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Abstract: Due to the disturbance of wind field, it is difficult to achieve precise airship positioning and
navigation in the stratosphere. This paper presents a new constrained unscented particle filter (UPF)
for SINS/GNSS/ADS (inertial navigation system/global navigation satellite system/atmosphere data
system) integrated airship navigation. This approach constructs a wind speed model to describe the
relationship between airship velocity and wind speed using the information output from ADS, and
further establishes a mathematical model for SINS/GNSS/ADS integrated navigation. Based on these
models, it also develops a constrained UPF to obtain system state estimation for SINS/GNSS/ADS
integration. The proposed constrained UPF uses the wind speed model to constrain the UPF filtering
process to effectively resist the influence of wind field on the navigation solution. Simulations and
comparison analysis demonstrate that the proposed approach can achieve optimal state estimation
for SINS/GNSS/ADS integrated airship navigation in the presence of wind field disturbance.

Keywords: airship navigation; SINS/GNSS/ADS integration; wind field disturbance; constrained
unscented particle filter

1. Introduction

The stratosphere, which is located at the bottom of the near space with the altitude between
10 km to 50 km, is a new region of human activities in space [1,2]. As a typical aircraft flying in the
stratosphere, an airship has the advantages of high flight altitude, large coverage, and low-cost [2,3].
However, due to the disturbance of wind field in the stratosphere, airship positioning and navigation
remain a challenging research problem.

The airship relies on an integrated navigation system for positioning and navigation. Inertial
navigation system (INS)/global navigation satellite system (GNSS) integration is the most widely
used integrated navigation system [4,5]. However, due to the near-far and ionosphere effects, satellite
signals may be shielded or submerged. The signal reception rate declines to 60% or even lower in
environments with valleys, underground areas, or business districts [5,6]. When satellite signals cannot
be received normally, the error of INS will be accumulated over time, deteriorating the navigation
accuracy [7–9].

The atmosphere data system (ADS) utilizes pressure, temperature, and geographic information
(such as position calibration data, airspeed, airflow data, and time) provided by the atmospheric
sensor to calculate the velocity and altitude of an aerial vehicle [10,11]. ADS does not rely on external
conditions to obtain the navigation information. It has high reliability and its performance is not
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affected by height, topography, and other factors [11,12]. Given its advantages, ADS is an ideal
auxiliary for INS/GNSS navigation to compensate the error of INS, especially when GNSS signal
is poor, rendering INS/GNSS/ADS integration as a promising scheme to improve the navigation
accuracy and reliability [13]. However, when using INS/GNSS/ADS integration for airship navigation,
the navigation performance is significantly disturbed by wind field due to the long-span flexible
balloon structure and low speed of the airship.

The performance of INS/GNSS/ADS integration is dominated by the filtering algorithm
used [14–16]. The particle filter (PF) is an optimal recursive Bayesian filtering method based on Monte
Carlo simulation by producing a sample of independent random variables according to a conditional
probability distribution [17,18]. It is easy to implement, suitable for high-dimensional problems, and
capable of handling nonlinear and non-Gaussian models [18,19]. However, the accuracy of PF relies on
importance sampling. PF also requires the design of a proposal distribution to accurately approximate
the posterior distribution, while in practice it is difficult to find such a proposal distribution [20,21].

The unscented Kalman filter (UKF) is able to generate a proposal distribution with larger
high-order moment and the mean that is close to the true mean of the target distribution [22,23].
The combination of UKF into PF results in the so-called unscented particle filter (UPF), which is
widely used in many fields including aircraft navigation, underwater navigation, GPS precise point
positioning, nonlinear system identification, and audio source separation [24–28]. However, UPF is
incapable of handling the disturbance of wind field for INS/GNSS/ADS integrated airship navigation.
The robust adaptive UPF (RAUPF) is a method for system state estimation in the presence of abnormal
observations and kinematic model noise [29,30]. This method adaptively determines the equivalent
weight function according to robust estimation and adaptively adjusts the adaptive factor constructed
from predicted residuals to inhibit the disturbances of abnormal observation and kinematic model noise.
However, the wind field in the stratosphere has a unique form of disturbance, which is completely
different from kinematic model noise and observation noise, requiring a special way to handle. Further,
it cannot guarantee the covariance matrices in the filtering process are positive-definite, leading to the
stability issue.

