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Abstract: In recent years, the GPS wave buoy has been developed for in situ wave monitoring
based on satellite GPS signals. Many research works have been completed on the GPS-based wave
measurement technology and great progress has been achieved. The basic principle of the GPS wave
buoy is to calculate the movement velocity of the buoy using the Doppler frequency shift of satellite
GPS signals, and then to calculate the wave parameters from the movement velocity according
to ocean wave theory. The shortage of the GPS wave buoy is the occasional occurrence of some
unusual values in the movement velocity. This is mainly due to the fact that the GPS antenna is
occasionally covered by sea water and cannot normally receive high-quality satellite GPS signals.
The traditional solution is to remove these unusual movement velocity values from the records,
which requires furthering extend the acquisition time of satellite GPS signals to ensure there is a
large enough quantity of effective movement velocity values. Based on the traditional GPS wave
measurement technology, this paper presents the algorithmic flow and proposes two improvement
measures. On the one hand, the neural network algorithm is used to correct the unusual movement
velocity data so that extending the acquisition time of satellite GPS signals is not necessary and
battery power is saved. On the other hand, the Gaussian low-pass filter is used to correct the raw
directional wave spectrum, which can further eliminate the influence of noise spectrum energy and
improve the measurement accuracy. The on-site sea test of the SBF7-1A GPS wave buoy, developed
by the National Ocean Technology Center in China, and the gravity-acceleration-type DWR-MKIII
Waverider buoy are highlighted in this article. The wave data acquired by the two buoys are analyzed
and processed. It can be seen from the processed results that the ocean wave parameters from the two
kinds of wave buoys, such as wave height, wave period, wave direction, wave frequency spectrum,
and directional wave spectrum, are in good consistency, indicating that the SBF7-1A GPS wave
buoy is comparable to the traditional gravity-acceleration-type wave buoy in terms of its accuracy.
Therefore, the feasibility and validity of the two improvement measures proposed in this paper
are confirmed.
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1. Introduction

Ocean waves are a very important dynamic factor in the marine environment. Enormous
amounts of casualties and economic property losses have been directly caused by ocean waves in
marine disasters over the years because coastal areas are usually densely populated economic centers.
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Moreover, the stability of marine structures closely depends on the loads generated by waves. Waves
are also the main driving force for sediment and contaminant transport. Therefore, it is a priority to
obtain accurate in situ ocean wave data to improve the ability to prevent ocean wave disasters, provide
reasonable stability for coastal structures, and guarantee the safety of people’s lives and property in
coastal regions [1].

The wave buoy has the advantage of not being limited by water depth and field environment.
Consequently, it has been widely used in the field observations of ocean waves. The wave buoy
is designed with a spherical shape to ensure good wave-following performance in adapting to the
circular motion of water-wave particles [2,3].

Over the years, the traditional gravity-acceleration-type wave buoy has been recognized as one
of the most reliable instruments with reasonable accuracy in monitoring in situ wave parameters,
including wave height, wave period, and wave direction. The device, mounted with an acceleration
sensor, an electronic compass, a gyroscope, and other sensors, measures waves based on the principle
of gravity acceleration. Currently, several brands of this type of wave buoy are available, such as
the DWR-MKIII Waverider buoy developed by the DataWell BV company of the Netherlands [4],
the Triaxys wave buoy with a combination of solar and battery power supply for longer performance
produced by the Canadian AXYS Corporation [5], the SBY6-1 and the SBF7-1 wave buoys developed
by the National Ocean Technology Center of China, the SBF3 wave buoy with two types of anchor
connection for different environmental applications developed by the Institute of Oceanographic
Instrumentation, Shandong Academy of Sciences (SDIOI) of China [6], and the SZF wave buoy
developed by the Ocean University of China [7].

