−1)f)



(51)









The proof of Lemma 1 can be found in Appendix A.



Lemma 2.

Assume that for any functionfand constantc,


E[((ppo(k−1|k−1)N,f)−(ppo(k−1|k−1),f))2]≤c‖f‖2N



(52)







Then, we readily have


E[((ppo(k|k−1)N,f)−(ppo(k|k−1),f))2]≤c‖f‖2N



(53)









The proof of Lemma 2 can be found in Appendix B.



Lemma 3.

Given the system equation defined by (19), the relationship among nonlinear functionf, prior distributionppo(k|k−1), and posterior distributionppo(k|k)of stateXcan also be expressed as


(ppo(k|k),f)=(ppo(k|k−1),hf)(ppo(k|k−1),h)



(54)









The proof of Lemma 3 can be found in Appendix C.



Theorem 1.

Given the system equation defined by (19), for allk>0, there exists a constantc1, which is independent ofN, such that for anyf,


E[((ppo(k|k)N,f)−(ppo(k|k),f))2]≤c1‖f‖2N



(55)









The proof of Theorem 1 can be found in Appendix D.





4. Simulations and Analysis


Simulations were conducted to evaluate the performance of the proposed constrained UPF algorithm for a SINS/GNSS/ADS integrated airship navigation system. Comparison analysis with the extended Kalman filter (EKF) and the robust adaptive UPF (RAUPF) [29,30] was also conducted to demonstrate the improved performance of the proposed algorithm.



Suppose the airship with a SINS/GNSS/ADS integrated navigation system is flying in the stratosphere. The airship moves to the East at a speed of 20 m/s, and the initial position of the airship is at East longitude 108.9°, North latitude 34.2°, and altitude 20 km. The flight time is 800 s. The Earth’s rotation angular velocity is ωie=15 o/h, the radius of the earth is Re=6378 km, and the acceleration of gravity is g=9.780 m/s2. The sampling periods of SINS, GNSS, and ADS are 0.01 s, 0.2 s, and 1 s, respectively. The filtering period is 1s. The initial position error is (δλ=0′, δL=0′, δh=0 m) and the velocity error is δvE=δvN=δvU=0.1 m/s. The gyro’s random drift and walk are 0.1°/h and 0.01°/h, respectively. The accelerometer’s zero offset and random walk are 10−3g and 5×10−4g/s, respectively. The horizontal and altitude positioning errors of GNSS are 0.6 m and 2 m, the barometric altimeter error is 20 m, and the velocity error is 2 m/s. The airspace above sea level within the altitude of 20 km is mainly dominated by west wind with a speed below 20 m/s. The gust wind in the airspace is in the North by East 10° with the speed of 0–2 m/s.



To study the performance of the proposed constrained UPF, trials were conducted under different average wind speeds of 10 m/s, 15 m/s, and 20 m/s, respectively. The initial state variance, system noise covariance and observation noise covariance are set as


P0=diag{(0.1′)2, (0.1′)2, (0.1′)2, (0.1m/s)2, (0.1m/s)2, (0.1m/s)2, (0m)2, (0m)2, (0m)2,    (2m/s)2, (2m/s)2, (2m/s)2, (0.6m)2, (0.6m)2, (2m)2,    (9.8m/s)2, (1.7m/s)2, (0.1m/s)2, (1.9m/s)2, (0.3m/s)2, (0.1m/s)2}P0=diag{(0.1′)2, (0.1′)2, (0.1′)2, (0.1m/s)2, (0.1m/s)2, (0.1m/s)2, (0m)2, (0m)2, (0m)2,    (2m/s)2, (2m/s)2, (2m/s)2, (0.6m)2, (0.6m)2, (2m)2,    (9.8m/s)2, (1.7m/s)2, (0.1m/s)2, (1.9m/s)2, (0.3m/s)2, (0.1m/s)2}R1=diag{(0.6m)2, (0.6m)2, (2m)2, (9.8m/s)2, (1.7m/s)2 (0.1m/s)2}R2=diag{(0.6m)2, (0.6m)2, (2m)2, (14.8m/s)2, (2.6m/s)2 (0.1m/s)2}R3=diag{(0.6m)2, (0.6m)2, (2m)2, (19.7m/s)2, (3.5m/s)2 (0.1m/s)2}



(56)




where Ri(i=1,2,3) stands for the observation noise covariances for the cases of different average wind speeds.