This paper presents a new constrained UPF for SINS/GNSS/ADS integrated airship navigation
under the disturbance of wind field. A model of wind speed is established using ADS output
information to describe the relationship between airship velocity and wind speed. Further,
a mathematical model is also established for SINS/GNSS/ADS integrated airship navigation. Based
on these models, a constrained UPF is developed to fuse SINS and GNSS measurements to generate
the optimal state estimation for SINS/GNSS/ADS integration. This constrained UPF applies the
wind speed model as a constraint to the UPF filtering process to effectively inhibit the influence of
wind filed on the navigation solution. Simulations and comparison analysis have been conducted to
comprehensively evaluate the performance of the proposed constrained UPF for SINS/GNSS/ADS
integrated airship navigation in the presence of wind disturbance.

2. Mathematical Model of SINS/GNSS/ADS Integrated Navigation

2.1. Wind Speed Model

In the E–N–U (East-North-Up) geography coordinate system, the wind speed model can be
expressed as

vW = vWc + vWr (1)

where, vW is the wind speed, vWc is a random constant wind, and vWr is a random wind expressed as
the first-order Markov process, and
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vWE = vWcE + vWrE
vWN = vWcN + vWrN
vWU = vWcU + vWrU
.
vWci = 0
.
vWri = − 1

τWri
vWri + ωi

(2)

where vWi(i = E, N, U) stands for the projection of wind speed vW in the East, North, and Up
directions, as shown in Figure 1; the symbols vWci and vWri have the similar meanings as vWi; and
ωi(i = E, N, U) is the white noise in the corresponding direction.
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Figure 1. The components of the wind speed in the coordinate system E–N–U.

As shown in Figure 2, via the wind speed, the airship velocity relative to the Earth can be
expressed as

ve = va + vW (3)

where ve and va denote the airship velocities relative to the Earth and atmosphere, α1 is the angle
between the horizontal axis and wind speed vW , and α2 and α3 are the angles from ve and va to the
horizontal axis, respectively.
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Figure 2. Wind speed synthetic relationship.

2.2. System State Equation of SINS/GNSS/ADS Integrated Navigation

The base coordinate system for establishment of the system state model is the E–N–U geography
coordinate system. The system state X(t) of SINS/GNSS/ADS is defined as

X(t) =
[

xSINS(t) xBD(t) xADS(t)
]

X(t) =
[

xSINS(t) xBD(t) xADS(t)
]

xSINS(t) = [φE φN φU δvSE δvSN δvSU δLS δλS δhS]
T

xGNSS(t) = [δvGE δvGN δvGU δLG δλG δhG]
T

xADS(t) = [δvWcE δvWcN δvWcU δvWrE δvWrN δvWrU ]
T

(4)
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where φE, φN and φU represent the platform misalignment angle of SINS; δvSE, δvSN and δvSU the
velocity error of SINS; δλS, δLS and δhS the position error of SINS; δvGE, δvGN and δvGU the velocity
error of GNSS; δλG, δLG and δhG the position error of GNSS; δvWcE, δvWcN and δvWcU the constant
wind speed error; and δvWrE, δvWrN and δvWrU the random wind speed error.

The system state equation is
.

X(t) = f (X(t)) + W(t) (5)

where f (X(t)) is a nonlinear function of the state and is expressed by

f (X(t)) =



C−1
ω

[
(I − Cc

n)ω̂
n
in + Cc

nδωn
in − Cc

bδωb
ib

][
I − (Cc

n)
T
]
Cc

b f̂b
s f + (Cc

n)
TCc

bδfb
s f −

(
2δωn

ie + δωn
en
)
× v

−
(
2ω̂n

ie + ω̂n
en
)
× δv +

(
2ωn

ie + ωn
en
)
× δv + δg

vN
RM+h −

(vN−δvN)
(RM−δRM)+(h−δh)

vE sec L
RN+h −

(vE−δvE) sec(L−δL)
(RN−δRN)+(h−δh)

δvU
−δvGE/τGvE
−δvGN/τGvN
−δvGU/τGvU
−δLG/τGL
−δλG/τGλ

−δhG/τGh
O3×1

−δvWrE/τwE
−δvWrN/τwN
−δvWrU/τwU



(6)

where Cω is the Euler platform error angle matrix; Cc
n and Cc

b are the attitude transformation matrices;
δg is the errors of gravity; δωb

ib is the measurement error of the gyro; ωn
ie is the rotational angular

velocity of the Earth; ωn
en is the angular velocity of the vehicle relative to the Earth; ωn

ie is the rotational
angular velocity of the Earth; ω̂n

ie, ω̂n
en and ω̂n

in are the actual values of ωn
ie, ωn

en and ωn
in in the actual

navigation frame; δωn
ie, δωn

en and δωn
in represent the corresponding errors; δvi represents the velocity

error in the corresponding direction; L and h are the longitude and height of the airship; δL and δh
are the errors of L and h, respectively; τi (i = E, N, U) is the relevant time; f̂b

s f and δfb
s f are the specific

force and its associated error, respectively; RM and RN are the meridian and prime vertical radiuses of
curvature; and δRM and δRN are the errors of RM and RN , respectively.