In recent years, a new wave measurement method has been invented that uses satellite GPS
signals to measure ocean waves, namely, the GPS wave buoy. The measuring principle of the GPS
wave buoy is to calculate the movement velocity of the buoy using the Doppler frequency shift of
satellite GPS signals, and then to calculate wave parameters, such as wave height, wave period, wave
direction, wave frequency spectrum, and directional wave spectrum from the movement velocity
according to ocean wave theory. The GPS wave buoy, which is a simple, small-sized hardware device,
only needs a GPS sensor without the mounting of any other auxiliary sensors. Since it measures waves
from received satellite GPS signals, it is easy to install and maintain. Compared to the traditional
gravity-acceleration-type wave buoy, the GPS wave buoy has the following characteristics. First,
satellite GPS signals do not further increase measurement errors due to increases in usage time, so
the GPS wave buoy does not need to be regularly calibrated. The gravity-acceleration-type wave
buoy needs to be calibrated again after a period of use. The GPS wave buoy is also not affected by
the on-site magnetic environment, while the gravity-acceleration-type wave buoy is because it has an
electronic compass sensor. Finally, the GPS wave buoy is capable of measuring longer period waves
relative to the gravity-acceleration-type wave buoy [4]. At present, many research institutes have
carried out research work on GPS wave measurement technology and have made great progress. In
particular, the DataWell BV company has developed various types of GPS wave buoys with different
buoy diameters of 0.4 m (DWR-G4), 0.7 m (DWR-G7), and 0.9m (DWR-G9) [4]. At the same time,
a number of on-site sea comparison tests have been conducted on the GPS wave buoy, which have
achieved very good results [8–14].

In the use of GPS wave buoy, it is found that the GPS wave buoy often requires a longer data
acquisition time of satellite GPS signals in comparison with the traditional gravity-acceleration-type
wave buoy. This is mainly due to the fact that the GPS wave buoy directly removes some unusual
movement velocity values in tradition, thereby extending the data acquisition time. The GPS antenna of
the GPS wave buoy is occasionally covered by sea water because of its low height from the sea surface.
Therefore, the GPS wave buoy cannot receive high-quality satellite GPS signals occasionally, and
thus cannot resolve high-precision movement velocity data of the buoy, namely, unusual movement
velocity data. In order to ensure the accuracy of measuring waves, the traditional data-preprocessing
method is to directly remove these unusual movement velocity values. Therefore, it requires longer
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data-acquisition time to collect enough normal movement velocity values. The wave measurement
effect using the traditional data-preprocessing method is very good, so this method is very worthy of
recognition [9].

This paper proposes a new data-preprocessing method that is different from the traditional
method. The method uses a neural network algorithm to correct unusual movement velocity data.
Therefore, it does not need to additionally extend the satellite signals data-acquisition time of the GPS
wave buoy. This can further save the energy of the GPS wave buoy and prolong the cycle of replacing
the buoy battery. At the same time, another improvement proposed in this paper is to introduce a
Gaussian low-pass filter in the processing of the raw directional wave spectrum, which further reduces
the influence of the noise wave spectrum energy and improves the accuracy of wave measurement.

Based on the above two improvement measures proposed in this article, the National Ocean
Technology Center in China has also carried out research work on GPS wave measurement technology
and has made great progress [15,16], successfully developing the SBF7-1A GPS wave buoy. An on-site
comparison test was carried out for the SBF7-1A GPS wave buoy and the gravity-acceleration-type
DWR-MKIII Waverider buoy. The wave height, wave period, wave direction, wave frequency spectrum,
and directional wave spectrum from the two buoys had fairly good consistency. The correlation
coefficients reached 0.97, 0.98, and 0.89 in significant wave height, mean wave period, and wave
direction, respectively. Thus, the effectiveness of the two improvements has been further verified.

After having obtained certifications from third-party verification agencies, e.g., the National
Center Of Ocean Standards and Metrology, the National Institute of Metrology (NIM), and the National
Quality Supervision and Inspection Center for Marine Instruments and Equipment, the SBF7-1A GPS
wave buoy is presently used by many military and civilian ocean-observation sites, such as the navy, air
force, the State Oceanic Administration, the National Offshore Maritime Comprehensive Testing Site,
and the ocean engineering corporation, and has achieved very good results. At the same time, a number
of drifting-type SBF7-1A GPS wave buoys have been used in the South China Sea, the Western Pacific,
and the Indian Ocean. These buoys are still quite stable after experiencing many typhoon processes.
The performances of the SBF7-1A GPS buoys have proven to be stable and reliable [17,18].

This paper is organized as follows. The theory and algorithm for measuring ocean waves by
satellite GPS signals are described in Sections 2 and 4. Sections 3, 5 and 6 present on-site sea trials,
data processing, and results analysis. The discussion and conclusion are presented in Sections 7
and 8, respectively.

2. Materials and Methods

In China, the National Ocean Technology Center started researching this topic in 2009, and has
gradually mastered the key core technologies and successfully developed the SBF7-1A GPS wave buoy.

