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Abstract: We present a low-frequency sensor for the detection of vibrations, with a sub-nm amplitude,
based on a cantilever made of a single-crystalline lithium niobate (LiNbO3) plate, with a bidomain
ferroelectric structure. The sensitivity of the sensor-to-sinusoidal vibrational excitations was measured
in terms of displacement as well as of acceleration amplitude. We show a linear behavior of the
response, with the vibrational displacement amplitude in the entire studied frequency range up to
150 Hz. The sensitivity of the developed sensor varies from minimum values of 20 µV/nm and 7 V/g
(where g = 9.81 m/s2 is the gravitational acceleration), at a frequency of 23 Hz, to peak values of
92.5 mV/nm and 2443 V/g, at the mechanical resonance of the cantilever at 97.25 Hz. The smallest
detectable vibration depended on the excitation frequency and varied from 100 nm, at 7 Hz, to
0.1 nm, at frequencies above 38 Hz. Sensors using bidomain lithium niobate single crystals, as
sensitive elements, are promising for the detection of ultra-weak low-frequency vibrations in a wide
temperature range and in harsh environments.
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1. Introduction

Precise measurements of weak vibrations are of interest for structural health monitoring [1–3],
security [4], and active vibration damping [5–7]. In order to detect a vibration, it is necessary to convert
the energy of an oscillatory movement to an electrical signal. Optical and piezoelectric sensors are
the most frequently used devices for this purpose [8]. The optical vibration sensors are usually more
precise and sensitive but have large sizes and a high power consumption; hence they are expensive
and inconvenient to be used as parts of, for example, a distributed network in complex constructions.
On the contrary, devices that use the piezoelectric effect to detect vibrations are simple, small, and
able to operate both in active (as surface acoustic wave structures [9]) and passive (bending, shear,
or torsion mechano-electric converters [10–12]) regimes. Moreover, a complex vibrational sensing
network can be initialized from a standby mode by a single passive piezoelectric detector [13]. It is
also an advantage that the piezoelectric sensors can be designed so as to harvest mechanical energy of
vibrations and transform it to electricity, thus enabling the creation of self-powered devices [14].
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In spite of the fact that a large number of different shapes and designs of the piezoelectric
sensitive elements were offered, only a few materials were tested. Commonly, the sensors contain
lead zirconate titanate (PZT) ceramics, having different compositions and states (e.g., films [11,12,15],
bulk ceramics [13,16–20], or fiber composites [21]), although for high-temperature applications single
crystals of quartz [22], langasite [23], lithium niobate (LN) [24], yttrium oxyborate [25], and aluminum
nitride films [10] were also suggested. Good reviews on this topic can be found in [8,24,26]. Despite
the fact that single-crystalline piezoelectric materials possess a higher thermal stability than PZT, their
main disadvantage—low values of piezoelectric coefficients—is the reason why PZT is still used in the
vast majority of cases.

The problem of the weak conversion of a mechanical deformation into an electrical signal by
single-crystalline piezoelectric materials can be solved by utilizing complex constructions, such as
unimorphs, bimorphs, or multilayer composites [27–31], but the presence of adhesive layers or grain
boundaries in these composite transducers decreases the sensitivity, as well as the accuracy and
thermal stability of the sensors. However, there is a way to manufacture a series bimorph for
the piezoelectric sensing element and avoid bonding of separate plates by the formation of two
domains with oppositely-directed spontaneous polarization vectors in a ferroelectric single-crystalline
plate. If the crystallographic cut is correctly selected, such a “bidomain” crystal demonstrates a
bimorph-like behavior, but does not comprise any interface except for an interdomain wall. Bending
deformation of this single-crystalline bimorph causes the expansion of one domain and contraction of
its counterpart. The voltages induced in the domains by the direct piezoelectric effect are added up;
they are proportional to the bending magnitude at a fixed frequency. An example of the ferroelectric
material which can be produced in a bidomain state is lithium niobate (LiNbO3).

The phenomenon of the domain inversion in LiNbO3 in the course of a heat treatment near
the Curie point was discovered by Ohnishi [32]. For the first time, large-area bidomain lithium
niobate (b-LN) wafers were produced by Nakamura et al. [33,34] and then investigated by numerous
researchers [33–46]. Initially, b-LN single crystals were proposed as a possible replacement of
composite bimorphs, glued by epoxy resins in precise movement systems, and for energy harvesting
applications [33,34,39–41,47,48]. Recently, we have shown the possibility to apply b-LN for the
conversion of oscillatory deformations to electrical signals [49–52] in vibrational sensors as well
as in laminate magnetoelectric composites (b-LN/Metglas®), with a record value of sensitivity to
magnetic field as low as 200 fT at a frequency of 6862 Hz [51]. Lithium niobate exhibits high thermal
stability of piezoelectric coefficients, elastic properties, and electromechanical coupling factors for
different cuts [53–55], and, moreover, possesses lead-free composition, which make it a promising
candidate for the substitution of the commonly used PZT ceramics in low-frequency sensing and
actuation applications.