The system noise vector W(t) is described as

W(t) = [Wi]
T i = 1, 2, · · · , 21 (7)

where Wi, i = 1, 2, · · · , 21 are the random noise of the state.

2.3. Measurement Equation of SINS/GNSS/ADS Integrated Navigation

SINS/GNSS/ADS integration consists of the SINS/GNSS subsystem and SINS/ADS subsystem.
The measurement equation of the SINS/GNSS subsystem is obtained based on the position information
integration, which is expressed by

z1(t) =

 (LS − LG)RM + VδL
(λS − λG)RN cos L + Vδλ

hS − hG + Vδh

 (8)
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where LS, λS and hS are the latitude, longitude and altitude of SINS, respectively; LG, λG and hG are
the latitude, longitude and altitude of GNSS, respectively; and VδL, Vδλ and Vδh are the errors of the
GNSS. It should be noted that the errors of these sensors are considered to be known in this paper.

The measurement equation of SINS/ADS subsystem is expressed by

vA =

 1 φU −φN
−φU 1 φE
φN −φE 1


 vE + vwcE + vwrE

vN + vwcN + vwrN
vU + vwcU + vwrU

 (9)

vAE = vE + vwcE + vwrE + φUvN + φUvwcN + φUvwrN − φNvU − φNvwcU − φNvwrU
vAN = −φUvE − φUvwcE − φUvwrE + vN + vwcN + vwrN + φEvU + φEvwcU + φEvwrU
vAU = φNvE + φNvwcE + φNvwrE − φEvN − φEvwcN − φEvwrN + vU + vwcU + vwrU

(10)

z2(t) =

 vSE − vADSE
vSN − vADSN
vSU − vADSU


=

 δvE − vwcE − vwrE − φUvN − φUvwcN − φUvwrN + φNvU + φNvwcU + φNvwrU + VvE
δvN + φUvE + φUvwcE + φUvwrE − vwcN − vwrN − φEvU − φEvwcU − φEvwrU + VvN
δvU − φNvE − φNvwcE − φNvwrE + φEvN + φEvwcN + φEvwrN − vwcU − vwrU + VvU


(11)

where vEI , vNI and vUI are the velocities of SINS and vEA, vNA and vUA are the velocities of ADS. It
should be noted that the velocity used in this paper is relative to the geographic frame and is calculated
from the airspeed.

The system measurement equation of SINS/GNSS/ADS integration is described as

Z(t) =

[
z1(t)
z2(t)

]
= h(X(t)) + V(t) (12)

where

h(X(t)) =



RM · δL
RN cos L · δλ

δh
δvE − vwcE − vwrE − φUvN − φUvwcN − φUvwrN + φNvU + φNvwcU + φNvwrU
δvN + φUvE + φUvwcE + φUvwrE − vwcN − vwrN − φEvU − φEvwcU − φEvwrU
δvU − φNvE − φNvwcE − φNvwrE + φEvN + φEvwcN + φEvwrN − vwcU − vwrU


(13)

V(t) = [VδL Vδλ Vδh VvE VvN VvU ]
T (14)

Thus, (5) and (12) provide the mathematical model for SINS/GNSS/ADS integrated navigation.

2.4. Wind Field-Based Constraint Model

In the most cases of airship flight, the vertical wind speed in the stratosphere is stable and close to
a constant value (~20 km/s), and the airship does not change the altitude often. Thus, for simplicity,
the vertical wind speed is neglected and it is also assumed that the altitude of the airship remains
constant. Based on this, the airship state error equation can be written as [31]{

δ
.
x = δva cos α3 + δvWE = δve cos α2

δ
.
y = δva sin α3 + δvWN = δve sin α2

(15)

where δ
.
x and δ

.
y are the airship velocity error on the x and y axes, respectively; δva and δve are the

airship velocity errors relative to the atmosphere and Earth; δvWE and δvWN are the projections of the
wind speed on the East and North directions, respectively, and ω is the angle rate.
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By combining (15) with (4), the constraint equation can be expressed as

DX = d (16)

where the state constraint matrix D and the constraint vector quantity d are expressed as

D =

[
0 0 0 cos φU 0 0 0 0 0
0 0 0 0 sin φU 0 0 0 0

]
(17)

d =
[

δvWE + δva cos φU δvWN + δva sin φU

]T
(18)

where δvWE and δvWN are the wind speeds in the East and North directions, respectively.