The basic measurement principle of the SBF7-1A GPS wave buoy is shown in Figure 1. The wave
buoy floats on the sea. The GPS sensor in the wave buoy receives satellite GPS signals from multiple
satellites in multiple directions. Due to the relative motion between the wave buoy and the satellites,
there is a frequency difference between the satellite GPS signals received by the GPS wave buoy and the
satellite GPS signals sent by the GPS satellites, namely, the Doppler frequency shift. The magnitude of
the Doppler frequency shift is inherently related to the movement velocity of the wave buoy. Based on
this intrinsic relation, the buoy’s movement velocity can be calculated from the Doppler frequency
shift. Then, wave parameters such as wave height, wave period, and wave direction can be obtained
from the movement velocity of the buoy.

Therefore, using the Doppler frequency shift value to calculate movement velocity is very critical
for the GPS wave buoy. After selective availability (SA) is cancelled, the measurement accuracy of
the movement velocity using satellite GPS signals can reach the level of cm/s, even mm/s [19–24].
Velocity-measurement accuracy can meet wave-measurement requirements, which makes it possible
to measure ocean waves with satellite GPS signals.
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Figure 1. Measurement mechanism of the SBF7-1A GPS wave buoy developed by the National Ocean
Technology Center in China: (a) schematic diagram; (b) physical picture.

The basic calculation process is as follows. It is streamlined compared to the traditional
measurement algorithm flow.

According to the principle of the Doppler frequency shift, the buoy’s movement velocity
components V1(t), V2(t), and V3(t) are calculated from the satellite GPS signals. V1(t), V2(t), and
V3(t) are the velocity components of the buoy’s movement in the east–west, north–south, and vertical
direction, respectively.

The three movement-velocity data sequences V1(t), V2(t), and V3(t) are preprocessed with a
neural network algorithm to remove unusual values.

The wave spectrum can be obtained from the cross-spectrum, which is the Fourier transform of
the cross-correlation function. The cross-correlation function is defined as follows:

Rmn(τ) = lim
T→∞

1
T

∫ T/2

−T/2
Vm(t)Vn(t + τ)dt, m, n = 1, 2, 3 (1)

The cross-spectrum Smn( f ) is defined as follows:

Smn( f ) =
∫ ∞

−∞
Rmn(τ)e−2πi f τdτ = Cmn( f )− iQmn( f ), m, n = 1, 2, 3 (2)

Therefore, six sets of cross-spectrum can be obtained from the combination of the three movement
velocity components of the GPS wave buoy.

The raw directional wave spectrum S′( f , θ) is obtained from the six sets of cross-spectrum
calculated using Equation (3):

S′( f , θ) = A0( f ) + A1( f ) cos(θ) + B1( f ) sin(θ) + A2( f ) cos(2θ) + B2( f ) sin(2θ) (3)

where coefficients A0( f ), A1( f ), B1( f ), A2( f ), and B2( f ) can be obtained from Equations (4)–(8).
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The raw directional wave spectrum S′( f , θ) is smoothed by a Gaussian low-pass filter to obtain a
new directional wave spectrum S( f , θ).

The wave frequency spectrum S( f ) can be obtained by integrating the directional wave spectrum
S( f , θ) with respect to direction angular θ.

From the wave frequency spectrum S( f ), the wave height and wave period are obtained
as follows:

The significant wave height : Hs = 4
√

m0 (9)

The mean wave period : T = 2π

√
m0

m2
(10)

where mn is the nth-order spectral momentum of the wave energy density spectrum.

mn =
∫ ∞

0
ωnS(ω)dω (11)

Directional wave spectrum S( f , θ) can be viewed as a wave frequency spectrum S( f ) multiplied
by the wave directional spreading function D(θ, f ), as shown below:

S( f , θ) = S( f )D(θ, f ) (12)

When directional wave spectrum S( f , θ) and wave frequency spectrum S( f ) are obtained, wave
directional spreading function D(θ, f ) can be obtained according to Equation (12).

