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Abstract: Brushless direct current (BLDC) motors are the source of flight power during the operation
of rotary-wing unmanned aerial vehicles (UAVs), and their working state directly affects the safety
of the whole system. To predict and avoid motor faults, it is necessary to accurately understand
the health degradation process of the motor before any fault occurs. However, in actual working
conditions, due to the aerodynamic environmental conditions of the aircraft flight, the background
noise components of the vibration signals characterizing the running state of the motor are complex
and severely coupled, making it difficult for the weak degradation characteristics to be clearly
reflected. To address these problems, a weak degradation characteristic extraction method based
on variational mode decomposition (VMD) and Laplacian Eigenmaps (LE) was proposed in this
study to precisely identify the degradation information in system health data, avoid the loss of
critical information and the interference of redundant information, and to optimize the description
of a motor’s degradation process despite the presence of complex background noise. A validation
experiment was conducted on a specific type of motor under operation with load, to obtain the
degradation characteristics of multiple types of vibration signals, and to test the proposed method.
The results proved that this method can improve the stability and accuracy of predicting motor health,
thereby helping to predict the degradation state and to optimize the maintenance strategies.

Keywords: variational mode decomposition; Laplacian eigenmaps; multi-rotor unmanned aerial
vehicle; brushless direct current motor; weak degradation characteristics

1. Introduction

Recently, multi-rotor unmanned aerial vehicles (UAVs) have been widely used in many fields such
as inspection, mapping, and rescue, due to their excellent control performance and attitude stability.
The flight status and mission safety of UAVs are of great importance in the fields of agricultural
production, rescue and disaster relief, and military operations [1,2]. The brushless direct current
(BLDC) motor is a critical component of the power system of multi-rotor UAVSs, so that its working
state directly affects the success rate and safety of task execution. Although the rotary-wing UAV
usually has multiple rotors to ensure its flight conditions, the fault of a single rotor or the motor can
have devastating consequences for the flight mission of the UAV. A multi-rotor UAV is a typical system
with high mission safety requirements, and so conservative maintenance strategies are often preferred
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over the life of the vehicle, but if the motor is replaced long before it reaches its service life, the cost
will be greatly increased. However, if the use time is extended without knowing the lifespan of the
motor, the flight safety of the UAV cannot be guaranteed. Therefore, estimating the working state of
the BLDC motor can help to adjust the maintenance and replacement strategy of the UAV and reduce
the flight cost.

In the current stage, fault diagnosis and health management technology for rotating parts, such
as motors, has been widely applied in industry. It is a very effective method to obtain information
about the state of the rotating parts, based on vibration signals. In recent years, there are a large
number of researchers studying novel approaches for rotating machinery, such as Feng [3] and Qu [4].
Some researchers try to apply advanced methods on vibration signal processing [5,6]. Thus, it can
be seen that vibration signals are still one of the most common indicators of the health status of
rotating machinery. In general, damage faults will show obvious periodic pulse signals during the
rotating process, and will clearly recognizable impact vibration can be found on the vibration signal
spectrum, which is conducive to identification and effective classification [7,8]. Liu et al. utilized
energy entropy to detect the chatter occasions [9]. Mohanty et al. analyzed vibro-acoustic features of
the bearing for diagnosis [10]. These are typical examples of damage fault detection by the features
of the vibration signals. However, abrasion faults undergo gradual changes with the increase of the
use time. Since its vibration properties are characterized by strong similarity, weak distinction, and
strong randomness, it is a typical weak fault. It is hard to identify weak fault characteristics with the
traditional fault diagnosis method, so that the extraction of weak fault characteristics is a difficult task
in the health management of mechanical parts. A favorable data processing method is indispensable
for achieving the effective identification of fault information. Some studies have been carried out on the
extraction of weak degradation characteristics of vibration signals. Hou et al. used global optimization
sparse coding and the approximate SVD (singular value decomposition) method to study weak fault
characteristics extraction of rolling bearings [11]. Based on multipoint kurtosis and VMD (variational
mode decomposition), Cai et al. improved the EMD (empirical mode decomposition) and EEMD
(ensemble empirical mode decomposition) methods for the extraction of weak fault characteristics of
bearings [12]. Yu et al. proposed a method based on SCS (sparse coding shrinkage) in ITD (intrinsic
time-scale decomposition) for weak fault characteristics extraction of bearings [13]. Li et al. carried out
researches on the weak fault detection of rotating machinery based on the ADMM (alternating direction
method of multipliers) [14] and I-NCRA (improved non-convex regularization algorithm) [15]. The
existing research covers most of the excellent signal processing method, but there are still imperfection.
Some researchers focus on the improvement of the signal analysis approach, including but not limited
to current [16] and vibration signals, such as Hou and Cai et al., so they do not consider helping with
the direct prediction or estimation of the health status. Besides that, some researchers work on the fault
detection of the rotating machinery, who only pay attention to the fault occasions without considering
the development process analysis.