3. Constrained Unscented Particle Filter

3.1. Conventional Unscented Particle Filter

Consider the state equation of a discrete system

Xk = f (Xk−1) + Wk (19)

where Xk−1 denotes the state vector at epoch k − 1, f (·) is a nonlinear function, and Wk is the
process noise.

The measurement equation of the discrete system is

Zk = h(Xk) + Vk (20)

where Zk denotes the measurement vector, h(·) is also a nonlinear function, and Vk is the
measurement noise.

The conventional UPF includes the following steps.

Step 1. Initialization: k = 0

For i = 1, 2, · · · , N, draw the states Xi
0 from the prior p

(
Xi

0

)
and let

Xi
0 = E

[
Xi

0

]
(21)

Pi
0 = E

[
(Xi

0 −Xi
0)(X

i
0 −Xi

0)
T
]

(22)

The sigma points can be selected as
ω
(m)
0 = 1

na+λ

ω
(c)
0 = 1

na+λ + (1 + α2 + β)

ω
(m)
i = ω

(c)
i = 1

2(na+λ)
i = 1, 2, . . . , 2N

(23)

where ω
(m)
i and ω

(c)
i are the importance weights of the mean and covariance; α is a coefficient to

control the distribution of sampling points; β is a non-negative weighting coefficient for describing
the prior distribution of X; λ is a scaling parameter; and na = nX + nW + nV is the dimension of the
augmented state, where nX, nW and nV are the dimensions of state vector Xk, process noise Wk and
measurement noise Vk, respectively.
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Step 2. For k = 1, 2, · · ·

(I) Importance sampling

For i = 1, 2, · · · , N, update the particles with UKF:

(a) Calculate the sigma points

χi
k−1 =

[
Xi

k−1 Xi
k−1 +

√
(na + λ)Pi

k−1 Xi
k−1 −

√
(na + λ)Pi

k−1

]
(24)

(b) Time update

χi
k−1 = f

(
χiX

k−1, χiW
k−1

)
(25)

χi
k−1 = f

(
χiX

k−1, χiW
k−1

)
(26)

Pi
k|k−1 =

2na

∑
j=0

w(c)
j

[
χiX

j,k|k−1 −Xi
k|k−1

][
χiX

j,k|k−1 −Xi
k|k−1

]T
(27)

Zi
k|k−1 = h

(
χiX

k|k−1, χiV
k−1

)
(28)

Zi
k|k−1 =

2na

∑
j=0

w(m)
j Zi

j,k|k−1 (29)

(c) Measurement update

PZ =
2na

∑
j=0

w(c)
j

[
Zi

j,k|k−1 − Zi
k|k−1

][
Zi

j,k|k−1 − Zi
k|k−1

]T
(30)

PXZ =
2na

∑
j=0

w(c)
j

[
χi

j,k|k−1 −Xi
k|k−1

][
Zi

j,k|k−1 − Zi
k|k−1

]T
(31)

Kk = PXZP−1
Z (32)

Xi
k = Xi

k|k−1 + Kk

(
Zk − Zi

k|k−1

)
(33)

P̂i
k = Pi

k|k−1 −KkPZKT
k (34)

The particles are sampled by X̂i
k ∼ q

(
Xi

k

∣∣∣Xi
0:k−1, Z1:k

)
= N

(
Xi

k, P̂i
k

)
. Subsequently, set

X̂i
0:k−1 ∼

(
Xi

0:k−1, Xi
k

)
and P̂i

0:k−1 ∼
(

Pi
0:k−1, Pi

k

)
, and normalize the importance weights.

ωi
k = ωi

k−1

p
(

Zk

∣∣∣X̂i
k

)
p
(

X̂i
k

∣∣∣Xi
k−1

)
q
(

X̂i
k

∣∣∣Xi
0:k−1, Z1:k

) (35)

ω̃i
k = ωi

k

/(
N

∑
j=0

ω
j
k

)
(36)

(II) Resampling Ignore the samples X̂i
0:k with low importance weights. To obtain N random samples

Xi
0:k approximately distributed according to p

(
X̂i

0:k
∣∣Z1:k

)
, we duplicate the particles having high

weights and set ω̃i
k = ωi

k = N−1.
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(III) Output

X̃
i
k =

N

∑
i=1

ωi
kXi

k (37)

Pi
k =

N

∑
i=1

ωi
k(X

i
k − X̃

i
k)(X

i
k − X̃

i
k)

T
(38)

3.2. Convergence of Constrained UPF

Suppose system state X is subject to the following constraint

DX = d (39)

where D denotes the state constraint matrix and d the constraint vector quantity.