3. In Situ Comparison Test and Results without a Neural-Network Algorithm and a Gaussian
Low-Pass Filter

The SBF7-1A GPS wave buoy and the gravity-acceleration-type DWR-MKIII Waverider buoy were
mounted in the field to simultaneously monitor wave data, as shown in Figure 2. The two wave buoys
used the same mooring system, which was composed of a buoyancy ball, an elastic cable, a nylon
rope, and a grip anchor. Data acquisition lasted from 19 June to 3 July 2013 for about 14 days, with an
acquisition interval of 1 h. The distance between the two buoys was about 500 m and the water depth
in the sea area was about 20 m.
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Figure 2. Field test between the SBF7-1A GPS wave buoy and the DWR-MKIII Waverider buoy: (a) field
test location; (b) placing the buoy.

The SBF7-1A GPS wave buoy and the DWR-MKIII Waverider buoy calculate the wave parameters
from the self-moving state of the buoy on the sea surface. They all belong to the wave observation
device of the buoy.

The calculation process of the DWR-MKIII Waverider buoy is as follows. Three sets of motion
displacement of the buoy in the east-west, north-south, and vertical directions are obtained from
integrating twice the three sets of motion acceleration captured by the DWR-MKIII Waverider buoy,
respectively. The directional wave spectrum of the buoy is calculated from three sets of motion
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displacement, and the wave height, wave period, and wave direction are therefore calculated from the
directional wave spectrum.

The three raw movement velocity data sequences of the SBF7-1A GPS wave buoy at 03:00 (UTC)
on 2 July 2013 are shown in Figure 3. As can be seen from these data sequences, sudden and major
increases of the velocity values occur at some points. Moreover, some zero value points also occurred
at several data segments, which is believed to be caused by occasional hitting of the wave overtopping
on the GPS antenna when the buoy moves at a resonance status under the complex action of the waves,
currents, and the mooring lines. These rapid increases of the velocity data and null velocity data
segments with a value of 0 all belong to the unusual data.

Without using a neural network algorithm and a Gaussian low-pass filter, the wave frequency
spectrum and the directional wave spectrum are directly calculated from the three raw movement
velocity data sequences. The wave frequency spectrum of the two wave buoys at 03:00 (UTC) on
2 July 2013 are shown in Figure 4. They do not have a good consistency in frequency distribution.
The total wave energy difference rate of the two energy density curves is 27.68%. The total wave
energy of the SBF7-1A GPS wave buoy is much smaller than the total wave energy of the DWR-MKIII
Waverider buoy. This is mainly due to the fact that the three raw movement velocity data sequences of
the SBF7-1A GPS wave buoy have some unusual movement velocity values, such as null velocity data
segments with a value of 0.
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Figure 3. Movement velocity data sequences of the SBF7-1A GPS wave buoy in three directions before
correction at 03:00 (UTC) on 2 July 2013: (a) movement velocity data sequence in the east–west direction;
(b) movement velocity data sequence in the north–south direction; and (c) movement velocity data
sequence in the vertical direction.
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Figure 4. Comparison of wave frequency spectrum between the SBF7-1A GPS wave buoy and the
DWR-MKIII Waverider buoy before correction at 03:00 (UTC) on 2 July 2013.

The directional wave spectrum of the two wave buoys at 03:00 (UTC) on 2 July 2013 are shown in
Figure 5. They also do not have a good consistency in frequency distribution and direction distribution.
The wave energy density distributions measured by the SBF7-1A GPS wave buoy are more dispersed
than the DWR-MKIII Waverider buoy. This affects the identification of wave direction from the
directional wave spectrum. Additionally, the total wave energy measured by the two buoys is also
very different, and the difference rate is also 27.68%.
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Figure 5. Comparison of directional wave spectrum between the SBF7-1A GPS wave buoy and
the DWR-MKIII Waverider buoy before correction at 03:00 (UTC) on 2 July 2013: (a,c) directional
wave spectrum of the SBF7-1A GPS wave buoy; (b,d) directional wave spectrum of the DWR-MKIII
Waverider buoy.

4. Processing with a Neural-Network Algorithm and a Gaussian Low-Pass Filter

For the problem of energy reduction and energy distribution dispersion in wave spectrum,
this paper proposes two improvement measures. In the algorithm flow of measuring ocean waves
with satellite GPS signals, a neural network and a Gaussian low-pass filter are introduced.

4.1. Nonlinear Autoregressive Neural Network

At present, neural networks have been used in various fields of scientific research. This paper
designs a nonlinear autoregressive neural network model for processing raw movement velocity data
sequences of the SBF7-1A GPS wave buoy, as shown in Figure 6 and Equation (13).

