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Abstract: This paper proposes a Track-before-Detect framework for a multibody motion segmentation
(named TbD-SfM). Our contribution relies on a tightly coupled tracking before detection strategy
intended to reduce the complexity of existing Multibody Structure from Motion approaches.
Efforts were done towards an algorithm variant closer and aimed to a further embedded
implementation for dynamic scene analysis while enhancing processing time performances.
This generic motion segmentation approach can be transposed to several transportation sensor
systems since no constraints are considered on segmented motions (6-DOF model). The tracking
scheme is analyzed and its performance is evaluated under thorough experimental conditions
including full-scale driving scenarios from known and available datasets. Results on challenging
scenarios including the presence of multiple and simultaneous moving objects observed from
a moving camera are reported and discussed.

Keywords: motion segmentation; monocular camera; structure from motion; embedded systems

1. Introduction

The increasing introduction of Autonomous Vehicles (AV) and Advanced Driver Assistance
Systems (ADAS) into the marketplace is essential in the design of Intelligent Transportation Systems
(ITS). Recently, these areas have shown an active development towards unmanned transportation
solutions (Car autonomy SAE Level 4). In this context, perception is a critical task since it
provides meaningful, complete and reliable information about the vehicle surroundings [1,2].
Several studies have demonstrated that vision perception is an essential sensing method for
scene analysis [3–5]. Vision-based techniques such as Visual Simultaneous Localization And
Mapping (VSLAM) are well-suited for inferring ego-localization by reconstructing simultaneously
the environment structure [6]. Another well-known technique considered for monocular vision
applications is Structure-from-Motion (S f M). This method estimates the camera pose from the image
motion and the 3D structure of the scene, up to a scale factor. In this paper a Track-before-Detect
framework coupled to a multibody S f M (TbD-SfM) methodology is deployed to detect and to
segment multiple motions in dynamic scenes. In the first stage, our algorithm is initialized using the
motion segmentation approach described in [7]. The initialization procedure provides a rough feature
segmentation of static feature points (ego-motion) and dynamic feature points (euro-motions). Further,
the euro-motions are tracked by the use of a bank of Bayesian filters so as to observe and predict the
image position of these objects in next frames. Then, the feature points inside of the tracked areas are
refined to precisely estimate the euro-motions. The remaining feature points are used to compute the
ego-motion. A robust formulation based on RANSAC is proposed for finding the motion hypotheses
in each tracked area. Finally, the motions are computed using S f M formulation [8].
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1.1. Related Works

Image motion segmentation has been widely studied using different approaches as it is surveyed
in [9]. Tomasi and Kanade [10] presented a well-known factorization approach that became very
popular due to its simplicity for recovering scene geometry and camera motion. Later in [8],
a factorization framework of multibody S f M was proposed. This approach considers a static camera
that observes a scene with moving objects. A common drawback of all these approaches is their
sensibility to noise conditions.

Vidal et al. [11] proposed the use of an algebraic and geometric method for estimating 3D motion
and segmenting multiple rigid-body motions from two perspective views. The method relies on
multibody epipolar constraint and its corresponding multibody fundamental matrix. The complexity of
such an approach is unbounded since the amount of required image pairs grows quartically in presence
of more than two simultaneous motions. Goh and Vidal [12] proposed the Locally Linear Manifold
Clustering (LLMC). It consists on a nonlinear dimensionality reduction which finds different clusters
where feature points are segmented. This unsupervised method does not require any prior knowledge
but the clusters results are not consistent. Alternatively, Vidal and Hartley [13] addressed the multiple
rigid-body motion segmentation using a three view geometry model. In detail, a multibody trifocal
tensor encodes the parameters of all rigid motions and transfers epipolar points and lines between
pairs of views. This information is used to obtain an initial clustering. Trifocal tensors and motion
segmentation are then refined.

Li et al. [14] proposed an extension of the iterative Sturm/Triggs (ST) algorithm to alternate
between the depth estimation and the trajectories segmentation. Then, a Generalized Principal
Component Analysis (GPCA) or a Local Sub-space Affinity (LSA) is performed for data clustering in
multiple linear subspace. The method reduces the processing time, however, it does not improve the
motion segmentation error.

Ozden et al. [15] applied the multibody S f M formulation to compute the 3D structure of objects
and the camera motion via geometry decomposition using the five-points algorithm. The approach
uses three non-consecutive frames of the sequence for segmenting (the first, middle and last frame
of the sequence) in order to obtain stable results. Rao et al. [16] suggested a subspace separation
method based on expectation-maximization and spectral clustering named Agglomerative Lossy
Compression (ALC). This non-iterative algorithm applies the principles of data compression and
sparse representation to the motion segmentation. Zapella et al. [17] proposed a solution based on a
bi-linear optimization procedure to refine a initial segmentation following metric constraints and the
sparsity matrix of the 3D shape of moving objects.

Dragon et al. [18] suggested the multi-scale clustering (MSCM). This method is performs
top-down split and merge for segmenting between two consecutive frames. Image segments are then
split until they are consistent and finally merged to neighboring segments until convergence. MSCM
combines frame-to-frame motion segmentation in a time-consistent manner. In [19] was implemented
the Discrete Cosine Transform (DCT) to segment motion. To this end, a non-linear optimization scheme
decomposes the input trajectories into a set of DCT vectors. Then, a spectral clustering technique is
used to separate the foreground trajectories from the background trajectory. Jung et al. [20] studied
a randomized voting (RV) method. The algorithm is based on epipolar constraints and Sampson
distances between feature points and theirs epipolar line. The motions that are correctly estimated get
high scores and invalid motions get low scores. The score is used to separate the motions in clusters.
Li et al. [21] presented a subspace clustering approach called Mixture of Gaussian Regression (MoG
Regression), which employs the MoG model to characterize noise with a complex distribution. Then,
it is applied a clustering method based on the spectral clustering theory. Tourani et al. [22] carried out
the hypothesis generation using the RANSAC procedure. An over-segmentation is implemented by
a long-term gestalt-inspired motion similarity constraints, into a multi-label Markov Random Field
(MRF). Segmented Motions are merged in clusters based on a new motion coherence constraint named
in-frame shear. Sako et al. [23] proposed to segment motions by hierarchically separating trajectories
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into 2D and 3D affine spaces. The affine space is determined by the rank value of the trajectory matrix
and computed by using the Minimum Description Length (MDL). Then, the average likelihood of
the identified trajectories is computed and those associated to large likelihood are segmented again.
Zhu et al. [24] suggested a general multilayer framework to detect dynamic objects based on motion,
appearance and probability. The motion is estimated with Gaussian Belief Propagation and employed
for propagating the appearance models and the prior probability. Kernel Density Estimation is applied
to obtain the probability map as output. Recently, [7] introduces an iterative approach for robust
estimations of multiple structures and motions from perspective views. This work was then extended
in [25] by introducing kinematic constrains of ground vehicles in order to reduce the mathematical
complexity of the motion-estimation procedure.