Nevertheless, the cost-saving efficiency brought about by preventive maintenance within the life
cycle of equipment is much higher than that of corrective maintenance [17,18]. Currently available
studies on the extraction of weak fault signals mainly focus on the identification of components
with sudden changes, such as pulse components, without paying attention to the fault development
processes of mechanical parts in the early stage, so that the literature cannot effectively guide the
preventive maintenance of faults. To realize fault forecasting, and to take appropriate preventive
maintenance measures, it is essential to analyze the development process of the fault in the early stage.
However, for an aircraft with an aerodynamic structure such as the multi-rotor UAV, the vibration
environment of the onboard equipment is more unstable than that of the ground equipment, and the
noise component is complicated. Consequently, the effectiveness of the traditional method to filter the
interference components by setting a separation standard has been greatly reduced, making it difficult
to effectively extract the weak degradation process in the early stage of the fault. To overcome this
defect, instead of distinguishing the data signals by the frequency component, the manifold learning
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method extracts the nonlinear essential relationship of the characteristics data from the perspective
of the data point distance, which can successfully solve the problem that it is hard to distinguish
useful information from noise while processing frequency—domain signals. For example, Xu et al.
used the Isomap method to analyze multi-type sensitive characteristics of rotating faults [19]. Chen et
al. used LE (Laplacian Eigenmaps) and the DT-CWT (dual-tree complex wavelet transform) method
to study the method of identifying gear faults, so as to solve the problem of excessive redundant
information in the vibration signal [20]. These are attempts to utilize the manifold method for vibration
signal processing. Besides that, Shao et al. also adopted the locally linear embedding method to
monitor the performance degradation of rolling bearings [21]. However, in their research, only
limited characteristics are considered, leading to the lack of information completeness. Therefore, the
health status information in weak signals cannot be captured adequately for accuracy prediction and
estimation. Therefore, to extract weak degradation characteristics in the early stage of the fault, such
as data-driven information analysis methods and data dimension reduction methods can help solve
the problem that complex background noises cannot be separated, and weak degradation information
is difficult to obtain.

In view of the difficulty of effectively identifying the development trend of weak degradation
characteristics during the abrasion fault of the BLDC motor for multi-rotor UAVs, the aim of this
study was to overcome the poor performance of the traditional signal analysis method in information
separation when there are many noise components. The proposed method used the VMD signal
separation method and the LE method to extract and fuse the multi-characteristics parameter
information based on the variation trend of the abrasion fault with the increase of time. The progressive
abrasion fault development process of the motor was identified to monitor the health status of the
motor, and predict the moment of the motor fault. Finally, an experiment was designed to collect data
about the actual working conditions of the multi-rotor UAV motor, to verify the effectiveness of the
method proposed in this study.

The structure of this paper is as follows: In the second section, the basic principles of the methods
used in the paper are briefly introduced, based on which the main ideas of the technical method
proposed in this study are presented. In the third section, an experiment on the multi-rotor UAV motor
is described, and the method and key points of collecting the vibration data of the multi-rotor UAV
motor are introduced. In the fourth section, the results are analyzed and explained in detail, and the
conclusions are given. In the fifth section, the study is summarized.

2. Methods

In general, in the process of characteristics analysis of vibration signals of mechanical parts, the
time-domain signals are denoised in advance to avoid the negative impacts of noise. However, in the
degradation process of the multi-rotor UAV motor, the gradual-change characteristics of the abrasion
fault have weak separable characteristics in the strong background noise, whereas it is much easier for
the characteristics components of damage fault to stand out among time-domain signals. As a result,
the traditional denoising process will greatly weaken the gradual-change characteristics of the abrasion
fault. To solve this problem, the traditional mode of carrying out frequency-domain denoising before
characteristics extraction was abandoned in this study; instead, the time series vibration characteristics
rather than the original vibration signals were used as the basic input for the analysis and extraction of
degradation information, based on the idea of multi-dimensional characteristics fusion.