The estimated velocity and position errors under different wind speeds are shown in Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8, and their corresponding mean values are listed in Table 1, Table 2 and Table 3. In the case of 10 m/s constant wind, during the time period from 0 s to 600 s, the velocity and position errors obtained by EKF beyond ±2 m/s and ±20 m, respectively. This is because the linearization of system model causes a large navigation error. RAUPF improves the performance of EKF. The velocity and position errors obtained by RAUPF are within (−0.7 m/s, +0.7 m/s) and (−7 m, +7 m). They are also much larger than those errors by the constrained UPF, which are within (−0.3 m/s, +0.3 m/s) and (−4 m, +4 m). Considering that the performance of EKF is too poor for the wind field disturbance, in the following we shall focus on the comparison of RAUPF with the proposed constrained UPF for the cases of 15 m/s and 20 m/s wind speeds. The similar trend can also be observed for these two cases. In the case of 15m/s constant wind, the velocity and position errors obtained by RAUPF are within (−1.1 m/s, +1.1 m/s) and (−8 m, +8 m), while those by the constrained UPF are within (−0.6 m/s, +0.6 m/s) and (−5.5 m, +5.5 m). In the case of 20 m/s constant wind, the velocity and position errors obtained by RAUPF are within (−1.6m/s, +1.6 m/s) and (−9.5 m, +9.5 m), while those by the constrained UPF are within (−0.7 m/s, +0.7 m/s) and (−6 m, +6 m). Therefore, it is evident that the velocity and position errors obtained by the proposed constrained UPF are much smaller than those by RAUPF.



It is also observed that the latitude and North velocity errors are smaller than the longitude and East velocity for RAUPF. The reason is that the gust wind is in the North by East 10° and thus its East velocity component is larger than its North velocity component, more greatly affecting the East velocity and longitude of the airship. However, the constrained UPF does not suffer from such an effect caused by the wind field disturbance. The North velocity and latitude are in the similar accuracy as the East velocity and longitude, without any obvious disturbance by the wind field. This demonstrates that the proposed constrained UPF is able to resist the disturbance of wind field.



In addition, only a slight change in the accuracy of the constrained UPF was observed due to the increase of wind speed. This means that the ability of the constrained UPF to suppress wind field disturbance becomes stronger with the increase of the wind speed.



Figure 9 and Figure 10 show the fitting curves for the horizontal velocity and position errors of the airship by both RAUPF and constrained UPF. It can be seen that the horizontal velocity and position errors obtained by RAUPF are linearly increased with the increase of the wind speed. This demonstrates that RAUPF lacks the capability to resist the wind disturbance. In contrast, the slopes of the fitting curves of the horizontal velocity and position errors by the constrained UPF are decreased, demonstrating that the larger the wind speed is the stronger UPF’s resistance to the wind disturbance.



The above simulation results demonstrate that the proposed constrained UPF can effectively inhibit the disturbance of wind field, leading to improved positioning accuracy for SINS/GNSS/ADS integrated airship navigation in comparison with RAUPF.




5. Conclusions


This paper presents a new constrained UPF for SINS/GNSS/ADS integration to improve the performance of airship positioning and navigation under the disturbance of wind field. The contributions of this paper are that (i) the wind speed model and navigation mathematical model are established for SINS/GNSS/ADS integration; and (ii) a constrained UPF is developed using the wind speed model as a constraint to fuse SINS and GNSS measurements to generate system state estimation for airship navigation based on SINS/GNSS/ADS integration, leading to the optimal state estimation in the presence of wind disturbance. Simulations and comparison analysis verify that the proposed constrained UPF can effectively inhibit the influence of wind field, leading to the improved accuracy comparing to EKF and ARUPF for SINS/GNSS/ADS integrated airship navigation in the presence of wind disturbance.



Future research work will focus on two aspects. One is the experimental evaluation of the proposed constrained UPF. Practical experiments on airship flight based on SINS/GNSS/ADS integrated navigation will be conducted to further evaluate the performance of the proposed algorithm. The other is on improvement of the proposed constrained UPF. The proposed algorithm will be combined with advanced artificial intelligence technologies such as pattern recognition, neural network, and advanced expert systems, thus establishing an intelligent algorithm to automatically deal with the disturbances of wind field for the airship navigation.
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Appendix A. Proof of Lemma 1


Proof. 

The prior distribution and the posterior distribution of state X are


ppr=p(X)



(A1)






ppo=p(X|Z)



(A2)







According to the prediction of Bayes recursions, we have


ppo(k|k−1)=∫ppo(k−1|k−1)ppr(k|k−1)dx



(A3)







It can be easily seen from (59) that for any function f,


(ppo(k|k−1),f)=∫ppo(k−1|k−1)ppr(k|k−1)fdx=(ppo(k−1|k−1),ppr(k|k−1)f)



(A4)










Appendix B. Proof of Lemma 2


Proof. 

According to Lemma 1, we have


  |(ppo(k|k−1)N,f)−(ppo(k|k−1),f)|=|(ppo(k−1|k−1)N,ppr(k|k−1)f)−(ppo(k−1|k−1),ppr(k|k−1)f)|



(A5)







Then,


  E[((ppo(k|k−1)N,f)−(ppo(k|k−1),f))2]=E|(ppo(k−1|k−1)N,ppr(k|k−1)f)−(ppo(k−1|k−1),ppr(k|k−1)f)|≤c‖ppr(k|k−1)f‖2N



(A6)







Since ‖ppr(k|k−1)f‖≤‖f‖, we can obtain


  E[((ppo(k|k−1)N,f)−(ppo(k|k−1),f))2]≤c‖ppr(k|k−1)f‖2N≤c‖f‖2N



(A7)










Appendix C. Proof of Lemma 3


Proof. 