1.2. Contributions

The main contributions of our work are summarized below:

• A novel tracking framework for general 6-DOF simultaneous motion segmentation based on
temporal filtering and RANSAC formulation. This monocular vision sensor approach minimizes
the amount of hypothesis to achieve a good motion segmentation without any prior knowledge
about observed motions.

• A thorough experimental procedure is reported on full-scale dynamic scenarios. Based on the
obtained results, our method improves the motion detection on challenging dynamic scenes
without need of a fine tuning procedure.

• A comparison with other state-of-the-art techniques is provided in terms of segmentation and
reprojection errors as proposed in [18–32]. The outliers ratio is also provided as an indicator of
the number of segmented feature points.

1.3. Paper Outline

This paper is structured as follows: Section 2 is devoted to introduce the theoretical concepts of
single and multiple motion formulation of the S f M factorization approach. Section 3 explains the
methodology fundamentals for multibody motion segmentation using S f M. In Section 4, the proposed
framework is detailed with a particular focus on the strategy for reducing the number of hypotheses
required for the multibody motion segmentation. Finally, Section 5 presents the experimental protocol
and the evaluation of the obtained results under full scale dynamic scenes.

2. Structure from Motion Factorization

2.1. Single Motion Formulation

Let us consider an object as a rigid body and its motion to be represented and sampled by image
feature points. From the viewpoint of a moving camera, the feature points observed on a scene can lie
on static and dynamic objects. Under these assumptions, the factorization approach in [10] considers
a group of 2D feature points to be tracked and matched over f consecutive frames in a sequence of
images. The cardinality of this set of points is denoted p. Based on these observations two problems
are addressed: (i) recovering the unknown 3D scene structure up to a scale factor and (ii) estimating
ego-camera motion.

A static scenario observed from a moving camera constitutes the simplest use-case. Let us consider
W ∈ R3 f×p as the measurement matrix composed of the image coordinates of the feature points along
the sequence. Each column vector of this matrix represents the feature point position by frame as
wp =

[
w1p, w2p, ..., wfp

]T with wfp ∈ R3 f×1. The camera motion between frames is modeled by
a rigid transformation, M = [R|t], where M ∈ R3 f×4, R ∈ R3×3 and t ∈ R3×1 stands for rotation and
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translation respectively. Finally, S ∈ R4×p is the structure composed of 3D homogeneous coordinates
of the feature points sp = [sx, sy, sz, 1]T as stated in Equation (1):

W =


w11 w12 · · · w1p
w21 w22 · · · w2p

...
...

...
...

w f 1 w f 2 · · · w f p

 , M =


M1

M2
...

M f


S =

[
s1 s2 · · · sp

]
(1)

Thus, the single motion general formulation of S f M is as follows:

W3 f×p = M3 f×4 · S4×p (2)

The bilinear elements M and S are computed by factorizing W. The solution to the Equation (2),
namely W̃, stands for the best rank-4 approximation to the matrix W given by the rank-4 estimates of
motion (M̃) and structure (S̃) as:

W̃3 f×p ≈ M̃3 f×4S̃4×p (3)

2.2. Multiple Motions Formulation

In a scene composed of multiple motions [8], multibody motion segmentation facilitates the
computation of the camera motion and the structure of all the rigid bodies in the scene using the
general formulation (see Equation (2)). The multibody trajectory matrix W is consisted of the trajectory
matrix of the n independent motions, each of them are represented by Wn ∈ R3 f×p. The multibody
camera motion M ∈ R3 f×4n is computed with respect to each n independent body motion and denoted
as Mn ∈ R3 f×4. Finally, multibody 3D structure, S ∈ R4n×p, is built in a sparse shape enclosing the
structure of each body, Sn ∈ R4×p, in a diagonal matrix. The general multibody S f M formulation is:

[W1|...|Wn] = [M1|...|Mn] ·

 S1 0 0
...

. . .
...

0 0 Sn

 (4)

Equation (4) is solved by factorizing each motion individually.

3. Scene Motion Segmentation Methodology

The S f M procedure stated in [7] is considered in this study to detect motion and to recover
trajectories from multiple views. Let us refer to this method as baseline method. This methodology is
applied to scenes composed of static and dynamic objects. Hereafter, we consider monocular image
sequences captured on board a moving vehicle. Images are analyzed and processed through a temporal
sliding window and feature points are extracted.

The detection process starts by randomly sampling a feature points set of two consecutive frames
from the trajectory matrix. These points are employed to recover the relative motion between the
frames (M) and the structure (S). This stage is carried out on the same set of feature points along
a temporal sliding window of size Γ, so as to retrieve a trajectory which minimizes the reprojection
error.

A new motion hypothesis, (Whyp
n ), is instantiated from any set of features achieving a reprojection

error less than a threshold. A motion hypothesis is defined as a possible trajectory matrix that satisfies
the reprojection error criterion and represents the nth motion of the observed scene. Since the number
of observed motions is unknown, new trajectories are built until all feature points are assigned. At the
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end of this procedure, the scene segmentation is then composed of n motions. As a result, the best
scene segmentation in terms of reprojection errors is selected.

In the remaining of this section, it is detailed how to determine the number of sampling trials
that are required to instantiate a new motion hypothesis. Next, the hypotheses evaluation method is
introduced and the association criterion of a feature point to a motion hypothesis is detailed.

3.1. Recover Motion and Structure

The trajectory matrix W is normalized using the 8-point algorithm and represented by W. A set of
k points in two consecutive frames are sampled from the matrix W and defined by wf = [p1, p2, ..., pk]

T

and its consecutive frame wf
′ = [p

′
1, p

′
2, ..., p

′
k]

T . A feature point pi is selected randomly [33] and p′i
features are associated following a nearest neighbor criterion with a probability distribution modeled
by Equation (5). The values of ζ and ρ are selected heuristically in function of the probability scale.

P(pi|p′i) =


1
ζ

exp− ‖pi − p′i‖2

ρ2 i f pi 6= p′i

0 i f pi = p′i

(5)

The vectors are used to enforce epipolar constraints over the matrix E as it is written in Equation (6).
E is computed in a least square form, Ax = 0, where A are the coefficients of wf and wf

′, and x the
essential matrix E.

wf
′T · E ·wf = 0 (6)

The motion is defined as M̃ = [R|t] where the rotation and translation are recovered by means of
a singular-value decomposition (SVD) of the essential matrix E as:

UDVT = SVD (E) (7)

The possible four solutions
[
UQVT ±U3c

]
and

[
UQTVT ±U3c

]
are evaluated in order to select

the only valid combination. Finally, the structure S̃k ∈ R4×k is estimated with a SVD of the camera
projection matrix of two consecutive images.