Nonlinear autoregressive neural networks can be trained to predict a time series based on previous
data points. The wave period is mostly between 2 and 25 s. In this paper, 50 s are selected as the
prediction period of the nonlinear autoregressive neural network, which is basically twice the wave
period. The SBF7-1A GPS wave buoy collects the movement velocity data twice per second according
to the satellite GPS signals. There are 100 movement velocity data points within a prediction period of
the neural network. In a movement velocity data sequence, missing data points, i.e., data gaps due
to that some data have been identified as being unusual, are filled by predicted values based on the
nonlinear autoregressive neural network calculation. The nonlinear autoregressive neural network
uses 100 consecutive data points before a data gap to determine the predicted value to fill the gap.
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Through many experiments, it is found that a neural network with 30 hidden layers can achieve the
best prediction results.

y(N) = w1y(N − 1) + w2y(N − 2) + w3y(N − 3) + w4y(N − 4) + . . . . . .+w100y(N − 100) (13)
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Figure 6. Nonlinear autoregressive neural network.

In order to verify the correction effect of the neural network approach, an artificial gap is used in
the movement-velocity data sequence, as shown in Figure 7a,c,e. In a real velocity data sequence of the
SBF7-1A GPS wave buoy, the blue data are the measured, and the red data are assumed to be the lost
data. The lost data are predicted using the measured data before it according to the neural-network
approach. The comparison of true data and predicted data is shown in Figure 7b,d,f and Table 1. It can
be seen from the comparison that the more real data before the predicted data, the better the prediction
effect. In the three test cases, the correlation coefficients between predicted data and real data are all
greater than 0.75, and the errors of velocity data points are all less than 0.5 m/s. Most predicted velocity
data points have a small error, and only few data points have a slightly larger error. Their average
differences are all less than 0.04 m/s despite the maximum difference value being 0.47 m/s.

Table 1. Comparison of results between the true velocity data sequence and the predicted velocity
data sequence.

Correlation
Coefficient

Average
Difference

(m/s)

Maximum
Difference

(m/s)

Minimum
Difference

(m/s)

Root-Mean-Square
Difference (m/s)

Standard
Deviation

(m/s)

Test case 1 0.7754 −0.03 0.44 −0.47 0.16 0.16
Test case 2 0.8712 −0.009 0.30 −0.39 0.12 0.12
Test case 3 0.9361 −0.003 0.28 −0.34 0.11 0.11
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Figure 7. Test cases for the predicting effect of the nonlinear autoregressive neural network; (a,b) test
case 1; (c,d) test case 2; (e,f) test case 3.

Its specific work flow is as follows.

(1) Picking out unusual movement velocity values

From the raw movement velocity data sequence, find unusual velocity values and mark them.
A method has been found to mark some violently rising velocity data from the velocity data

sequence. In a velocity data sequence, three consecutive velocity data points are sequentially selected
from the beginning of the data sequence to the end of the data sequence. First, the absolute values
of the three velocity data points are taken to obtain three absolute values. Then, the three absolute
values are averaged to obtain an average value. The absolute value of each velocity data is compared
to this average value. When the absolute value of the velocity data is greater than three times the
average value, it is considered that the velocity data represent a violent-rising data value and need to
be marked as unusual data.

A method has also been found to mark some data segments with a data value of 0 from the
velocity data sequence. In a velocity data sequence, three consecutive velocity data are sequentially
selected from the beginning of the data sequence to the end of the data sequence. When the three
velocity data values are all 0, the three velocity data values are considered to be unusual data, and the
three velocity data values need to be marked at the same time.

(2) Forward training the neural network

In a raw velocity data sequence, all data segments with more than 100 consecutive usual velocity
data are selected as samples to train the nonlinear autoregressive neural network.

(3) Forward correcting the raw movement velocity data sequence

In the velocity data sequence, the unusual data mark is sequentially searched from the beginning
of the sequence to the end of the sequence. If there are 100 consecutive usual data points before unusual
data, the 100 usual data are input into the nonlinear autoregressive neural network to predict a velocity
value. This unusual data point is replaced by the predicted velocity value, and is also marked as a
usual data in the data sequence.