Thus, the following method (as shown in Figure 1) was used to process the signals in the actual
working condition to preserve the sufficient abrasion fault evolution characteristics. Firstly, on the basis
of completely preserving the original time-domain vibration signals (signals with noises), multi-type
time series characteristics of the signals were extracted to ensure that the weak gradual-change
characteristics of the abrasion fault would not be lost. Secondly, the VMD method was applied to
process fluctuant noises among multi-type timing series signals and to extract the trend information
in time series vibration characteristics for fusing multi-dimensional characteristics. Finally, the LE
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method was used to fuse the multi-dimensional time series characteristics. This step was essentially to
extract information valuable for the trend signals and further filter repeated information and noises
for the judgment and prediction of the running state. This method is able to avoid the loss of trend
information in the denoising process of the time-domain signals, and to remove the non-trend noises
from the time series characteristic signals on the premise of sufficiently retaining the vibration signals.
Thereby, the proposed method achieves the purpose of accurately extracting and retaining the weak
degradation characteristics.

Multidimensional Multidimensional
Sequential Vibration __ __ __Redundant Degradation
Foniieos Information I
| |
Noisy Vibration Multidimensional Dimension Reduction & -
Signals from 4‘b Gradual Features ——» Information Filtering by —» WoakFD:atg:::auon ;
Sensors } Extraction by VMD LE ‘
|

| Weak Degradation Features Extraction for UAVs

Figure 1. Principle and flowchart of the proposed method.

2.1. Charicteristics of the Vibration Signal

The BLDC motor is a typical rotating machine, and mature research on the characterization of its
vibration signals can be found in the literature. Generally speaking, characteristics of vibration signals
are divided into frequency-domain characteristics and time-domain characteristics. Time-domain
characteristics describe the statistical characteristics of the vibration signals in the domain of time,
and the commonly used indexes include mean value, variance, root-mean-square value, peak,
skewness, kurtosis, waveform, pulse, and margin. Frequency-domain characteristics describe the
frequency-domain components of the vibration signals based on the Fourier transform. In this
study, gravity frequency, mean square frequency, and frequency variance were used to describe
changes in the gravity position of the spectrum and changes in energy distribution. To enhance
the description of the overall frequency-domain characteristics of the signals, and to compensate
for the time-invariant defects of the Fourier transform-based frequency domain analysis method in
describing the non-stationary signals, frequency domain analysis, and the mean value and entropy of
the Hilbert marginal energy spectrum based on the Hilbert Huang Transform (HHT) time were used
as supplementary characteristics for comprehensive analysis in this study. For the time-domain signal
x(t), its Hilbert marginal energy spectrum was defined as [22]:

B()= [ B(f et )

where H(f, ) is the Hilbert spectrum of signal x(t) obtained by the HHT method. Therefore, the mean
value of the Hilbert marginal energy spectrum can be defined as:

s =Y [E(f] @

k

According to the theory of information [23], the entropy of its Hilbert marginal energy spectrum
was defined as:

m
H=-) pjlog, pj, ®)
j=1

m m
where p; = E(j)/ ¥ E(j), m is the number of frequency components, and ) p; = 1.
j=1 j=1
All indexes above are indexes of characteristics of vibration signals commonly used in the health
monitoring of rotating machinery. In this study, the dimension reduction of characteristics of vibration

signals was carried out based on the above-mentioned characteristic indexes.
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2.2. Variational Mode Decomposition

Based on the parameters of the characteristics of multi-type vibration signals described in the
previous section, the VMD method was used to pre-process the time series degradation characteristics
of the tested motor. The pre-processing mainly aimed to remove the noise and abnormal fluctuations in
the time series degradation characteristics, and to retain the time series variation trend of the abrasion
fault. The VMD algorithm was proposed by Dragomiretskiy and Zosso in 2014 [24]. Unlike the
commonly used EMD and LMD (local mean decomposition) algorithms, the VMD algorithm applied
non-recursive mode decomposition, which could simultaneously estimate the modalities of different
center frequencies. The basis of the VMD algorithm is a set of adaptive Wiener filters, which not only
avoided the constant accumulation of envelope estimation errors, but also overcame the end effect [25].