If the estimate X̃
i
k of UPF is projected on the constraint surface, this minimum projection X̃

i
k
∗ is

given as (for clarity, we substitute X̃
i
k and X̃

i
k
∗ with x̃ and x̃∗, respectively)

x̃∗ = min(x̃∗ − x̃)T
Σ−1(x̃∗ − x̃) (40)

such that
Dx̃∗ = d (41)

To solve the above minimum problem, the Lagrange function is constructed as

L = (x̃∗ − x̃)T
Σ−1(x̃∗ − x̃) + 2λT(Dx̃∗ − d) (42)

From (42), we get
Σ−1(x̃∗ − x̃) + DTλ = 0 (43)

and
Dx̃∗ − d = 0 (44)

According to (43), we obtain

Σ−1(x̃∗ − x̃) + DTλ = 0
Σ−1(x̃∗ − x̃) = −DTλ

x̃∗ − x̃ = −ΣDTλ

(45)

From (45), we readily have
x̃∗ = D−1d (46)

Substituting (46) into (45) yields

D−1d− x̃ = −ΣDTλ

d−Dx̃ = −DΣDTλ

DΣDTλ = Dx̃− d

λ =
(
DΣDT)−1

(Dx̃− d)

(47)

From (45) we also have
x̃∗ = x̃− ΣDTλ (48)

Substituting (47) into (48) yields

x̃∗ = x̃− ΣDT
(

DΣDT
)−1

(Dx̃− d) (49)
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Thus, the state estimate by the constrained UPF can be obtained as

X̃
i∗
k = X̃

i
k − ΣDT

(
DΣDT

)−1(
DX̃

i
k − d

)
(50)

where X̃
i
k denotes the system state estimation from UPF.

From the above it can be seen that the state estimate given by (50) is actually an optimal solution
under the constraint of the wind field model expressed by (16).

3.3. Convergence of Constrained UPF

Lemma 1. For the nonlinear dynamic system described by (19) and (20), the relationship among nonlinear
function f , prior distribution ppo(k−1|k−1), and posterior distribution ppr(k|k−1) of state X can be expressed as(

ppo(k|k−1), f
)

=
∫

ppo(k−1|k−1)ppr(k|k−1) f dx

=
(

ppo(k−1|k−1), ppr(k|k−1) f
) (51)

The proof of Lemma 1 can be found in Appendix A.

Lemma 2. Assume that for any function f and constant c,

E
[((

ppo
N
(k−1|k−1), f

)
−
(

ppo(k−1|k−1), f
))2

]
≤ c
‖ f ‖2

N
(52)

Then, we readily have

E
[((

ppo
N
(k|k−1), f

)
−
(

ppo(k|k−1), f
))2

]
≤ c
‖ f ‖2

N
(53)

The proof of Lemma 2 can be found in Appendix B.

Lemma 3. Given the system equation defined by (19), the relationship among nonlinear function f , prior
distribution ppo(k|k−1), and posterior distribution ppo(k|k) of state X can also be expressed as

(
ppo(k|k), f

)
=

(
ppo(k|k−1), h f

)
(

ppo(k|k−1), h
) (54)

The proof of Lemma 3 can be found in Appendix C.

Theorem 1. Given the system equation defined by (19), for all k > 0, there exists a constant c1, which is
independent of N, such that for any f ,

E
[((

pN
po(k|k), f

)
−
(

ppo(k|k), f
))2

]
≤ c1

‖ f ‖2

N
(55)

The proof of Theorem 1 can be found in Appendix D.
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4. Simulations and Analysis

Simulations were conducted to evaluate the performance of the proposed constrained UPF
algorithm for a SINS/GNSS/ADS integrated airship navigation system. Comparison analysis with the
extended Kalman filter (EKF) and the robust adaptive UPF (RAUPF) [29,30] was also conducted to
demonstrate the improved performance of the proposed algorithm.