3.2. Generation of Motion Hypotheses

A motion hypothesis is estimated from the motion M̃ and the Structure S̃k recovered using the
vectors wf and wf

′, (see Section 3.1), in each consecutive pair of frames along the sliding window.

The matrix W̃k is determined by the Equation (2) for each sampling trial. The reprojection error is
evaluated for each pair of frames and accumulated in the sliding window. A hypothesis is accepted if
the reprojection error on the sliding window is less than a threshold εhyp, such as:

∑Γ
f=1

∥∥∥Wk −
(

M̃ · S̃k

)∥∥∥ ≤ εhyp (8)

If the hypothesis is validated, the trajectory matrix, the motion and the structure are kept in W̃h
k ,

M̃h and S̃h
k , respectively. If the hypothesis is discarded, a new set of k feature points are sampled until

the number of sampling trials, ψ, is reached.

3.2.1. Association Criterion of a Feature Point and a Motion Hypothesis

Given the motion M̃h and the feature points matrix W, the structure (S̃h) is calculated using
linear triangulation method [34]. The motion M̃h is applied to the structure S̃h in Equation (2) to

obtain W̃ . The reprojection error is computed for each point in the sliding window as in Equation (9).
Feature points achieving a reprojection error less than a threshold εpto are kept in the group Wn
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and removed from W. The threshold εpto is defined as the maximum reprojection error allowed by
feature point. ∥∥∥W − W̃

∥∥∥ ≤ εpto (9)

Finally, the structure Sn is updated using the feature points satisfying the reprojection error criterion
(Wn) and the motion M̃h. Motion hypotheses are created from the remaining points (W −Wn) until
all the trajectory points in W are assigned or rejected as outliers.

3.3. Sampling Trials for Motion Segmentation

The motion segmentation addressed in this paper is a probabilistic procedure. This procedure is
carried out iteratively on the set of features until all observed motions are detected. It is necessary then
to determine the number of sampling trials (ψ) required to achieve good results with a probability
pr. ψ is estimated relying on the RANSAC formulation, where ε stands for the probability that any
selected data point is an outlier, such as:

ψ =
log (1− pr)

log
(

1− (1− ε)k
) (10)

It is worth to mention that this formulation leads to detect at first the dominant motion of the
scene. This motion corresponds to that of the camera (i.e., ego-motion). In the subsequent iterations,
motions from features lying on dynamic objects are detected.

3.4. Evaluation of a Motion Hypothesis

After ψ trials, multiple solutions for an observed motion can satisfy the condition stated in
Equation (9). The solution with the smallest Euclidean distance between the trajectory matrix W and the
hypotheses estimations (W̃n) is selected as the best motion hypothesis. For the first motion (n = 1), this
is considered as the dominant motion since it retrieves the higher consensus of the features point set.

The outline of the motion segmentation process is summarized in the Algorithm 1.

Algorithm 1 Motion Segmentation Algorithm

1: procedure SEGMENTATION(W)
2: k = 8 . minimum number of points
3: ψ . number of hypotheses
4: n=0 . counter of motions
5: while hyp ≤ ψ do
6: hyp = 0 . hypotheses counter
7: while number of feature points in (W) > k do
8: while reprojection error > εhyp do
9: W =Normalize(W)

10: Sample k points from W
11: Compute M̃ and S̃k, Section 3.1
12: Compute W̃k with M̃ and S̃k
13: Compute reprojection Error for the hyp
14: end while
15: n = n + 1
16: M̃h = M̃, S̃h

k = S̃k
17: Apply M̃h over the remaining feature points
18: Compute W̃ with M̃h and S̃h

19: Compute reprojection Error point
20: if reprojection Error point wp ≤ εpto then
21: Add the points to Wn
22: Remove the points from W
23: end if
24: end while
25: hyp = hyp + 1
26: end while
27: return Wn, Mn, Sn . Trajectory matrix segmented, Motion and Structure
28: end procedure
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4. Track-Before-Detect Framework

The multibody SfM based approach introduced by Sabzevari et al. [7] has proved to be suitable for
achieving scene motion segmentation following a closed-form formalism. However, the computational
complexity of this strategy is vast and it increases with the number of observed motions. To alleviate
this limitation, the authors recently proposed in [25] a speeded up variant of the procedure taking
advantage of motion model priors in context of a ground vehicle application. With lost of generality,
the reformulated problem was limited to 2-DOF instead 6-DOF reducing drastically the complexity.

A Track-before-Detect-SfM(TbD-SfM) framework is proposed for improving scene motion
segmentation by simultaneously detecting and tracking multiple dynamic image regions. This method
is intended to efficiently limit the computational complexity without motion prior constraints on the
scene dynamics. As a result, this method improves the inference of the observed motions number,
deals with more complex scenarios including partial occlusions and preserves a high feature point
density on tracked dynamic regions.

A drastic decrease on the sampling and the evaluation of scene motion hypotheses is achieved
since dynamic regions are tracked and efficiently exploited to limit the solution exploration space.

The TbD-SfM framework needs to be initialized with a set of rough motion segments. To this
end, factorization-based scene motion segmentation presented in Section 3 is employed. Alternatively,
multiple-view motion detection can also be performed [35]. Based on the rough scene segmentation
a multi-target tracking (MTT) is started to manage dynamic regions. Such regions enclose sets of feature
points randomly sampled so as to retrieve motion and structure. Along the processing sliding window,
tracked regions are propagated until reaching dynamic scene motion segmentation convergence.

Figure 1 illustrates the outline of the proposed approach, referred as TbD-SfM. In the following
the sequential process is detailed.

Monocular
video sequence

Predict dynamic
image regions

Detect dominant motion
(Ego-motion)

SfM factorization
on tracked image regions

Update trackingMulti-body SfM motion
segmentation

Outliers 
features

Dynamic scene
motion segmentation

Feature extraction &
Feature tracking

Track-before-Detect framework - TbD-SfM

Figure 1. Motion segmentation with tracking objects.

4.1. Representation of Dynamic Regions

A dynamic region is represented by a horizontally oriented box with centroid coordinates (u, v),
width, w, and height, h in pixels. In this context, dynamic regions enclose objects entities and associate
theirs feature points along the sliding window. It is worth noting that ego-motion features cannot
be correctly enclosed by a unique dynamic region. For this reason, this set of features is put aside
from the tracking scheme. Only the remaining dynamic regions are then considered as potential
dynamic objects.