The decomposition process of the VMD algorithm is essentially the process of solving the
variational problem. Covering the construction and solution of the variational problem, this algorithm
mainly involves three important concepts: classical Wiener filtering, Hilbert transform, and frequency
mixing [26]. VMD algorithm consists of two steps:

e Step 1: Construction of the variational problem

In the construction of the variational problem, each “mode” was assumed to be a finite bandwidth
with a center frequency, and then the variational problem could be described as seeking k modal
functions u(t). To minimize the sum of the estimated bandwidths of each mode, the constraint
condition is that the sum of each mode should be the original input signal f. The details are
explained below:

1.  Obtain the analytic signal of each mode function u(t) by the Hilbert transform, aiming at

capturing the one-sided spectrum ((5 (t) + i) s« U (t).

it

2. Add an estimation center frequency item e/“s* to each analytic signal, so that the frequency

spectrum of each mode is modulated to corresponding baseband [(5 (t) + i) * uk(t)] et

TT
3. Then, calculate the L2 norm of the above signal, and estimate the bandwidth of each mode signal.
The variational problem can be described as:

[ (5074 L) ]

2
} s.t.Zuk =f, 4)

min
{”k}/{wk}{;
where {uk} = {Ml,' ce ,uk}, {wk} = {wl, ce ,a)k}, % L= Ei—l‘

e Step 2: Solution of the variational problem

1.  On the above basis, the quadratic penalty factor, «, and the Lagrangian multiplication operator,
A(t), were introduced, and the constrained variational problem was transformed into an
unconstrained variational problem to obtain the extended Lagrangian expression. The extended
Largangian expression is expressed as:

LG}, {eond ) = o (50 + ) ()] e [+ 1700 - R+ <A<t>,f<t> —;uk<t>>, ®)

2. Next, the ADMM was used to solve the above variational problem, and the “saddle point” of
extending the Lagrangian expression was worked out by alternately updating uZH, w]'{”l, and
A1 50 as to solve {uy(t)}, the set of k modal functions under constraint conditions. The specific
solution algorithm is not expounded in this paper. Refer to [24] for more details. Thus, that we can
obtain mode functions of the original signal set {u(f)}. As the independent frequency-domain
component of the original input signals, this set efficiently separated different frequency-domain

components in the original signals.
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The VMD and the traditional EMD method were used to decompose and compare the
time-domain signals of the BLDC motor with load. The comparison of the time-domain components
and their corresponding frequency-domain components is shown in Figures 2 and 3.
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Figure 2. Comparison of time-domain signals of (a) the VMD (variational mode decomposition)
method and (b) the EMD (empirical mode decomposition) method.
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Figure 3. Comparison of frequency—domain signals of (a) the VMD method and (b) the EMD method.

Figure 2 demonstrates the time-domain mode signals decomposed by VMD and EMD from the
same vibration signal sample. Each graphic in Figure 2 represents one mode of the sample, which
can also be represented as uy(t). The corresponding frequency-domain signal of uy(t) is revealed in
Figure 3. It can be clearly seen from Figure 2 that the EMD method had a significant end effect, and
during the recursive process from high frequency to low frequency, the oscillation of the end-point data
was continuously polluted inward. As shown in Figure 3, in this case, the EMD method exhibited modal
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aliasing of multiple frequency-domain components, unlike the VMD method, and the components
of each decomposition component failed to be clearly distinguished. The VMD method had a clear
advantage in frequency separation.

2.3. Laplacian Eigenmaps

The basic idea of the LE method was to describe a manifold through an undirected weighted
graph and then to find a low-dimensional representation by embedding the graph; that is, to redraw
the manifold in the high-dimensional space in a low-dimensional space on the premise of maintaining
the local adjacency of the data [27]. The basic principle of the LE method was to ensure that the
adjacent points in the high-dimensional manifold were still adjacent in the low-dimensional manifold,
and the smaller the neighborhood, the more clear the linear structure. However, it was necessary
to ensure sufficient overlap between the neighborhoods so that there could be enough connections
between the distant points.

In fact, the LE method constructed the relationships between data points from the perspective
of the graph, and the data was assumed to have local structural properties. Each data point was
regarded as a vertex of the graph, and each edge between two data points had a corresponding weight
representing the similarity between the two points. The more similar the two data points, the larger the
weight of the edge. The LE method assumed that each point was only similar to those points closest to
them, and the similarity between data points farther away from each other was zero, so that the points
after dimension reduction were kept as close as possible.