(4) Reverse training the neural network

After the above operations, sometimes there are still some unusual data in the movement velocity
data sequence. Therefore, the velocity data sequence needs to be corrected in reverse direction.
The velocity data sequence is arranged in reverse time order. In the reverse velocity data sequence, all
data segments with more than 100 consecutive usual velocity data are selected as samples to retrain
the nonlinear autoregressive neural network.
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(5) Reverse correcting the raw movement velocity data sequence

In the reverse velocity data sequence, some unusual velocity data are corrected to follow a similar
operation to Step 3.

(6) Rearranging the reverse movement velocity data sequence

The reverse velocity data sequence is rearranged into a forward velocity data sequence in
time order.

After all the above operations, the unusual data are all corrected in the movement velocity
data sequence.

4.2. Gaussian Low-Pass Filter

This paper designs a Gaussian low-pass filter for processing the raw directional wave spectrum
of the SBF7-1A GPS wave buoy, as shown in Figure 8 and Equation (14). The Gaussian low-pass filter
can concentrate the distribution of wave energy and make the main wave direction more accurate.
Through many experiments, it is found that a Gaussian low-pass filter with a frequency space size of
32, direction space size of 32, and standard deviation sigma of 8 can achieve the best smoothing effect.

G(X, Y) = e−
(X2+Y2)

2σ2 (14)
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5. In Situ Comparison Test and Results with a Neural-Network Algorithm and a Gaussian
Low-Pass Filter

After being corrected with a nonlinear autoregressive neural network, the three movement
velocity data sequences are shown in Figure 9. There are no unusual velocity data in these sequences.
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Figure 9. Movement velocity data sequences of the SBF7-1A GPS wave buoy in three directions after
correction at 03:00 (UTC) on 2 July 2013: (a) movement velocity data sequence in the east-west direction;
(b) movement velocity data sequence in the north–south direction; (c) movement velocity data sequence
in the vertical direction.

By using a neural network algorithm and a Gaussian low-pass filter, the wave frequency spectrum
and the directional wave spectrum are calculated from the three corrected movement velocity data
sequences. The wave height, wave period, wave direction, wave frequency spectrum, and directional
wave spectrum measured by the SBF7-1A GPS wave buoy and the DWR-MKIII Waverider buoy in the
same time period are compared. Correlation analysis is performed on the measurement results of each
physical quantity from the two devices.

The wave frequency spectrum of the two wave buoys at 03:00 (UTC) on 2 July 2013 are shown
in Figure 10. They have very good consistency in frequency distribution. The wave energy density
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distributions measured by the two buoys are all concentrated in the frequency range from 0.15 to
0.25 Hz, and the energy density values all reach an extreme value at a frequency of about 0.2 Hz.
The total wave energy difference rate of the two energy density curves is only 4.86%.
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Figure 10. Comparison of wave frequency spectrum between the SBF7-1A GPS wave buoy and the
DWR-MKIII Waverider buoy after correction at 03:00 (UTC) on 2 July 2013.

The directional wave spectrum of the two wave buoys at 03:00 (UTC) on 2 July 2013 are shown in
Figure 11. They also have very good consistency in frequency distribution and direction distribution.
The wave energy density distributions measured by the two buoys are all concentrated in the direction
range from 120 to 240 degrees. The total wave energy measured by the two buoys is very consistent,
and the difference rate is also only 4.86%.

The wave frequency spectrums of the two buoys during the field test are respectively arranged to
form time-sequence images as the measurement time (Figure 12). It can be seen that the wave energy
density distributions of the two buoys are also very consistent in the time and frequency domain.
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Figure 11. Comparison of directional wave spectrum between the SBF7-1A GPS wave buoy and
the DWR-MKIII Waverider buoy after correction at 03:00 (UTC) on 2 July 2013: (a,c) directional
wave spectrum of the SBF7-1A GPS wave buoy; (b,d) directional wave spectrum of the DWR-MKIII
Waverider buoy.
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Figure 12. Comparison of time-sequence images of wave frequency spectrum between the SBF7-1A
GPS wave buoy and the DWR-MKIII Waverider buoy after correction from 19 June to 3 July 2013:
(a) SBF7-1A GPS wave buoy; (b) DWR-MKIII Waverider buoy.

All the wave frequency spectrums of the two buoys are first summed and then averaged to
obtain an average wave frequency spectrum, respectively. Their comparison is shown in Figure 13.
Their energy density distribution curves are also very consistent. The total wave energy difference rate
of the two energy density distribution curves is only 5.61%.