4.2. Initialization

The TbD-SfM is initialized with rough motion segments (see Section 3 or alternatively [35]. In this
stage, feature points are assigned to the inputted dynamic regions. Ego-motion is inferred as the
dynamic region is composed of the larger set of feature points (dominant motion assumption). At this
stage, a first estimation of their size and location is carried out on the set of dynamic regions.
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4.3. Scene Analysis

Scene analysis starts by identifying features belonging to the dominant motion set, denoted as W1.
To this end, feature points enclosed in the dynamic regions (W2p,...,np) are removed from the trajectory
matrix. The remaining features follow the dominant trajectory matrix:

W1p = Ŵ −
[
W2p|W3p|...|Wnp

]
(11)

where, Wnp represents the trajectory matrix of the nth motion. It is important to note that the set of
features W1p can include missed classified features. A robust RANSAC-based motion estimation is
carried out on the set W1p following the steps described in Section 3.2. The estimation of the dominant
motion must fulfill a consensus set of features composed of at least m features. The consensus value, m,
is determined by the minimum number of feature points (k) required to instantiate a motion estimate.
That corresponds to the number of columns in Wnp as follows:

m = col(Wnp)− k (12)

The solution with the largest consensus among the set of features is selected. If there are multiple
motion solutions with the same consensus, the one with the smallest mean reprojection error is
maintained. In presence of multiple observed motions included in the set of features W1p, the motion
estimates might not achieve the minimum required consensus. This situation occurs when the number
of outliers is greater than k feature points or when there is at least one new moving object in the scene.
Motion factorization is applied to the set of unsegmented features in order to find new moving objects
or to discard such features as outliers. The results of this stage are W1, the structure S̃1 and motion M̃1

of the dominant motion, and the Wn, its structure S̃n and motion M̃n of the new objects that entered in
the scene.

4.4. Motion Factorization on Dynamic Regions

The motions are factorized relying on the segmented feature points inside of each dynamic region[
W2p|W3p|...|Wnp

]
. In each matrix it is assumed the presence of feature points following the nth moving

object and outliers. Features classified as outliers by the motion factorization, are associated to other
dynamic regions or finally discarded following their reprojection error. At this stage, feature points are
classified in the trajectory matrix [W2|W3|...|Wn] and theirs structures and motions are recovered.

4.5. Number of Hypotheses

The number of motion hypothesis during RANSAC can be fixed assuming a known proportion of
outliers on the dynamic region that should not be exceeded. The outlier proportion can be adaptive as
presented in [34]. The number of motion hypotheses are computed with a probability of pr = 99% and
k = 8, as stated in the Equation (10).

4.6. Filtering

A bank of Kalman filters (KF) is implemented to manage and to infer the most probable states
of the dynamic regions. Assuming that the observed moving objects in the sequence are subject to
physical dynamics, these are expected to perform smooth changes in the image sequence. The state
of a dynamic region in the image plane is tracked by a 8D vector. The track state is denoted by x f
(see Equation (13)) consisting of the image centroid coordinates, (xc, yc), in pixel, the width, w and
height, h :

x f | f =
[
xc, yc, w, h, vx, vy, δw, δh

]T (13)
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The state vector of the image region attributes also includes their first derivatives respectively
(vx, vy, δw, δh). Since an inter-frame linear and uniform motion is assumed, a linear Gaussian model is
well suited for tracking purpose as is stated in Equation (14):{

x f = A · x f−1 + ff f α f ∼ N(α f ; 0, Λ f )

y f = C · x f + fi f β f ∼ N(β f ; 0, Γ f )
(14)

where A and C represent the transition and the observation models, respectively. x f−1 stands for the
state vector in a previous sample frame and y f the multivariate observations. ff f and fi f are the state
and observation noise following a zero-centered normal distribution with known variances.

4.6.1. Track-to-Motion Association

Tracked regions states are predicted by means of its associated Kalman filter. State predictions
enclose the set of points employed for motion factorization as illustrated in Figure 1. The features
following the factorized motion update the tracked region if it satisfies a geometric distance criterion.
The criterion correlates the tracked dynamic region and the region enclosing the detected factorized
motion regarding their appearance and uncertainty-weighted state given by the inverse of the mean
point reprojection error.

4.6.2. Track Creation and Deletion

A dynamic region has to be detected in at least 60% of frames of the sliding window size so as
provide enough evidence to initialize a filter to track it. The non-updated tracks are destroyed if theirs
predictions are not reliable enough to be associated to new detected motions (i.e., 60% detection rate).
A new moving object is detected using the points classified as outliers. The factorization method is
applied over these feature points in order to find a new group that satisfies the reprojection error
criterion εhyp, see Section 3.

Hereafter, the outline of Tdb-Sfm is presented in Algorithm 2:

Algorithm 2 Proposed Algorithm Framework

1: procedure FRAMEWORK(W)
2: for f rame = 1 to last f rame do
3: if f rame == 1 then
4: Motion Segmentation with baseline method Algorithm 1
5: Get the dynamic objects positions
6: else
7: if f rame =≤ F then
8: Remove from W feature points belonging to dynamic objects
9: Find the Ego-motion feature points

10: Find the dynamic feature points
11: Search new motions in the outliers feature points
12: Feed the KF with the position of the dynamic objects
13: else
14: Predict positions and sizes of the objects
15: Remove the points in the motion objects areas
16: Find the Ego-motion feature points
17: Find the dynamic feature points
18: Search new motions in the outliers feature points
19: Update the position of the dynamic objects
20: Feed the KF with the position of the dynamic objects
21: end if
22: end if
23: end if
24: end if
25: end for
26: end for
27: return Wn, Mn, Sn . Trajectory matrix segmented, Motion and Structure
28: end procedure
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5. Results

The baseline algorithm (Section 3) and TbD-SfM algorithm (Section 4) are evaluated in different
urban scenarios using the Hopkins 155 (http://www.vision.jhu.edu/data/hopkins155/) and KITTI
(http://www.cvlibs.net/datasets/kitti/) datasets. The Hopkins 155 dataset provides a sequence
of images with small inter-frame motions. The images were recorded with a hand-held camera.
The dataset provides the optical flow without tracking errors in the differences sequences. The 2D
feature points are tracked along of sequences composed of 640 × 480 images acquired with a rate of
15 frames per second. KITTI dataset [36] has scenarios with greater dynamic complexity in comparison
with Hopkins dataset. KITTI has 1392 × 512 images sampled in uncontrolled illumination conditions
from a camera embedded on a moving car. The speed of the camera can reach 60 Km/h in some
scenes. The dataset does not furnish the feature points in the scenes. This allows the possibility of
tracking errors in the optical flow. Feature points are acquired by means of the Libviso2 extractor [37].
The scenes are processed in a temporal sliding window of 5-frames of size (Γ). The results obtained
per sliding window are processed and the mean value is reported as a frame result. At least, 8 feature
points are required for motion detection. The initialization of the TbD-SfM method is done with the
baseline algorithm and the result is reported in the first frame. The values of ζ and ρ are selected
heuristically and were set to ζ = 1, ρ = 0.07 in the experiments. Threshold values εhyp = εk · k · Γ and
εpto = εp · Γ are selected based on the performance of the method estimated with the confusion matrix,
Table 1. The evaluation of the methods are done following: the reprojection error, the segmentation
error and the outliers ratio.