2. Materials and Methods

In this paper we report the use of a single-crystalline b-LN plate for detecting low-frequency
mechanical vibrations. A long and narrow rectangular sample with dimensions of 75 × 5 × 0.5 mm3

was cut from a commercial single-domain LiNbO3 wafer (ELAN Company Ltd., Saint-Petersburg,
Russia) with the y + 128◦ crystallographic orientation. Two oppositely polarized ferroelectric domains
(so-called “head-to-head” bidomain structure) were formed in the plate by the diffusion annealing
technique [32,34,42]. The detailed description of the b-LN preparation procedure can be found in
Appendix A. Then tantalum electrodes were deposited on the opposite faces of the b-LN crystal by
DC (direct current) magnetron sputtering. The quality of the bidomain structure was tested using
a cantilever-type fastening by measuring the free end deflection under an applied external voltage,
by a technique described in detail elsewhere [51]; the k-factor revealing the quality of the produced
bidomain structure was determined to be as high as 33.1 pm/V, which is only 18% lower than the
theoretically predicted value (ky+128◦ = 1.5·d23 = 40.4 pm/V).
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We also prepared another LN sample with the same size, crystallographic orientation, and
electrode type, but having a single-domain ferroelectric structure. This specimen was used for the
evaluation of the external electromagnetic noise floor.

Finally, the b-LN crystal and its single-domain counterpart were clamped by two stainless-steel
screws with nuts as a cantilever, with a length of 70 mm in a home-made fastening tool containing a
polycrystalline alumina base, two gaskets, and two clamps. Two strips made of aluminum foil pressed
by clamps to the tantalum electrodes were used for transferring the generated voltage to a coaxial
cable and then to the measuring system (Figure 1).
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Figure 1. Schematic representation (top) and photography of the sensor prototype alone (bottom left)
and mounted on the shaker (bottom right); the shielding box was removed. The labeling on the
bidomain crystal was added for its identification.

In order to excite vibrations with ultra-low magnitude and frequency (down to 0.1 nm and 1 Hz,
respectively) we used a home-made piezoelectric shaker based on two similar PZT tubes (ceramic type
APC 850, APC International Ltd., Mackeyville, PA, USA), with a length of 40 mm, and inner and outer
diameters of 10 and 11 mm, respectively. These tubes were placed vertically on a massive steel plate
fixed on a pneumatically stabilized optical table (Standa Ltd., Vilnius, Lithuania). The sensor prototype
was mounted on a light aluminum platform fastened on the top of the PZT tubes. Finally, the sensor
was shielded by a grounded copper box to reduce the electromagnetic noise from external sources.

Mechanical vibrations were excited by applying an AC voltage from an external signal generator
to the PZT tubes connected in parallel. In the present study we used only pure sine excitations with
low magnitudes and frequencies (less than 11.5 V and 150 Hz, respectively), so that the excitation of
the PZT tubes was always linear with respect to the applied ac signal.

The measurements of sensitivity to the vibrational impact were carried out at room temperature
in an air ambient. We used two different techniques for the measurement of the sensor response to the
external mechanical vibrations:

(i) Lock-in detection of the voltage amplitude by a SR-830 amplifier (Stanford Research Systems Inc.,
Sunnyvale, CA, USA);

(ii) Registration of oscillograms by a DSO-X 3032A oscilloscope (Agilent Technologies Inc.,
Santa Clara, CA, USA) with post-processing by the Fourier analysis.

Both the techniques were implemented without any additional preamplification of the initial
signal collected from the b-LN sensitive element. As a consequence, the impedances of the sensor and
measuring instrument were not matched. For this reason, the amplitude values of the signals collected
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by the setups were corrected with respect to the impedances of the measuring instrument, cables, and
samples in order to compute the open-circuit voltage generated by the sensitive b-LN element.

The description of the used setup configurations, impedance measurements, as well as the details
of the correction of the collected signals are presented in Appendix B.