Suppose the airship with a SINS/GNSS/ADS integrated navigation system is flying in the
stratosphere. The airship moves to the East at a speed of 20 m/s, and the initial position of the airship
is at East longitude 108.9◦, North latitude 34.2◦, and altitude 20 km. The flight time is 800 s. The Earth’s
rotation angular velocity is ωie = 15 o/h, the radius of the earth is Re = 6378 km, and the acceleration
of gravity is g = 9.780 m/s2. The sampling periods of SINS, GNSS, and ADS are 0.01 s, 0.2 s, and 1 s,
respectively. The filtering period is 1s. The initial position error is (δλ = 0′, δL = 0′, δh = 0 m) and
the velocity error is δvE = δvN = δvU = 0.1 m/s. The gyro’s random drift and walk are 0.1◦/h and
0.01◦/

√
h, respectively. The accelerometer’s zero offset and random walk are 10−3g and 5× 10−4g/

√
s,

respectively. The horizontal and altitude positioning errors of GNSS are 0.6 m and 2 m, the barometric
altimeter error is 20 m, and the velocity error is 2 m/s. The airspace above sea level within the altitude
of 20 km is mainly dominated by west wind with a speed below 20 m/s. The gust wind in the airspace
is in the North by East 10◦ with the speed of 0–2 m/s.

To study the performance of the proposed constrained UPF, trials were conducted under different
average wind speeds of 10 m/s, 15 m/s, and 20 m/s, respectively. The initial state variance, system
noise covariance and observation noise covariance are set as

P0 = diag
{
(0.1′)2, (0.1′)2, (0.1′)2, (0.1m/s)2, (0.1m/s)2, (0.1m/s)2, (0m)2, (0m)2, (0m)2,

(2m/s)2, (2m/s)2, (2m/s)2, (0.6m)2, (0.6m)2, (2m)2,

(9.8m/s)2, (1.7m/s)2, (0.1m/s)2, (1.9m/s)2, (0.3m/s)2, (0.1m/s)2
}

P0 = diag
{
(0.1′)2, (0.1′)2, (0.1′)2, (0.1m/s)2, (0.1m/s)2, (0.1m/s)2, (0m)2, (0m)2, (0m)2,

(2m/s)2, (2m/s)2, (2m/s)2, (0.6m)2, (0.6m)2, (2m)2,

(9.8m/s)2, (1.7m/s)2, (0.1m/s)2, (1.9m/s)2, (0.3m/s)2, (0.1m/s)2
}

R1 = diag
{
(0.6m)2, (0.6m)2, (2m)2, (9.8m/s)2, (1.7m/s)2 (0.1m/s)2

}
R2 = diag

{
(0.6m)2, (0.6m)2, (2m)2, (14.8m/s)2, (2.6m/s)2 (0.1m/s)2

}
R3 = diag

{
(0.6m)2, (0.6m)2, (2m)2, (19.7m/s)2, (3.5m/s)2 (0.1m/s)2

}

(56)

where Ri(i = 1, 2, 3) stands for the observation noise covariances for the cases of different average
wind speeds.

The estimated velocity and position errors under different wind speeds are shown in Figures 3–8,
and their corresponding mean values are listed in Tables 1–3. In the case of 10 m/s constant wind,
during the time period from 0 s to 600 s, the velocity and position errors obtained by EKF beyond
±2 m/s and ±20 m, respectively. This is because the linearization of system model causes a large
navigation error. RAUPF improves the performance of EKF. The velocity and position errors obtained
by RAUPF are within (−0.7 m/s, +0.7 m/s) and (−7 m, +7 m). They are also much larger than those
errors by the constrained UPF, which are within (−0.3 m/s, +0.3 m/s) and (−4 m, +4 m). Considering
that the performance of EKF is too poor for the wind field disturbance, in the following we shall focus
on the comparison of RAUPF with the proposed constrained UPF for the cases of 15 m/s and 20 m/s
wind speeds. The similar trend can also be observed for these two cases. In the case of 15m/s constant
wind, the velocity and position errors obtained by RAUPF are within (−1.1 m/s, +1.1 m/s) and (−8 m,
+8 m), while those by the constrained UPF are within (−0.6 m/s, +0.6 m/s) and (−5.5 m, +5.5 m).
In the case of 20 m/s constant wind, the velocity and position errors obtained by RAUPF are within
(−1.6m/s, +1.6 m/s) and (−9.5 m, +9.5 m), while those by the constrained UPF are within (−0.7 m/s,
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+0.7 m/s) and (−6 m, +6 m). Therefore, it is evident that the velocity and position errors obtained by
the proposed constrained UPF are much smaller than those by RAUPF.Sensors 2019, 19, x 11 of 19 
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Table 1. Mean errors of velocity and position under the wind speed of 10 m/s.