Table 1. Confusion Matrix.

Actual Classification

Predictive classification
Yes No

Yes True Positives (TP) False Positives (FP)
No False Negatives (FN) True Negatives (TN)

The reprojection error stands for the average difference between trajectory matrix, W, and its
corresponding estimate, W̃ as follows:

Rep. Error = ∑ (W − W̃)

Total # o f points
(15)

The segmentation error is defined in [11] as the misclassification of a point between the objects
observed in the scene. It is computed with the Equation (17) as:

Seg. Error = 100
# o f misclassi f ied points

Total # o f points
(16)

Outliers are defined as points that do not meet the reprojection error criterion established by the
threshold εp included on the RANSAC scheme. The outliers ratio is then computed as:

Outliers Ratio = 100
# o f unclassi f ied points

Total # o f points
(17)

5.1. Experimental Evaluation of Baseline Method

The baseline algorithm was tested on the KITTI scenes road-2011_10_03_drive_0042 (Scene 1) and
residential-2011_09_30_drive_0034 (Scene 2), the results were compared with [7]. Scene 1 involves
two cars at high speed (around 55 km/h), the moving camera and a car passing from back to the front.
5 frames were processed, each one composed of 218 feature points. The Figure 2a illustrates the feature
points trajectories of the dominant motion in red and the moving object in green. The Figure 2b

http://www.vision.jhu.edu/data/hopkins155/
http://www.cvlibs.net/datasets/kitti/
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exhibits an example of over-segmented motion obtained with εk = 0.25 pixels and εp = 3 pixels.
Table 2 exhibits precision and recall results. For these tests 200 scene motion segmentation hypotheses
were generated with the values of εk = 0.3 pixels and εp = 4 pixels. In the obtained results the moving
object was correctly segmented, however, the dominant motion was divided into two motions. It is
worth noting that even if there is no classification errors on moving objects, the set of dominant motion
features might be, in some cases, over-segmented.

Table 2. Precision(P) vs. Recall(R) of Baseline method for Scene 1.

εk −→ 0.3 0.4 0.5
εp ↓ P R P R P R

1 0.83 1 1 1 1 0.46
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 0.94 1 1 1 1 1

Figure 2. Results of Scene 1: (a) Motion trajectories; (b) Oversegmentation example.

Figure 3 displays the highest reprojection error of the baseline method in Scene 1 for the dominant
motion and moving object with values of 2.8 pixels and 1.8 pixels, respectively.

Figure 3. Mean reprojection error by frame for Scene 1.

In Scene 2, it is observed a vehicle moving in reverse direction and turning. The parameter values
employed in this sequence were εk = 0.25 pixels and εp = 3 pixels. In Figure 4, three motions groups
were detected: the dominant motion, the moving object and a group of 11 feature points. The observed
over-segmentation can be coped with a fine tuning of the εp threshold.



Sensors 2019, 19, 560 12 of 25

Figure 4. Results of Scene 2: (a) Trajectories of the vehicle; (b) Reprojection error.

Table 3 summarizes the results obtained for Scene 1 and 2 and includes the performances reported
in the state of the art [7]. In Scene 1, the baseline method achieves a motion segmentation error of 0%
with a mean and median reprojection error lower than the ones reported on [7]. However, in the Scene
2 the segmentation error was greater with 3.3% and the mean and median reprojection error were
lower than the ones of [7]. These results let us assume that our implementation is reliable enough for
a fair comparison.

Table 3. Reprojection and segmentation errors obtained for Scene 1 and Scene 2.

Sequence Number of
Frames

Number
of Points

Mean
Reprojection
Error (pixels)

Median
Reprojection
Error (pixels)

Segmentation
Error (%)

Reported in [7] Scene 1 5 193 1.63 1.43 0
Baseline Scene 1 5 218 1.54 1.18 0

Reported in [7] Scene 2 5 573 2.14 1.67 1.57
Baseline Scene 2 5 477 1.8 1.28 3.35

5.2. Experimental Evaluation of TbD-SfM

The baseline and TbD-SfM methods were tested and compared. Hereafter, a first set of experiments
using Hopkins 155 traffic dataset is reported. It is recalled that TbD-SfM uses the results provided
by the baseline method in the first frame as an initial knowledge of the scene (rough segmentation).
TbD-SfM is able to detect and to segment moving objects present in the scene as well as new objects
that may appear or leave.

Figure 5 presents a scene composed of two simultaneous motions called Car2 (named Scene
3). The baseline method was parametrized considering 200 scene motion segmentation hypotheses
by frame along the sequences. Thirty frames were processed using 26 sliding windows, each frame
includes 490 feature points. The best precision and recall values were obtained with εk = 0.5 pixels
and εp = 1 as reported in the Table 4.

Table 4. Precision and Recall values for sequence of Scene 3.

εk −→ 0.25 0.5 0.75 1
εp ↓ P R P R P R P R
0.75 0.88 0.58 0.74 0.63 0.79 0.69 0.94 0.58

1 0.80 0.72 0.94 0.66 0.51 0.68 0.7 0.78
1.5 0.37 0.77 0.4 0.8 0.53 0.7 0.4 0.7
2 0.35 0.78 0.27 0.82 0.34 0.75 0.43 0.67
3 0.17 0.90 0.16 0.85 0.18 0.86 0.18 0.82
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In Figure 5, the segmentation and the reprojection error obtained with the baseline method in the
first frame of the scene are shown. The moving object was segmented correctly, however, the dominant
motion was over-segmented. A third group in blue was created with few feature points. The right
image exposes the reprojection error in the first frame.

Figure 5. Baseline method results for Scene 3: (a) First frame segmentation; (b) Reprojection error.