The measurements of the sensor sensitivity by method (i) were carried out at four different
excitation amplitudes. The voltages corresponding to vertical movements of the sensor amounting
to 0.1, 1, 10, and 100 nm were applied to the PZT tubes of the shaker (note that here we operate
with amplitude values, so that the peak-to-peak oscillations were twice as large). Method (ii) was
implemented by applying a sine voltage signal with an amplitude of 11.5 V to the PZT tubes, which
corresponds to a 161 nm oscillation. In addition, the electromagnetic and acoustic noise floors were
measured on the single-domain and bidomain crystals, respectively.

3. Results and Discussion

The results of the sensitivity measurements are shown in Figure 2. The generated voltage was
relatively strong even at the minimal displacement amplitude of 0.1 nm, and exceeded the acoustic
noise level in almost the entire frequency range studied. Indeed, sine vibrations with displacement
amplitudes of 0.1, 1, 10, and 100 nm could be confidently detected at frequencies higher than 38, 23, 14,
and 7 Hz, respectively. The acoustic noise floor measured from the sensor without any excitation was
lower than 10 µV in almost the entire frequency range. There were two sharp noise peaks in the graph
related to zero excitation: one was near the resonance frequency of 97.25 Hz and the other at 50 Hz,
which is the power line frequency in Russia. Below approximately 30 Hz, the acoustic noise started to
steadily increase with decreasing frequency, reaching a maximum value of ca. 100 µV near 7 Hz. We
ascribe the signal’s behavior to some low-frequency sound source or residual mechanical vibrations.
The acoustic nature of this noise source was confirmed by the electromagnetic noise floor acquired
from the single-domain cantilever that demonstrated a low-frequency noise behavior (1/f flicker)
having a different shape.
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Figure 2. Voltage generated by the sensor being subject to sine vibrational excitations with different
displacement amplitudes.

The signal measured by the oscilloscope possessed a slightly different shape in comparison to the
lock-in results, especially at frequencies below 50 Hz. It was clear that a sharper line was a result of
calculation errors, which are imminent when the FFT computing is utilized for finite signals in the
time domain. However, the low-frequency part of the plot was mainly influenced by the low input
impedance of the oscilloscope that forms a high-pass filter with the impedance of the b-LN crystal.
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A mechanical quality factor calculated for the resonance peak was ca. 328 for measurements with
all intensities of the vibrational excitation used in the present work.

The dependencies of the generated voltage on the displacement amplitude were linear in almost
the entire investigated range (Figure 3a). An exception from this trend was only the data obtained
in the oscilloscope measurements; the main reason for such a behavior was discussed above. As
the experimental data at a fixed frequency were straight lines that differed only in their slopes, we
could get the sensitivity to the vibrational amplitude normalized to a 1 nm displacement simply by
calculating a linear fit for each frequency and taking the first-order term (Figure 3b). The plot of the
sensitivity to a 1 nm displacement confidently followed the graph of the signal, which was obtained at
a 1 nm excitation (Figure 2) down to a frequency of 23 Hz, where the sensitivity reached its minimum
value of 20 µV/nm. A discrepancy at low frequencies was associated with an increasing contribution
of the noise and, as a consequence, a worse linear fit. The peak value of the sensitivity to oscillatory
displacements was reached at the resonance frequency and equaled 92.5 mV/nm.
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Figure 3. (a) Voltage generated by the sensor upon sine vibrations as a function of the displacement
amplitude (the I terms in the line equations in panel (a) are points of intercept defined by the acoustic
noise; I < 5 µV for all linear graphs shown); (b) sensitivity plot representing slopes of the linear
responses to vibrations at all investigated frequencies (oscilloscope results neglected) and compared
with the data for a 1 nm excitation displacement amplitude.

Finally, we computed the sensitivity of our sensor to the acceleration amplitude in units of the
gravitational acceleration g = 9.81 m/s2. Due to the weak intensity and low frequency of the used
driving signals and, consequently, the high accuracy of the transformation of the AC (alternating
current) voltage into oscillating deflections, the vibration at a fixed frequency had a strongly sinusoidal
character. This means that the acceleration sensitivity could be easily calculated just by dividing the
displacement sensitivity by a factor of 4·π2·f 2·g−1, as the acceleration is the second derivative of the
displacement. Figure 4 shows that the highest sensitivity of the sensor reached a value of 2443 V/g
at a resonance frequency of 97.25 Hz, and decreased to ca. 7 V/g to the left and to the right from the
maximum point.
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4. Conclusions