Filtering Methods East Velocity Error
(m/s)

North Velocity Error
(m/s)

Longitude Error
(m)

Latitude Error
(m)

EKF 0.8532 0.7955 8.2235 8.3465
RAUPF 0.5679 0.3324 4.6657 4.7968

Constrained UPF 0.2123 0.2198 2.8123 2.9456
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Table 2. Mean errors of velocity and position under the wind speed of 15 m/s.

Filtering Methods East Velocity Error
(m/s)

North Velocity Error
(m/s)

Longitude Error
(m)

Latitude Error
(m)

RAUPF 0.8136 0.6180 5.4120 5.5852
Constrained UPF 0.3058 0.4767 3.8606 3.8769

Table 3. Mean errors of velocity and position under the wind speed of 20 m/s.

Filtering Methods East Velocity Error
(m/s)

North Velocity Error
(m/s)

Longitude Error
(m)

Latitude Error
(m)

RAUPF 1.1127 1.0092 6.8033 6.4456
Constrained UPF 0.5269 0.4388 4.5319 4.1869

It is also observed that the latitude and North velocity errors are smaller than the longitude and
East velocity for RAUPF. The reason is that the gust wind is in the North by East 10◦ and thus its East
velocity component is larger than its North velocity component, more greatly affecting the East velocity
and longitude of the airship. However, the constrained UPF does not suffer from such an effect caused
by the wind field disturbance. The North velocity and latitude are in the similar accuracy as the East
velocity and longitude, without any obvious disturbance by the wind field. This demonstrates that the
proposed constrained UPF is able to resist the disturbance of wind field.

In addition, only a slight change in the accuracy of the constrained UPF was observed due to
the increase of wind speed. This means that the ability of the constrained UPF to suppress wind field
disturbance becomes stronger with the increase of the wind speed.

Figures 9 and 10 show the fitting curves for the horizontal velocity and position errors of the airship
by both RAUPF and constrained UPF. It can be seen that the horizontal velocity and position errors
obtained by RAUPF are linearly increased with the increase of the wind speed. This demonstrates that
RAUPF lacks the capability to resist the wind disturbance. In contrast, the slopes of the fitting curves
of the horizontal velocity and position errors by the constrained UPF are decreased, demonstrating
that the larger the wind speed is the stronger UPF’s resistance to the wind disturbance.

The above simulation results demonstrate that the proposed constrained UPF can effectively
inhibit the disturbance of wind field, leading to improved positioning accuracy for SINS/GNSS/ADS
integrated airship navigation in comparison with RAUPF.
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5. Conclusions

This paper presents a new constrained UPF for SINS/GNSS/ADS integration to improve
the performance of airship positioning and navigation under the disturbance of wind field. The
contributions of this paper are that (i) the wind speed model and navigation mathematical model are
established for SINS/GNSS/ADS integration; and (ii) a constrained UPF is developed using the wind
speed model as a constraint to fuse SINS and GNSS measurements to generate system state estimation
for airship navigation based on SINS/GNSS/ADS integration, leading to the optimal state estimation
in the presence of wind disturbance. Simulations and comparison analysis verify that the proposed
constrained UPF can effectively inhibit the influence of wind field, leading to the improved accuracy
comparing to EKF and ARUPF for SINS/GNSS/ADS integrated airship navigation in the presence of
wind disturbance.

Future research work will focus on two aspects. One is the experimental evaluation of the
proposed constrained UPF. Practical experiments on airship flight based on SINS/GNSS/ADS
integrated navigation will be conducted to further evaluate the performance of the proposed algorithm.
The other is on improvement of the proposed constrained UPF. The proposed algorithm will be
combined with advanced artificial intelligence technologies such as pattern recognition, neural network,
and advanced expert systems, thus establishing an intelligent algorithm to automatically deal with the
disturbances of wind field for the airship navigation.
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Appendix A. Proof of Lemma 1

Proof. The prior distribution and the posterior distribution of state X are

ppr = p(X) (A1)

ppo = p(X|Z) (A2)
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According to the prediction of Bayes recursions, we have

ppo(k|k−1) =
∫

ppo(k−1|k−1)ppr(k|k−1)dx (A3)

It can be easily seen from (59) that for any function f ,(
ppo(k|k−1), f

)
=
∫

ppo(k−1|k−1)ppr(k|k−1) f dx

=
(

ppo(k−1|k−1), ppr(k|k−1) f
) (A4)