The purpose of the LE method is to map this weighted graph to a line so that a minimum spacing
can be maintained between the adjacent points. For this problem, the specific implementation method
is as follows:

e Step 1: Manifold Construction

Letx = (xq,x2,- - ,xN)T andy = (y1,y2,- - ,yN)T, where x;,y; € Ris the coordinate value of
the ith point in M? and R, and this problem can be transformed into finding y; € R to minimize
Y (yi— yj)ZWi]- under reasonable constraints. For any value of y, %2 (yi — yj)ZWi]- =y Ly. The
i,j i,j
Laplacian matrix is L = G — W, where G is the degree matrix of the graph, and W is the adjacency
matrix. It is not difficult to find that Wj; is a symmetric matrix and G;; = Z]- Wij, from which the

following equation can be derived:

Ly —y)*Wy = L2 +v7 - 2yi))Wy
L]

L]
= LyiDii + Ly Dj; — 2L iy W (©)
=2y"Ly,

e Step 2: Solution of the constrained optimization problem

Thus, the problem of solving the minimum value can be transformed into seeking
argminyrDyzlyTLy. It can be found from Equation (4) that L is a positive semi-definite matrix,
and the vector that minimizes the objective function was given by the minimum eigenvalue of
the generalized eigenvector problem, Ly = AGy. Hence, the problem and its constraints were
described as yopr = argmin YDy =1 yTLy. In summary, the mapping of this graph was given

T
y'D1=0
by Y = [y;y,---y,], the matrix of N x d, where YiT in the ith row provides the embedding
coordinates of the ith vertex. Likewise, the problem of minimizing } ||Y; — Y; ||2Wi]- =tr(YTLY) was
ij

simplified to finding Yo, = argminyrpy_tr(YTLY). According to the low-dimensional manifold
of the N data points, y = (1,2, - - ,un) T )T in the

low-dimensional space.

is the manifold mapping of x = (x1,x2,- -+ , N
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2.4. Degradation Characteristics Extraction Based on VMD and LE

Based on the VMD method and the LE manifold dimension reduction theory introduced in the
previous section, a state evolution trend analysis method was proposed, based on the extraction and
fusion of the multi-dimensional vibration characteristics’ degradation trends (as shown in Figure 4).
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Figure 4. Proposed method for the degradation feature extraction.

e Step 1: Extraction of original characteristics

For a degraded component, the time series sample of vibration signals within its full life cycle T
was found tobe s = (s1(£),52(t),- -+ ,su(t), -+ ,sn(t))T, where N is the number of time series samples.
For the time series sample s, (1), its characteristic set was defined as F, = {f,,4|d € [1, D]}, where D
is the characteristic dimension. Then, the time series of the characteristics in the d dimension was
obtained, which is ¢;(n) = (f1, f2, -+, fN)T. Hence, a characteristics matrix was formed, that is,

F=(c1,c2, - ,CcD)-
e Step 2: Construction of a high dimensional manifold

According to the basic theory of the VMD method, the variational problem of each characteristic
time series, ¢;(n) = (f1, f2, -+, fN)T was constructed and solved to seek its modal function set, U; =

k
{uf(n)|k € N*}, which satisfies ¢;(n) = Y. u¢(n). The appropriate trend term in the modal function
i=1

set was selected as the information output of the evolution trend of each characteristic. Subsequently,
the evolution trend set Uy, = {u%(n)|d = (1,2,---,D)} was obtained for each characteristic in the D
dimension. Then, a high-dimensional manifold, MP, containing N data points and existing in the D
dimension was constructed.

e Step 3: Manifold dimension reduction

The coordinates of N time series data points were defined as x = (x1,xp,- - -, xN)T. If a random
point A € M? has k neighboring points, then a weighted graph G = (V,E) with the number of
nodes being k can be constructed for each point and its neighbors. The manifold dimension reduction
problem can be described as the same problem mentioned in Section 2.4. Similarly, for this problem,
letx = (x1,xp,- ,xN)T andy = (y1,y2,- - ,yN)T, where x;,y; € R is the coordinate value of the
ith point in M? and R™. This problem can also be transformed into finding y; € R to minimize
Y (yi — yj)ZWi]- under reasonable constraints. By the approach below, low-dimensional manifolds of

L]
the N data points, y = (y1,y2, - -, yN)T can be found; that is, the sequence of eigenvalues of vibration
signals after the redundant information was eliminated.