All the directional wave spectrums of the two buoys are first summed and then averaged to
obtain an average directional wave spectrum, respectively. Their comparison is shown in Figure 14.
Their energy density distribution maps are also very consistent in frequency distribution and direction
distribution. The wave energy distributions of the two buoys are all concentrated in the same wave
direction range from 90 to 210 degrees.
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Figure 13. Comparison of average wave frequency spectrum between the SBF7-1A GPS wave buoy
and the DWR-MKIII Waverider buoy after correction from 19 June to 3 July 2013.
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Figure 14. Comparison of average directional wave spectrum between the SBF7-1A GPS wave buoy
and the DWR-MKIII Waverider buoy after correction from 19 June to 3 July 2013: (a,c) average
directional wave spectrum of the SBF7-1A GPS wave buoy; (b,d) average directional wave spectrum of
the DWR-MKIII Waverider buoy.
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The data sequence of the significant wave height and statistics of the data from the two buoys are
shown in Figure 15 and Table 2, respectively. The correlation coefficient of the significant wave heights
using the two devices is 0.9737, their average difference is –1.58 cm, the root-mean-square difference
is 5.02 cm, and the standard deviation is 4.76 cm, indicating good consistency. Most differences are
below 10 cm despite the maximum value being 15.14 cm.
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Figure 15. Comparison of significant wave heights between the SBF7-1A GPS wave buoy and the
DWR-MKIII Waverider buoy after correction.

Table 2. Comparison of results between the SBF7-1A GPS wave buoy and the DWR-MKIII Waverider
buoy after correction.

Correlation
Coefficient

Average
Difference

Maximum
Difference

Minimum
Difference

Root-Mean-Square
Difference

Standard
Deviation

Significant wave height
(cm) 0.9737 –1.58 11.35 –15.14 5.02 4.76

Mean wave period (s) 0.9811 0.06 0.50 –0.85 0.22 0.21
Wave direction (◦) 0.8920 –3.19 18.00 –24.00 9.27 8.70

The data sequence of the mean wave period and statistics of the data from the two buoys are
shown in Figure 16 and Table 2, respectively. The correlation coefficient is 0.9811, the average difference
is 0.06 s, the root-mean-square difference is 0.22 s, and the standard deviation is 0.21 s, indicating good
consistency. Most of the absolute differences of the mean wave period are below 0.5 s despite the
maximum value being 0.85 s.

The data sequence of the wave direction and statistics of the data from the two devices are shown
in Figure 17 and Table 2, respectively. The correlation coefficient is 0.8920, the average difference
is −3.19 degrees, the root-mean-square difference is 9.27 degrees, and the standard deviation is
8.70 degrees, indicating good consistency. Most of the absolute differences of the wave direction are
below 10 degrees despite the maximum value being 24.00 degrees.
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Figure 16. Comparison of mean wave periods between the SBF7-1A GPS wave buoy and the
DWR-MKIII Waverider buoy after correction.
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Figure 17. Comparison of wave directions between the SBF7-1A GPS wave buoy and the DWR-MKIII
Waverider buoy after correction.

6. Deep Sea Measurement Test and Results from the SBF7-1A GPS Wave Buoy

In order to test reliability under severe sea states, the SBF7-1A GPS wave buoy was placed in
the Western Pacificon on 18 August 2018. It still worked very stably after experiencing Typhoons
MANGKHUT, TRAMI, and KONG-REY, as shown in Figures 18 and 19 and Table 3. In particular,
the buoy measured a significant wave height of 10.91 m at 20:00 (UTC) on 27 September 2018. At this
time, the distance between the buoy and the typhoon eye of TRAMI was about 103 km.

At the same time, compared to results derived from observations with remote sensing satellites,
the differences of significant wave height from the two devices were also very small, as shown
in Table 4.

Currently, the buoy is still working properly. The measuring accuracy and measuring reliability
of the SBF7-1A GPS wave buoy under severe sea states have been verified again.
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Table 3. Maximums of significant wave height from the SBF7-1A GPS wave buoy in three typhoons.

Typhoon Date (YMD) Time (UTC) Distance (Buoy
and Typhoon Eye)

Significant Wave
Height of Buoy

MANGKHUT 2018-09-14 01:00 about 630 km 5.90 m
TRAMI 2018-09-27 20:00 about 103 km 10.91 m

KONG-REY 2018-10-03 05:00 about 126 km 9.85 m

Table 4. Comparison of significant wave heights between the SBF7-1A GPS wave buoy and remote
sensing satellites.