Figure 6 shows the number of segmented motions reported by the baseline method along the
sequence. Since the scene is only composed of two independent motions, results with more than 2
are over-segmented and less than 2 are under-segmented. The low recall value of 0.66 (see Table 4)
is caused by the incorrect segmentation in the frames 10, 11, 20 and 23. This is probably due to the
fact that the observed vehicle slows down. Decreasing the value of εp may help to segment small
inter-frame motions but can also lead to over-segmented scenes.

Figure 6. Number of motions by frame with baseline method.

Figure 7 plots the mean reprojection error of the motions detected by the baseline method in
Scene 3. In green dot-line, the moving object motion and in red dot-line the dominant motion (ego).
Since the moving object was missed and its feature points were assigned to the dominant motion set
in frames 10, 11, 20 and 23, no reprojection error was computed. The highest reprojection error was
1.9 pixels in frame 21 for the dominant motion and 1.6 pixels in the frame 4 for the moving object
motion. Despite these reprojection errors, motions were segmented correctly.
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Figure 7. Mean reprojection error of detected motions for Scene 3 with baseline method.

The TbD-SfM was parametrized assuming an outlier ratio of 30% and thresholds values εk = 0.5
pixels and εp = 3. Threshold values were selected following precision and recall scores computed for
the first frame of Scene 3 and reported in Table 5. A good feature points classification was obtained
and no over-segmented areas were observed in the frame.

Table 5. Precision and Recall scores for threshold selection in the 1st frame of Scene 3.

εk −→ 0.25 0.5 0.75 1 1.25
εp ↓ P R P R P R P R P R

2 1 0.93 1 0.93 1 0.5 1 0.93 1 0.75
3 1 0.93 1 0.93 1 0.88 1 0.83 1 0.92
4 1 0.77 1 0.89 1 0.93 0.98 0.89 1 0.93

For the complete sequence Scene 3, the two motions were segmented correctly using TbD-SfM.
The highest mean reprojection error was of 1.35 pixels for the dominant motion and 0.8 pixels for the
moving object as shown in Figure 8.

Figure 8. TbD-SfM results for Scene 3: (a) Motions segmented; (b) Mean reprojection error evolution.

The ratio of outliers per frame is illustrated in Figure 9. The highest value corresponds to the first
frame estimation. In the next frames, the ratio of outliers with the TbD-SfM approach was less than 1%.
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Figure 9. Ratio of outliers using TbD-SfM method for Scene 3.

A Monte Carlo experiment was carried out in order to evaluate the repeatability and the stability
of TbD-SfM results. To this end, scene segmentation was performed on 100 repetitions. The highest
reprojection error was limited by the threshold εp = 3. The boxplot illustrates (see Figure 10) that
frames 13, 14, 15, 18, 21 and 22 used the range established in εp. Others frames had the maximum
boxplot value of the mean reprojection error results less than εp threshold.

Figure 10. Mean reprojection error for Scene 3: (a) Dominant motion; (b) Dynamic object.

The highest percentage of outliers observed along Scene 3 is less than 2% as shown Figure 11.
At least 98% of feature points by frame were correctly classified and not rejected as outliers.

Figure 11. Outliers percentage in Monte-Carlo experiment for Scene 3 using TbD-SfM.

Figure 12 shows motion segmentation for the first frame of Hopkins 155 Car 9 sequence called
Scene 4. The scene is composed of three simultaneous independent motions: the dominant motion
(static objects in red) and two moving objects (green and blue). This sequence is a challenging use
case since the observed objects moves at slow speed. Twenty four frames were processed with 220
feature points per frame. The baseline method was set to consider 300 scene motion segmentation
hypotheses by frame. Results of the sequence are quantified in Table 6. Reported results were obtained
with threshold values εk = 0.25 pixels and εp = 2.5 pixels. The Figure 12 illustrates the motion
segmentation result for the first frame.
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Figure 12. First frame segmentation for Scene 4.

Table 6. Precision and Recall scores in Scene 4 using baseline method.

εk −→ 0.125 0.25 0.375 0.5
εp ↓ P R P R P R P R
0.5 0.99 0.56 0.99 0.65 0.95 0.73 0.94 0.8
1 0.99 0.88 0.99 0.83 0.89 0.79 0.99 0.81

1.5 0.98 0.91 0.94 0.87 0.91 0.82 0.93 0.92
2 0.86 0.93 0.99 0.95 1 0.93 0.91 0.87

2.5 1 0.92 1 0.96 1 0.94 1 0.88
3 1 0.82 0.74 0.83 0.8 0.79 0.68 0.88

Despite the fact that precision and recall scores in Table 6 are high, motion segmentation errors are
still present along the sequence. That is the case for frames 4, 12 and from 14 to 20 where the baseline
method over-segments motions and misses one of them in frame 8 (Figure 13). Figure 13b illustrates as
an example the segmentation result of frame 12.

Figure 13. Baseline method results for Scene 4: (a) Number of motions by frame;
(b) Motion segmentation.

Figure 14 illustrates the mean reprojection error evolution in Scene 4, the highest value was
obtained in the 13th frame for the 2nd observed motion with 1.2 pixels. The 8th frame shows that the
1st observed motion was not detected.



Sensors 2019, 19, 560 17 of 25

Figure 14. Mean reprojection error for Scene 4 with baseline method.

The TbD-SfM was tested with the same values εk = 0.25 pixels and εp = 2.5 and a RANSAC
outlier ratio of 30%. The three motions were segmented correctly. Figure 15b shows the mean
reprojection error with a highest error of 1.45 pixels for the dominant motion. The highest reprojection
error in the moving objects were less than 0.55 pixels.

Figure 15. TbD-SfM results for Scene 4: (a) Motions segmented; (b) Mean reprojection error.

The highest percentage of outliers was obtained in frame 15 as illustrated in Figure 16. In
this frame, it was also obtained the highest reprojection error in the dominant motion. In this case,
the selected hypotheses increases the reprojection error in the feature points and some of them
were rejected. A high percentage of outliers are coming from the dominant motion even when the
reprojection error is less than 1.5 pixels. The opposite situation was presented in the frames 2, 3, 4 and
5 where all the feature points were segmented correctly.

Figure 16. Ratio of outliers with TbD-SfM method for Scene 4.

The results of the Monte Carlo experiment with TbD-SfM in Scene 9 are shown in Figure 17.
The highest reprojection error was limited by the threshold εp = 2.5. In a scene composed of three
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observed motions, the frame range from 3 to 8 shows that the maximum boxplot value for the mean
reprojection error is less than 1 pixel. After frame 10, the upper whisker is greater because the moving
objects are getting closer to the camera.