3. Experiment Design

The motor selected to be tested in this experiment was the U7 KV170 motor produced by
T-MOTOR Company in Nanchang, China. Figure 5 shows the conceptual graph of the U7 KV170
motor, and Figure 6 shows photos of the tested motor. It is mainly used in industrial and commercial
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fields. As a disc-type BLDC motor, it is controlled by an electronic governor and is commonly used in
the power systems of multi-rotor UAVs. Its basic parameters are listed in Table 1.

Shaft Rotor

(b)
Figure 5. Conceptual graph of the U7 KV170 motor produced by T-MOTOR: (a) Front; (b) Back.
W‘w

(@) (b)
Figure 6. Photos of the U7 KV170 motor used in experiment: (a) Front; (b) Back.
Table 1. Design parameters of the -MOTOR U7 KV170 motor.

Resistance 89 mQ) Slot pole 36N42P
Shaft Diameter 15 mm Motor size 86.8 x 26.5 mm
Weight 239 ¢g No-load current 1.1A
Working Range of the Lithium Battery 6-12S Maximum power 528 W

Figure 7 demonstrates the experimental setup for vibration signal collection, and the numbers
represents the connection between the equipment. The experiment system consists of three subsystems,
including A: control system, B: power, and C: acquisition system. In the control system, to ensure
the stable operation of the motor, the control connection mode of the upper computer-lower
computer—electronic speed controller was used to control the motor’s running state. Numbers 1-3
represent the control connection in the control system. As for power supply, the battery used in regular
UAVs was replaced with constant voltage DC (direct current) power to guarantee that the power
supply would not affect the working state of the motor, and to avoid the influence of the change of
the working environment on the data acquisition as much as possible. This connection is expressed
by connection No. 4 in Figure 7. The acquisition system captures vibration signals by connection No.
5 between sensors and the motor. In virtue of analog-to-digital conversion equipment, the vibration
signals are uploaded to the upper computer (connection No. 6-7). The specific functions are listed in
Table 2. Moreover, in order to effectively avoid the vibration noise caused by the interaction between
the external environment and the tested equipment, it was also necessary to effectively isolate the
tested equipment (as shown in Figure 8). To simulate the vibration signals collected by the UAV under
normal working conditions, the tested motor was installed with a carbon paddle to collect the running
signals of the motor with load. The specific parameters of the motor and paddle are shown in Table 3.
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B.Power

C. Acquisition DC
system Power
- % Sy iy gy 4
Figure 7. Experimental setup.
Table 2. Connections between equipment.
Sequence . .
Number Connected Equipment Functions
1 Upper computer and lower computer Send control command
2 Lower computer and electrical speed controller ~ Send PWM (pulse width modulation) signals
3 Electrical speed controller and motor Current and voltage conversion
4 DC (direct current) power and motor Power supply
5 Motor and sensors Vibration signals acquisition
6 Sensors and data acquisition equipment Send and convert analog signals
7 Data acquisition equipment and upper computer ~ Send digital signals

(a) (b)
Figure 8. Fixture and devices used in the experiment: (a) fixture; (b) experiment devices.

Table 3. Working parameters of the tested motor.

Revolving Sampling Sampling

1
KV Value Voltage  Current  Accelerator Speed Direction Frequency Paddle
170 22V 27 A 100% 2300rpm U2l ) gy 28 x 92
direction inch

1 The KV value is the characteristic parameter of the BLDC motor; it refers to the revolving speed increased for
every 1V increase in the supply voltage.

For a general rotating mechanical part, its radial signals are less stable than its axial signals.
Since its radial signals are more susceptible to mechanical damage, they are more sensitive to faults.
Therefore, in this experiment, the radial signals of the tested motor were mainly collected and analyzed,
whereas the axial signals were collected to assist in observing the working state of the motor and the
tested device.

In this experiment, the motor had obviously abnormal rotation, and could not work normally
after running for 975 h. To collect the operational data of the motor after the fault, after the 975th
hour, we continued the experiment for 1062 h to collect the vibration signals in the fault state, and to
compare them with the vibration signals collected in the normal working state. Figure 9 shows the
time-domain vibration signals collected after the motor had been running for 7.5 h, 975 h, and 1020 h
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(fault state). It can be clearly found through comparison that there was a significant difference in the
vibration signals of the motor before and after the operation, as well as before and after the fault.