According to the updating process of Bayes recursion, we have


ppo(k|k)=ppo(k|k−1)h∫ppo(k|k−1)h dx



(A8)







It is easily to see from (62) that for any function f,


(ppo(k|k),f)=∫ppo(k|k−1)hf dx∫ppo(k|k−1)h dx=(ppo(k|k−1),hf)(ppo(k|k−1),h)



(A9)










Appendix D. Proof of Theorem 1


Proof. 

By Lemmas 1–3, we have


  (ppo(k|k)N,f)−(ppo(k|k),f)=(ppo(k|k−1)N,hf)(ppo(k|k−1)N,h)−(ppo(k|k−1),hf)(ppo(k|k−1),h)=(ppo(k|k−1)N,hf)(ppo(k|k−1)N,h)−(ppo(k|k−1)N,hf)(ppo(k|k−1),h)+(ppo(k|k−1)N,hf)(ppo(k|k−1),h)−(ppo(k|k−1),hf)(ppo(k|k−1),h)



(A10)




where,


  |(ppo(k|k−1)N,hf)(ppo(k|k−1)N,h)−(ppo(k|k−1)N,hf)(ppo(k|k−1),h)|=(ppo(k|k−1)N,hf)(ppo(k|k−1),h)(ppo(k|k−1)N,h)|(ppo(k|k−1),h)−(ppo(k|k−1)N,h)|≤‖f‖(ppo(k|k−1),h)|(ppo(k|k−1),h)−(ppo(k|k−1)N,h)|



(A11)







Using Minkowski’s inequality, we can obtain


  E[((ppo(k|k)N,f)−(ppo(k|k),f))2]12≤E[((ppo(k|k−1)N,hf)(ppo(k|k−1)N,h)−(ppo(k|k−1)N,hf)(ppo(k|k−1),h))2]12  +E[((ppo(k|k−1)N,hf)(ppo(k|k−1),h)−(ppo(k|k−1),hf)(ppo(k|k−1),h))2]12≤‖f‖(ppo(k|k−1),h)E[((ppo(k|k)N,h)−(ppo(k|k),h))2]12  +1(ppo(k|k−1),h)E[((ppo(k|k−1)N,hf)−(ppo(k|k−1),hf))2]12≤‖f‖(ppo(k|k−1),h)c‖h‖N+‖h‖(ppo(k|k−1),h)c‖f‖N≤2c‖h‖(ppo(k|k−1),h)‖f‖N



(A12)







Letting c1=2c‖h‖(ppo(k|k−1),h) yields


E[((ppo(k|k)N,f)−(ppo(k|k),f))2]≤c1‖f‖2N



(A13)







Thus, if there exists a probability density ppo(k−1|k−1)N to approximate posterior density ppo(k−1|k−1), we can find proposal distribution ppo(k|k)N to approximate posterior density ppo(k|k).
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Figure 1. The components of the wind speed in the coordinate system E–N–U. 
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Figure 2. Wind speed synthetic relationship. 
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Figure 3. East velocity and longitude errors under the wind speed of 10 m/s. 
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Figure 4. North velocity and latitude errors under the wind speed of 10 m/s. 
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Figure 5. East velocity and longitude errors under the wind speed of 15 m/s. 
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Figure 6. North velocity and latitude errors under the wind speed of 15 m/s. 
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Figure 7. East velocity and longitude errors under the wind speed of 20 m/s. 
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Figure 8. North velocity and latitude errors under the wind speed of 20 m/s. 
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Figure 9. Horizontal velocity errors for both RAUPF and constrained UPF. 






Figure 9. Horizontal velocity errors for both RAUPF and constrained UPF.



[image: Sensors 19 00471 g009]







[image: Sensors 19 00471 g010 550]





Figure 10. Horizontal position errors for both RAUPF and constrained UPF. 
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Table 1. Mean errors of velocity and position under the wind speed of 10 m/s.
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	Filtering Methods
	East Velocity Error (m/s)
	North Velocity Error (m/s)
	Longitude Error (m)
	Latitude Error (m)





	EKF
	0.8532
	0.7955
	8.2235
	8.3465



	RAUPF
	0.5679
	0.3324
	4.6657
	4.7968



	Constrained UPF
	0.2123
	0.2198
	2.8123
	2.9456
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Table 2. Mean errors of velocity and position under the wind speed of 15 m/s.
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	Filtering Methods
	East Velocity Error (m/s)
	North Velocity Error (m/s)
	Longitude Error (m)
	Latitude Error (m)





	RAUPF
	0.8136
	0.6180
	5.4120
	5.5852



	Constrained UPF
	0.3058
	0.4767
	3.8606
	3.8769
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Table 3. Mean errors of velocity and position under the wind speed of 20 m/s.






Table 3. Mean errors of velocity and position under the wind speed of 20 m/s.





	Filtering Methods
	East Velocity Error (m/s)
	North Velocity Error (m/s)
	Longitude Error (m)
	Latitude Error (m)





	RAUPF
	1.1127
	1.0092
	6.8033
	6.4456



	Constrained UPF
	0.5269
	0.4388
	4.5319
	4.1869











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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