To conclude, a vibrational sensor based on a bidomain LiNbO3 (b-LN) single crystal was
developed and investigated. The sensitive element was made of a rectangular b-LN plate fastened as
a cantilever in a polycrystalline alumina clamp. We used a home-made piezoelectric shaker, as well
as two different voltage measurement setups based on a lock-in and on an oscilloscope, respectively.
The sensor demonstrates the ability to detect sine vibrations with displacement amplitudes down
to 0.1 nm at frequencies higher than 38 Hz without any preamplification. Vibrations with a larger
amplitude of, for example, 100 nm allow the detection limit to be pulled down to a frequency of
7 Hz. Moreover, the sensor’s output voltage at a fixed frequency demonstrates a linear response to
the increasing displacement amplitude. The displacement response to low-amplitude sine vibrational
excitations was measured to be equal to 92.5 mV/nm at the resonance frequency of 97.25 Hz, and to
20 µV/nm at 23 Hz. The obtained maximum value of the acceleration sensitivity reaches 2443 V/g
when the sensor is oscillatory excited at resonance. Our device is quite competitive with the sensors
based on PZT, polyvinylidene difluoride (PVDF), or ZnO [11,14,18–21,56]. It possesses the same or
a higher sensitivity as compared to the best results published (2 mV/nm at a resonance frequency
of 48 Hz for a cantilever based on a PZT fiber composite [21], and 170 V/g at a resonance frequency
of 53.6 Hz for a cantilever based on a PZT bulk ceramic [19]). A more detailed comparison with the
literature data can be found in Appendix C.

The high thermal and chemical stability of lithium niobate, as well as an efficient conversion of
mechanical deformations to voltage, makes the b-LN crystals a promising material for highly sensitive
applications, including low-frequency vibrational sensors able to withstand harsh environments and
high temperatures.
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Appendix A

We used the so-called diffusion annealing (DA) technique in order to form a ferroelectric
“head-to-head” bidomain structure in a LN plate. A single-domain plate for sensing element having the
above-mentioned dimensions, as well as a reference specimen with dimensions of 10 × 10 × 0.5 mm3,
were washed in acetone and distilled deionized water in order to remove surface dirt. Then we placed
the crystals in a quartz cylinder and annealed them in an air ambient at 1140 ◦C for 5 h. Heating and
cooling rates of 300 ◦C/h were selected. After annealing, an angle lap of the reference specimen was
prepared and etched in a HF:HNO3 = 2:1(vol.) mixture for the visualization of the domain structure
according to [57]. As it is clearly seen in Figure A1, 5 h was sufficient for a polarization reversal in a
half of the sample.
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Figure A1. Panoramic photograph of an etched angle lap prepared in the reference specimen that was
annealed in the same run as the sensing element.

The formation of the bidomain ferroelectric structure can be explained in terms of Li2O
out-diffusion from the crystal during the thermal treatment. Indeed, the concentration gradient
inside the crystal causes the occurrence of a built-in electric field and accompanied growth of two
oppositely polarized domains [43].

Appendix B

Excitations of mechanical vibrations were provided by applying a sinusoidal voltage signal to the
piezoelectric PZT (lead zirconate titanate) tubes. According to the equation of linear piezoelectricity,
the deformation of the PZT tube is proportional to the applied voltage. Indeed, for the used ceramic
cylinder the static deformation δ can be calculated as δ(nm) = −14·U(V), where U is the applied
voltage. This law is observed at small deformations and far from the resonance frequency, which was
estimated to be higher than 5 kHz for the whole shaker. Due to the use of ultra-weak low-frequency
vibrational excitations in the study, we avoid the undesirable contribution of the non-linear converse
piezoelectric effect, so that the excitation of the PZT tubes was always directly proportional to the
applied ac signal.

We used two different techniques for the measurement of the sensor response to the external
mechanical vibrations:

(i) Lock-in detection of the voltage amplitude by a SR-830 amplifier (Stanford Research Systems Inc.,
Sunnyvale, CA, USA);

(ii) Registration of oscillograms by a DSO-X 3032A oscilloscope, with post-processing by the Fourier
analysis (Agilent Technologies Inc., Santa Clara, CA, USA).

Method (i) was utilized for measuring the maximum possible sensitivity of the sensor with respect
to external acoustic and electromagnetic noise. We used the ac signal from the internal generator of
the lock-in for the excitation of the shaker and then registered the sensor response. Since the lock-in
detection allows registration of the voltage with a high signal-to-noise ratio, it is possible to measure
signals caused by ultra-weak sub-nm vibrations. The measured rms (root mean square) amplitude was
collected to a computer through a Keysight 82357B GPIB interface (Calabasas, CA, USA) (Figure A2a).