Acceleration(g)

o 0.02 0.04 0.06 0.08 0.1

Acceleration(g)

i 0 0.02 0.04 0.06 0.08 0.1

Acceleration(g)

Figure 9. Comparison of time-domain signals after operating for 7.5 h (a), 975 h (b), 1020 h (c).
4. Data Processing and Analysis

4.1. Data Processing

Unlike fault diagnosis, which usually selects signal characteristics that show sudden changes
between the normal and fault conditions, predicting the state of health based on the abrasion process
requires signal characteristics that show gradual changes in the abrasion process. The selected vibration
signal characteristic value should have a clear trend of change with the life loss, which is different from
the characteristic value in general fault diagnosis. Therefore, a variety of characteristics of the vibration
signals collected in the experiment were calculated, in order to select the appropriate eigenvalues.
In addition, considering the complexity of the high-frequency noise components, the eigenvalues of
vibration signals were calculated in the full-frequency and low-frequency bands.

The example in Figure 10 shows a trend curve before and after VMD decomposition extraction.
The VMD method can effectively decompose the high and low frequency components in the original
vibration signals, thereby selecting the gradual degradation components related to the running time.
Through decomposition and screening, the characteristic trends of components that can effectively
characterize the degradation process was extracted. Four typical degradation trends are demonstrated
in Figure 11 (The specific abbreviations of characteristics are listed in Table A1 of Appendix A).
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Figure 10. Effect of VMD in decomposing and extracting characteristics trends.
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o

Based on the 18 dimensions of the special trend time series obtained by the VMD method, a
manifold description of the multi-dimensional degradation characteristics of the motor was established,
according to the degradation characteristics extraction method proposed in the previous section. The
purpose of the description was to achieve information extraction and dimension reduction of the
18-dimensional data characteristics. According to the LE method, the time series of the original
characteristics trend of the motor exists in the space R, where m = 18, and the characteristics
described in this space are from the original degradation process collected in this experiment without
effective information extraction. However, due to the large amount of duplicate information and
information that is irrelevant to degradation in the original data, the degradation characteristics of the
data can be well-described by the space M?(d < m). Therefore, the mapping relationship from R to
M?, ¢ = f~1, was constructed. According to this mapping relationship, the degradation process of the
motor in the space M“(d = 3) was obtained, as shown in Figure 12.
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Figure 12. Trends of degradation characteristics after manifold dimension reduction using the method.

4.2. Analysis and Comparison

To verify the effectiveness of the characteristics extraction method proposed in this study,
the commonly used Elman neural network prediction method was used to compare the original
characteristics signals and the processed characteristics signals. As a typical local regression network,
the Elman neural network has certain delayed memory ability and stable performance. It is often used
for time series prediction. Figure 13 shows the structural principle of the Elman neural network.

x, :input vector

h, hidden layer vector

¥, :outputvector
W.U.b : parameter metrics and vector
a,.0, : activation functions

Qutput Layer

v, =, (Wh+b)

o.

Context Units

—

|
PN

P
Input Layer ) '\/ (,‘ ) »

4 —
—»—(\ ¥~ Hidden Layer

h=o,(Wx, +Uh_ +b,)

Figure 13. Principle of the Elman neural network.

For the purpose of comparison, the data of the degradation characteristics of the total life m of the
motor was divided into two categories. The data collected in the early stage, Syrqin (51,52, -+ ,5n), 1 =
945, was used as the training data of the neural network. The characteristics prediction data of the
latter 45 h, Sjest (8946, 8947, - - ,8m), m = 990, was obtained. The actual characteristics data of the final
45 h, Siest (Soa6, 5947, -+ ,Sm), m = 990, was used as the comparative data, and the difference between
the predicted data, Stest, and the actual data, Sj.s;, was evaluated by the average relative error:

S 1 & |5 — s
6= Y, b= Y. T )
m=n; m=n; |sil

To avoid the error caused by the construction of a single neural network, the multiple neural
network prediction results were averaged in the comparison to obtain representative relative errors.
We calculated the mean of prediction error for 20-140 cycles. The relative errors of all features by
prediction 20-140 times is demonstrated in Figure 14. It was observed whether the degradation
characteristics trend processed by the VMD and LE methods were beneficial for the prediction of the
service life and the working state of the motor.
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Figure 14. Comparison of prediction errors of characteristics type: (a) more than 3.5, (b) between 0.4
and 1, (c) between 0.2 and 0.4, (d) between 0.01 and 0.2.