Appendix B. Proof of Lemma 2

Proof. According to Lemma 1, we have∣∣∣(ppo
N
(k|k−1), f

)
−
(

ppo(k|k−1), f
)∣∣∣

=
∣∣∣(ppo

N
(k−1|k−1), ppr(k|k−1) f

)
−
(

ppo(k−1|k−1), ppr(k|k−1) f
)∣∣∣ (A5)

Then,

E
[((

ppo
N
(k|k−1), f

)
−
(

ppo(k|k−1), f
))2

]
= E

∣∣∣(ppo
N
(k−1|k−1), ppr(k|k−1) f

)
−
(

ppo(k−1|k−1), ppr(k|k−1) f
)∣∣∣

≤ c
‖ppr(k|k−1) f ‖2

N

(A6)

Since ‖ppr(k|k−1) f ‖ ≤ ‖ f ‖, we can obtain

E
[((

ppo
N
(k|k−1), f

)
−
(

ppo(k|k−1), f
))2

]
≤ c

‖ppr(k|k−1) f ‖2

N

≤ c ‖ f ‖2

N

(A7)

Appendix C. Proof of Lemma 3

Proof. According to the updating process of Bayes recursion, we have

ppo(k|k) =
ppo(k|k−1)h∫
ppo(k|k−1)h dx

(A8)

It is easily to see from (62) that for any function f ,

(
ppo(k|k), f

)
=

∫
ppo(k|k−1)h f dx∫
ppo(k|k−1)h dx

=

(
ppo(k|k−1), h f

)
(

ppo(k|k−1), h
) (A9)
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Appendix D. Proof of Theorem 1

Proof. By Lemmas 1–3, we have(
pN

po(k|k), f
)
−
(

ppo(k|k), f
)

=

(
pN

po(k|k−1),h f
)

(
pN

po(k|k−1),h
) −

(
ppo(k|k−1),h f

)
(

ppo(k|k−1),h
)

=

(
pN

po(k|k−1),h f
)

(
pN

po(k|k−1),h
) −

(
pN

po(k|k−1),h f
)

(
ppo(k|k−1),h

) +

(
pN

po(k|k−1),h f
)

(
ppo(k|k−1),h

) −
(

ppo(k|k−1),h f
)

(
ppo(k|k−1),h

)
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where, ∣∣∣∣∣
(

pN
po(k|k−1),h f

)
(

pN
po(k|k−1),h

) −
(

pN
po(k|k−1),h f

)
(

ppo(k|k−1),h
)
∣∣∣∣∣

=

(
pN

po(k|k−1),h f
)

(
ppo(k|k−1),h

)(
pN

po(k|k−1),h
) ∣∣∣(ppo(k|k−1), h

)
−
(

pN
po(k|k−1), h

)∣∣∣
≤ ‖ f ‖(

ppo(k|k−1),h
) ∣∣∣(ppo(k|k−1), h

)
−
(

pN
po(k|k−1), h

)∣∣∣
(A11)

Using Minkowski’s inequality, we can obtain

E
[((

pN
po(k|k), f

)
−
(

ppo(k|k), f
))2

] 1
2

≤ E

( (pN
po(k|k−1),h f

)
(

pN
po(k|k−1),h

) −
(

pN
po(k|k−1),h f

)
(

ppo(k|k−1),h
)
)2
 1

2

+ E

( (pN
po(k|k−1),h f

)
(

ppo(k|k−1),h
) −

(
ppo(k|k−1),h f

)
(

ppo(k|k−1),h
)
)2
 1

2

≤ ‖ f ‖(
ppo(k|k−1),h

)E
[((

pN
po(k|k), h

)
−
(

ppo(k|k), h
))2

] 1
2

+ 1(
ppo(k|k−1),h

)E
[((

pN
po(k|k−1), h f

)
−
(

ppo(k|k−1), h f
))2

] 1
2

≤ ‖ f ‖(
ppo(k|k−1),h

)√c ‖h‖√
N
+ ‖h‖(

ppo(k|k−1),h
)√c ‖ f ‖√

N

≤ 2
√

c‖h‖(
ppo(k|k−1),h

) ‖ f ‖√
N

(A12)

Letting
√

c1 = 2
√

c‖h‖(
ppo(k|k−1),h

) yields

E
[((

pN
po(k|k), f

)
−
(

ppo(k|k), f
))2

]
≤ c1

‖ f ‖2

N
(A13)

Thus, if there exists a probability density ppo
N
(k−1|k−1) to approximate posterior density

ppo(k−1|k−1), we can find proposal distribution pN
po(k|k) to approximate posterior density ppo(k|k).
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