Figure 17. Mean reprojection error results of Monte Carlo test: (a) Dominant motion; (b) Motion 1; (c)
Motion 2.

Figure 18 illustrates the boxplot results of Monte-Carlo experiment in Scene 4. It is noted that
until frame 14 the maximum percentage of outliers obtained was 3.1%. In frame 19, it is shows a
maximum boxplot value of 5.5% and the highest percentage of outliers with 12.2%. Except for this
frame, the maximum boxplot value for the percentage of outliers is less than 4%.

Figure 18. Outliers percentage in Monte-Carlo experiment for Scene 4 using TbD-SfM.

Table 7 summarizes the evaluation results of the Monte Carlo experiments in Scene 3 and Scene
4 using TbD-SfM method. In Scene 3, TbD-SfM achieved a mean reprojeccion error of 1.25 pixel,
a segmentation error of 0.01% and a mean outliers percentage of 0.8%. In Scene 4, it was obtained
a mean reprojeccion error of 0.84 pixel, a segmentation error of 0.19% and a mean outliers percentage
of 3.1%.

Table 7. Results with TbD-SfM method in Monte-Carlo experiment for Scene 3 and Scene 4.

Sequence
Number

of
Frames

Number
of

Points

Mean
Reprojection
Error (pixels)

Median
Reprojection
Error (pixels)

Segmentation
Error (%)

Mean Outliers
Percentage

(%)

Car2 26 490 1.25 0.94 0.015 0.8
Car9 20 220 0.84 0.58 0.19 3.1

Scene 1 (Figure 2) from KITTI dataset was processed with the baseline algorithm and TbD-SfM.
A sequence of 20 frames with an average of 185 feature points by frame was processed. The baseline
method was used to create 200 scene motion segmentation hypotheses by frame with the values
εk = 0.875 and εp = 3. The Figure 19 illustrates the mean error reprojection error for the two segmented
motions, the highest value was 3.6 pixels for the moving object in the first frame.
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Figure 19. Mean reprojection error in Scene 1 with baseline method.

TbD-SfM was set to assume an outliers ratio of 35%. The highest mean reprojection error was
in the 4th frame of the dominant motion with 4 pixels as shown in Figure 20b. One can notice that
reprojection errors in KITTI dataset are higher than the ones achieved on Hopkins. Since Hopkins
provides error-free feature tracking, reprojeccion errors are greatly improved. KITTI experiments
shows the robustness of the proposed method to feature tracking errors and their impact in terms of
the reprojeccion error.

Figure 20. TbD-SfM results for Scene 1: (a) Motion segmentation; (b) Mean reprojection error.

The segmentation results along the sequence are presented in Figure 20a. The feature points
located in the side-view mirror of the vehicle were not segmented correctly. Since these points are
observed in some frames outside of the predicted area, they were segmented in another group or
classified as outliers. It was obtained a segmentation error of 1.4% along the sequence. The results are
detailed in the Table 8.

Table 8. Results reported for the KITTI datasets.

Sequence Method
Number

of
Motions

Number
of

Frames

Number
of

Points

Mean
Reprojection

Error
(pixels)

Median
Reprojection

Error
(pixels)

Segmentation
Error (%)

Mean
Outliers

Percentage
(%)

Scene 1 Baseline 2 18 185 1.98 2.04 2.16 7.2
Scene 1 TbD-SfM 2 26 185 1.53 1.7 1.45 5.71
Scene 5 TbD-SfM 4 4 1450 1.22 1.15 0.24 3.22
Scene 6 TbD-SfM 2 and 3 6 670 1.37 1.24 1.5 1.5
Scene 7 TbD-SfM 3 and 4 130 1410 5.32 5.76 1.45 13.3

TbD-SfM efficiently addresses the scalability problem presented in the baseline method when
the number of simultaneous motions increases. In the Scene 5, the scalability of TbD-SfM was tested
in a scenario with 4 simultaneous motions as shown in Figure 21. There are two moving objects
approaching to camera with different speeds and a third one moving along the moving camera.
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8 frames were processed with 4 sliding windows, an average of 1450 feature points are observed by
frame. The first frame segmentation was obtained with the baseline method considering 400 scene
motion segmentation hypotheses with the parameters of εk = 0.25 pixels and εp = 3. In the first frame,
some segmentation errors were observed: some feature points of the moving object 1 (green) were
assigned to the moving object 2 (blue). However, the TbD-SfM procedure allowed to correct these
errors and enhanced the segmentation as shown the frame 4. The outliers feature points are shown in
cyan color.

Figure 21. TbD-SfM results for Scene 5: (a) 1th frame segmentation; (b) 4th frame segmentation.

In Scene 6, TbD-SfM was implemented in a sequence under particular characteristics. The moving
camera is turning right, objects enter or leave the scene and some of them are partially occluded.
This scene allows to test the detection and segmentation of new moving objects. It were processed
6 frames with an average of 670 feature points per frame. The moving objects are represented by the
green and blue feature points. The parameter values employed in this sequence were εk = 0.75 pixels,
εp = 3.5 and it was assumed an outliers ratio of 45%. Figure 22 illustrates the results obtained by
frame with TbD-SfM approach. In the first frame, it was detected 3 simultaneous motions. The green
moving object has a partial occlusion by the ego-motion feature points located over the traffic light
post. In the third frame, a small group of feature points was segmented as other moving object over
the traffic light post, however, this group is not detected in the next frames. The outliers feature points
are represented in cyan, this points over the gray car were not associated because they do not meet
the reprojection error criterion (εhyp). Some feature points of a new object(white car) were segmented
with the dominant motion. In the 5th frame, the white car was detected as new moving object for first
time and some segmentation errors. In the 6th frame the new moving object is detected with a better
segmentation. The results evaluated are reported in the Table 8.

Figure 22. TbD-SfM results for Scene 6: (a) Frame 1; (b) Frame 3; (c) Frame 5; (d) Frame 6.

It is worth to mention that performances and execution time of the TbD-SfM were also evaluated
on a long sequence context. In the Scene 7, 130 frames were processed involving a moving ego-camera,
two cars passing from back to the front and a third car approaching. As an example, the Figure 23a
shows the 6th frame where the first moving object was segmented. A second car was then detected and
segmented as shown the Figure 23b. Figure 23c presents the second car marked in blue is occluding the



Sensors 2019, 19, 560 21 of 25

first detected moving object. At the left side, a van approaching to the ego-camera that was segmented
and marked in yellow. Finally, the Figure 23d illustrates 120th frame where the object was segmented
while it moves away. Performance results are reported in the Table 8.