According to the average relative errors, each original characteristics trend (e.g., SE, C, and SK;
the specific characteristic symbols are shown in the Appendix A) and the characteristics trends of the
first three dimensions obtained after the dimension reduction (i.e., LE-D1, LE-D2 and LE-D3) were
compared successively:

e  The relative error of index SE was as high as 360-400% (Figure 14a).

e  The relative errors of indexes C, I, and HMEE1 were about 40-100% (Figure 14b).

e  The relative error of index LE-D3, which was about 30%, was close to the relative errors of indexes
SK, K, MSF, and RMS (Figure 14c).

e  The relative errors of indexes LE-D1 and LE-D2 were relatively low at about 2-6% (Figure 14d).

As shown in Figure 14, among the characteristic data whose dimensions were reduced using the
LE method (LE-D1, LE-D2, LE-D3), the prediction error of the main component of the first dimension
(LE-D1) has obvious advantages compared with other single-characteristics degradation data. Since
LE-D1 contains sufficient degradation trend information, a low and stable prediction error can be
maintained when the same prediction method is used. Nevertheless, as the number of dimensions
increases, the effectiveness of the secondary dimension of the LE method will gradually decline.
Importantly, the degradation characteristics data obtained by this method is more suitable for the
evaluation and prediction of the degradation process of the motor in the working state, and it contains
significantly less redundant information that can interfere with subsequent prediction and evaluation
than the unprocessed original degradation characteristics data.

5. Conclusions

Because of complex background noises and weak distinction, it is hard to directly identify
degradation fault signals of the multi-rotor UAV motor during its operation with load. To solve
this problem, a weak degradation characteristics extraction method based on the basic principles
of VMD and LE was proposed in this study to accurately identify the degradation characteristics
evolution information before the fault, and to strengthen the predictability of weak degradation fault
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characteristics. In this study, with multiple types of basic characteristics of vibration signals used as
the basic input, on the basis that the background noises of time series signals were removed using the
VMD method, dimension reduction was conducted on the intrinsic information of multi-dimensional
characteristics by manifold learning. The aim of this method was to obtain the degradation process
trend related to information about the motor’s lifespan, and thereby achieve accurate screening of
effective information.

As declared in the literature review, the present research mainly focuses on the improvement
of signal processing and fault detection of rotating machinery, ignoring the information collection of
degradation before failures. Based on information in weak vibration signals, this method can capture
degradation trend signals for better estimation of the health status of rotating machinery. In this way,
the proposed method extract informative features in weak vibration signals from a variety aspects.
Therefore, the degradation trend is acquired clearly. By comparing the prediction methods, it was
found that the method proposed in this study can increase the accuracy and stability for predicting
the degradation characteristics trend after information screening and dimension reduction, which
obviously outperforms the approach of pre-judging the working state based on a single vibration
characteristic. Thus, the proposed method is conducive to predicting the lifespan and monitoring the
health status of the BLDC motor of UAVs under actual working conditions, so as to help to optimize
maintenance strategies, reduce maintenance costs, and improve the working efficiency. However,
sufficient data at the failure threshold is still needed to more accurately predict the time of the fault
and the optimal time for preventive maintenance. The methods for accurately evaluating the health
status of the motor, using limited failure and life expectancy data, remains to be explored.
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Appendix A
Table A1. Symbols of characteristics.
Type of Characteristics Characteristics Symbols
Mean M
Variance Var
Root-mean-square value RMS
Peak P
Time-d in characteristi Peak index C
ime-domain characteristics Skewness index SK
Kurtosis index K
Waveform index S
Pulse index 1
Margin index L
Gravity frequency FC
Frequency-domain characteristics Mean square frequency MSF
Frequency variance VF
Marginal energy spectrum mean value (low frequency) HMEM;
Mean of energy spectrum Marginal energy spectrum mean (full frequency domain) HMEM,
Amplitude spectrum entropy SE
Spectral entropy Marginal energy spectrum entropy (low frequency) HMEE;

Marginal energy spectrum entropy (full frequency domain) HMEE,
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