Date (YMD) Time (UTC) Satellite (Saral
or Jason-3)

Significant Wave
Height of Buoy

Significant Wave
Height of Satellite Difference

20180828 01:00 Jason-3 0.85 m 1.05 m –0.20 m
20180830 00:00 Jason-3 0.56 m 0.71 m –0.15 m
20180902 21:00 Saral 2.81 m 2.92 m –0.11 m
20180915 21:00 Saral 3.66 m 3.80 m –0.14 m

7. Discussion

This paper describes a method for measuring ocean waves using satellite GPS signals, which
is different from the traditional method of measuring ocean waves using acceleration. At the same
time, this paper also streamlines the algorithmic flow of GPS measurement wave and proposes two
improvement measures. A nonlinear autoregressive neural network is introduced to correct unusual
movement velocity data. A Gaussian low-pass filter is introduced to smooth the directional wave
spectrum. It can be seen that the wave measurement algorithm and the two improvement measures
proposed in this paper are feasible from the field test results of the SBF7-1A GPS wave buoy and
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the DWR-MKIII Waverider buoy. The correlation coefficients are greater than 0.97, 0.98, and 0.89
in significant wave height, mean wave period, and wave direction, respectively. The differences
are mostly within 10 cm, 0.5 s, and 10 degrees in significant wave height, mean wave period, and
wave direction, respectively. The wave energy density distributions are also very consistent in energy
amplitude, frequency space, and direction space.

However, it is necessary to further improve the preprocessing method in the raw movement
velocity data sequences of the GPS wave buoy, because the GPS antenna is often covered by sea water,
which affects receiving satellite GPS signals and solving the movement velocity. As such, unusual
movement velocity data often appear. The smaller the number of continuous unusual velocity data,
the better the correction effect of the neural network. When there are too many continuous unusual
velocity data, the correction effect of the neural network is reduced. Therefore, the next step is to
combine the neural network algorithm model and other methods to further improve the correction
effect in the case of a large number of consecutive unusual movement velocity data.

At the same time, the sea surface is rough, and some GPS signals from multiple satellites and
multiple directions will be reflected by the sea surface to the GPS antenna. The multipath GPS reflection
signals can further increase the error of the measurement velocity. We have tested a brand of GPS
receiver that can output position information in the house. In theory, it should not output position
information because the GPS satellite signals are blocked in the house. Our analysis shows that the
main reason for this phenomenon is that the GPS receiver receives the GPS signals reflected from the
glass inside the house. We have proved through sea trials that the brand GPS receiver has a very large
error in measuring waves. Finally, we chose another brand of GPS receiver that can greatly eliminate
the effects of multipath GPS reflection signals and improve the accuracy of measuring waves.

Next, in order to further eliminate the effects of multipath GPS reflection signals, we intend to take
the following measures. First, the GPS wave buoy selects a brand of GPS antenna that is resistant to
multipath effects. Second, a blocking plate is placed around the GPS antenna to block some low-angle
multipath signals. Finally, the original satellite signals data are filtered to further eliminate multipath
effects [25–27].

8. Conclusions

Through the sea trials of the SBF7-1A GPS wave buoy and the DWR-MKIII Waverider buoy, it can
be seen that the two devices are in good consistency in terms of wave height, wave period, wave
direction, wave frequency spectrum, and directional wave spectrum even under severe sea states.
The discrepancies are within a reasonable range. The maximum difference of the significant wave
height is less than 0.2 m plus 10% of the true wave height value. The maximum discrepancy of the
mean wave period is less than 1 s. The maximum discrepancy of the wave direction is also less than
30 degrees. This paper shows the measurement accuracy and reliability of the SBF7-1A GPS wave
buoy under severe sea states. Therefore, the feasibility of wave measurement with satellite GPS signals
has been verified. At the same time, it further shows that the SBF7-1A GPS wave buoy developed by
the National Ocean Technology Center, China has reached the advanced technological level of similar
products in the world.

At present, the Chinese Beidou satellite system is under construction. Moreover, it has started to
provide navigation and positioning services, and its measurement accuracy is gradually increasing.
Therefore, future research work should simultaneously use satellite GNSS signals from the Beidou,
GPS, Glonass, and Galileo systems to further improve the accuracy, reliability, safety, and redundancy
of wave measurements.
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