Figure 23. TbD-SfM results for Scene 7. The motions segmented are indicated by colors and markers.
Red points represent the ego-motion. The 1st, 2nd and 3rd motion are represented by the green plus
signs, blue asterisk and yellow cross respectively.

The Figure 24 details the execution time per frame along the sequence in Scene 7. The results show
that before the 50th frame, run time is higher due to a greater amount of dynamic feature points. After,
run time decreases. It is worth noting that the detection of new motions requires more processing time
due to feature resampling task. That can be observed by run time peaks in frames 14, 22, 34, 44, 57, 74.
This processing time can be greatly enhanced by parallelizing or pipelining feature resampling and
motion tracking threads.

Figure 24. Execution time along the sequence for Scene 7.

TbD-SfM was tested in car sequences of Hopkins dataset for allowing comparison with
other methods. The dataset has 8 scenes with two simultaneous motions and 3 scenes with
three simultaneous motions. The algorithm was run once by sequence and the results reported
in the Table 9. The highest mean reprojection error was of 1.25 pixels for Car2 sequence and the highest
segmentation error and outliers percentage were 0.2% and 6.1%, respectively, for the Truck2 sequence.
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Table 9. TbD-SfM results for Hopkins dataset car sequences.

Sequence
Number

of
Motions

Number
of

Frames

Number
of Points

Per
Frame

Mean
Reprojection

Error
(pixels)

Median
Reprojection

Error
(pixels)

Segmentation
Error (%)

Mean
Outliers

Percentage
(%)

Car1 2 16 307 1.10 0.96 0 1.09
Car2 2 26 490 1.25 0.93 0 0.73
Car3 3 13 548 0.97 0.79 0.07 3.85
Car4 2 50 147 0.78 0.52 0 2.3
Car5 3 30 391 0.47 0.29 0 0.1
Car6 2 27 464 0.44 0.35 0.03 0.1
Car7 2 21 502 0.88 0.75 0 0.1
Car8 2 21 192 0.74 0.58 0 0.37
Car9 3 20 220 0.65 0.47 0.15 1.75

Truck1 2 26 188 1 0.82 0 0.16
Truck2 2 18 331 1.07 0.94 0.2 6.1

Table 10 shows a benchmark comparison of the car sequences results using TbD-SfM (Table 9)
and other state-of-the-art methods [38,39]. The results presented in the Table 10 shows that TbD-SfM
achieves a lower segmentation error in scenes with two and three simultaneous motions in comparison
to methods presented in [18,20–22,24,26–32]. TbD-SfM obtains a segmentation error of 0.07% for
sequences involving three simultaneous motions. This error is higher in comparison to HSIT [23]
that reaches a perfect segmentation. In contrast, the segmentation error in two simultaneous motions
sequences of TbD-SfM is 0.02% compared to 1.65% of HSIT that is 82 times lower. TbD-SfM has
similar performance in comparison with the DCT [19]. The DCT segmentation error was 0.05%
considering all the sequences of the dataset, while TbD-SfM segmentation error was lower in datasets
with two motions by a difference of 0.03% and higher by 0.02% for three motions dataset. Comparing
TbD-SfM to the baseline method, the segmentation error is higher by a difference of 0.02% in sequences
with two simultaneous motions and lower by 0.04% in datasets with three simultaneous motions.
In particular, TbD-SfM have obtained a greater number of feature points correctly segmented in
comparison with the baseline method as shown the percentage of outliers in the Table 9. It is worth
noting TbD-SfM achieves a denser feature segmentation than the baseline approach. That is because
the baseline approach performs an optimization step intended to enhance motion segmentation by
rejecting feature points with a high reprojection error. This procedure can certainly improve motion
estimates but it also reduces the number of feature points that represent a motion. Objects with few
features may be easily lost or missed detected.

The results show that our algorithm outperforms the RANSAC formulation proposed in [31].
The reprojection error obtained with TbD-SfM algorithm can be reduced with an optimization method
over the RANSAC formulation as described in [40,41].

The reported experiments were obtained thanks to Matlab implementations on a laptop with
processor i-7 2.6 GHz and 16 GB-RAM. The average running time of the baseline method for two, three
and four simultaneous motions were 85.2 s, 259 s and 6360 s. For TbD-SfM method execution time
decreases in average to 3.5 s, 3.9 s and 78.3 s for two, three and four simultaneous motions, respectively.
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Table 10. TbD-SfM results compared with other methods for Hopkins dataset car sequences.

Method
Reprojection

Error
(pixels)

Mean
Segmentation

Error for 2
Motions (%)

Median
Segmentation

Error for 2
Motions (%)

Mean
Segmentation

Error for 3
Motions (%)

Median
Segmentation

Error for 3
Motions (%)

Our TbD-SfM 0.85 0.02 0 0.07 0.07
Baseline [25] 0.091 0 0 0.11 0.24
MLBS [24] - 8.86 - 25.1 -
HSIT [23] - 1.65 - 0 -
IfSC [22] - 1.25 - 3.97 -

MoGR [21] - 1.24 - 4.97 -
RV [20] - 0.44 - 1.88 -

DCT [19] - 0.05 0 0.05 0
MSMC [18] - 0.66 - 0.17 -
SLBF [26] - 0.2 0 0.38 0
SSC [27] - 1.2 0.32 0.52 0.28

GPCA [28] - 1.41 0 19.83 19.55
ALC [29] - 2.83 0.3 4.01 1.35

LLMC [12] - 2.13 0 5.62 0
LSA [30] - 5.43 1.48 25.07 23.79

RANSAC [31] - 2.55 0.21 12.83 11.45
MSL [32] - 2.23 0 1.8 0

6. Conclusions

This paper proposed an efficient TbD-SfM framework able to infer independent motions
(euro-motions) and ego-camera trajectory under a 6-DOF motion model. Compared to complex
existing motion segmentation approaches, the proposed methodology represents a reliable vision-only
alternative for sensors-based dynamic scene analysis and VSLAM applications. The implementation
of the TbD-SfM in S f M allows us to drastically decrease the number of trial hypotheses required
for a scene motion segmentation without the use of kinematics constraints. Thanks to this, our
method is scalable and its advantages were thoroughly demonstrated in scenes with more than
two simultaneous motions. The TbD-SfM constitutes a feasible motion segmentation algorithm
for monocular vision systems with a bounded complexity intended to an embedded system
implementation. A Hardware–Software co-design approach remains an issue to be addressed and
constitutes a perspective of this work in order to achieve real-time performances. To this end, a further
study of an embedded HPS (Hardware Processing System) based on a GPU or a FPGA architecture
will be carried out in order to design a sensor implementing high-level on-chip pre-processing.
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