All the lock-in data were obtained with a frequency step of 0.25 Hz and a bandwidth of the
input low-pass filter of 0.23 Hz, with an averaging of 1000 points at each frequency. Though the
lock-in detection is a very powerful method for measuring low-amplitude or noisy signals, it needs a
periodic reference signal and; therefore, this technique is unlikely to be used in commercial vibrational
sensors. Therefore, we performed the measurement by method (ii), where the signal in the time
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domain was registered by the digital oscilloscope. In this case sine vibrations were excited by an
external arbitrary waveform generator (Owon AG4151, Zhangzhou, China) with a frequency step of
2 Hz (Figure A2b). After the data collection, every oscillogram was processed by a script written in the
GNU Octave (version 4.2.1) software. Assuming there is no information about the initial vibration, the
program decomposed the time-domain signal into a spectrum in the frequency domain by using the
fast Fourier transform (FFT) algorithm, and extracted information about the frequency and amplitude
of the voltage generated by the sensor. Finally, we revealed a correspondence between the vibration
amplitudes and absolute values of the measured responses at exciting signal frequencies.
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Figure A2. Diagrams of (a) lock-in and (b) oscilloscope-based techniques used in the study.

Both the techniques were implemented without any additional preamplification of the initial
signal collected from the b-LN sensitive element. This means that the impedances of the sensor and
measuring instrument were not matched, hence a correction of the collected signal was needed.
Ignoring the resistances of the wires and all inductivities, a simplified equivalent circuit of the
measuring system with the connected sensor includes an AC voltage generator Vcr, with its series
impedance Zcr representing the piezoelectric crystal, a capacitance Cin (25 pF for the lock-in and 14 pF
for the oscilloscope), a resistance of the measuring instrument Rin (10 MΩ for the lock-in and 1 MΩ for
the oscilloscope), and a capacitance Cw of the coaxial cable used in the experiment (Figure A3).

The impedances of the connecting wires and measuring input can be combined in a total
impedance of the measurement system Zm:

Zm = Rin||(Cw + Cin) =

(
1

Rin
+ j2π f (Cw + Cin)

)−1
=

Rin
1 + j2π f (Cw + Cin)Rin

(A1)
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Thus, the open-circuit voltage generated by the vibrating crystal is:

Vcr = U·
(

1 +
Zcr

Zm

)
= U·

(
1 +

Zcr(1 + j2π f (Cw + Cin)Rin)

Rin

)
(A2)

In order to determine the impedances of the single-domain and bidomain crystals, we used the
lock-in setup. The internal reference signal source was connected to one of the sensing element’s
electrodes; the wire from the other electrode was connected to the input of the lock-in. A simplified
equivalent circuit is shown in Figure A4. Here Vout is the rms amplitude of the reference signal
generated by the lock-in internal source; Uimp and ϕ are the rms amplitude and phase shift of the
detected signal, respectively; Rout is the output resistance of the lock-in (50 Ω); Cw1 and Cw2 are the
capacitances of the connecting wires; Zin is the impedance of the lock-in, Zin = Rin||Cin = Rin

1+j2π f CinRin
.
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We can combine the impedances of the lock-in and the wire, connecting the sample and the setup,
in a total impedance of the right-hand side of the circuit:

Z|| = Zin

∣∣∣∣∣∣Cw2 (A3)

The current through this impedance is equal to:

i =
VoutZCw1

RoutZCw1 +
(

Z|| + Zcr

)
(ZCw1 + Rout)

(A4)

So, the impedance of the crystal fastened in the vibrational sensor will be:

Zcr =
VoutZCw1Z|| −URoutZCw1

Uimpejϕ(ZCw1 + Rout)
− Z||

=
Rin

1 + j2π f (Cw2 + Cin)Rin

(
Vout

Uimpejϕ ·
1

1 + j2π f Cw1Rout
− 1

)
− Rout

1 + j2π f Cw1Rout

(A5)

We determined the impedances of the cantilever-fastened single-domain and bidomain lithium
niobate crystals using the circuit shown in Figure A4 and Equation (A5). The resulting plots of the
impedances are shown in Figure A5. Both the graphs possess a very similar shape at low frequencies,
which reveals equal geometrical sizes and a good fastening of the piezoelectric cantilevers. There is
a sharp feature in the plot of the impedance absolute value of the b-LN associated with the console
bending resonance at a frequency of 97.25 Hz.
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