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Abstract: This paper presents a global monocular indoor positioning system for a robotic vehicle
starting from a known pose. The proposed system does not depend on a dense 3D map, require prior
environment exploration or installation, or rely on the scene remaining the same, photometrically or
geometrically. The approach presents a new way of providing global positioning relying on the sparse
knowledge of the building floorplan by utilizing special algorithms to resolve the unknown scale
through wall–plane association. This Wall Plane Fusion algorithm presented finds correspondences
between walls of the floorplan and planar structures present in the 3D point cloud. In order to extract
planes from point clouds that contain scale ambiguity, the Scale Invariant Planar RANSAC (SIPR)
algorithm was developed. The best wall–plane correspondence is used as an external constraint to a
custom Bundle Adjustment optimization which refines the motion estimation solution and enforces a
global scale solution. A necessary condition is that only one wall needs to be in view. The feasibility
of using the algorithms is tested with synthetic and real-world data; extensive testing is performed in
an indoor simulation environment using the Unreal Engine and Microsoft Airsim. The system performs
consistently across all three types of data. The tests presented in this paper show that the standard
deviation of the error did not exceed 6 cm.

Keywords: indoor positioning; robotic vehicle; vision-based navigation; floorplan

1. Introduction

Global localization for robotic vehicles is an essential backbone for robust autonomous navigation.
In outdoor applications, the Global Positioning System (GPS) can be used to compute an accurate and
inexpensive position solution, which unfortunately is either not available or substantially degraded
in indoor environments due to the blocking of signals by the building structure. For this reason,
the indoor localization problem is still unsolved in general and attracts considerable research efforts
both in academia and in industry.

In determining the system to use for positioning, it is important to consider the extent of
applications that would utilize it. Envisioned applications range from autonomous inspection of
hazardous factories to autonomous exploration of unknown, volatile compounds to emergency medical
delivery for victims trapped in buildings and even to product transportation and distribution within
large warehouses. For such situations, having a system which does not depend on prior environment
setup or exploration is vital. Furthermore, the question of system setup prior to execution becomes
a prime concern when handling emergency situations. For example, while ultra-wideband (UWB)
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positioning [1] has been often considered as a possible alternative, the requirement of a priori
infrastructure installation or deployable equipment prevents it from being a feasible solution in
the context of the present study.

In this paper, a vision-based approach to the positioning problem is proposed using the images
acquired by a monocular camera. The use of a single camera is attractive due to the inherent low
costs and ease of integration into almost any robotic vehicle. On the other hand, monocular vision
by itself provides motion information up to scale, and hence estimation of global positioning requires
resolving scale in an effective manner. The approach pursued in this paper is to complement the visual
information acquired by a monocular camera with the knowledge of the building floorplan. The latter
is easily accessible for many indoor environments and requires no prior equipment installation or
exploration. Moreover, as shown here, it can be used to resolve scale through wall–plane association
and thus provide monocular global localization within the building of interest. The new approach
only uses the planar information of the floorplan (normal vectors and distance values according to a
predefined global coordinate system), which is actually only a subset of the information provided by
a floorplan. Although based on looking at features on walls, one needs to consider that objects other
than walls may abound in indoor environments; these objects are classified as obstacles. For reasons
to become clear below, obstacles may be classified as non-planar such as chairs, desks or tables,
or planar such as bookshelves, cabinets or boxes. In either case, any relevant vision-based positioning
system using a floorplan to achieve absolute localization must be able to filter these obstacles out at a
pre-processing stage. A preliminary, shorter version of the paper was presented at the 2018 International
Conference on Indoor Positioning and Indoor Navigation [2]. This manuscript extends the conference paper
in the following new ways:

• Unreal Engine & Microsoft Airsim Indoor Simulation testing (Section 8),
• Positioning update routine following initialization (Section 5),
• Concavity Filter in the Wall Plane Fusion (WPF) algorithm (Section 4.4),
• New score functions for the WPF best wall–plane pair computation (Section 4.4),
• Additional cost terms for the constrained Bundle Adjustment optimization (Section 6),
• Real data test comparison with a method combining ORB-SLAM2 with LIBVISO2 (Section 8),
• Computational runtime discussion (Section 7),
• Proof of the Planar Extraction Lemma (Appendix B),
• All new experimentation with the modified positioning system yielding more accurate results

(Section 8),
• More in-depth analysis of the entire indoor positioning system.

The robotic platform in which the new positioning systems were tested is the BARC (see http:
//www.barc-project.com/), a 1/10th scale 4-wheel vehicle augmented with a monocular camera and
on-board wheel encoders. The focus is to utilize the floorplan along with special algorithms to resolve
the unknown scale and provide global positioning information. The BARC is especially challenging for
this kind of approach as compared with, e.g., the research presented in [3] which considers the similar
localization problem of a quadcopter inside a building using a monocular camera and the floorplan.
As explained here, the low profile of the ground vehicle considered makes the practical implementation
substantially more challenging. This is highlighted, in particular, by the attention required for the wall
association and obstacle detection problems that were not considered in [3].

The positioning algorithm flow diagram is shown in Figure 1. The figure shows that the
input data consists of a collection of images taken by the moving robot and the floorplan of the
building it is moving in. The algorithm consists of two main blocks: (1) Initialization and (2) Update.
In the initialization block, the scale for the global motion of the vehicle is established by recognizing
and exploiting planar structure in the sparse point cloud with a wall of the floorplan. In the Update
block, the algorithm continually uses images of the environment while the robot is moving to compare
with the floorplan, thus providing global positioning through wall-point mappings.

http://www.barc-project.com/
http://www.barc-project.com/
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Figure 1. Positioning system flow diagram.

The rest of the paper is organized as follows: Section 2 discusses current related work in the area
of monocular vision localization; Section 3 provides a simple example of the entire positioning system;
Section 4 provides details about the initialization framework and its design; Section 5 presents how
the system produces continual positioning updates; Section 6 describes how a wall–plane association
can be exploited as an external constraint to refine the camera motion via Bundle Adjustment
optimization and enforce a global scale solution; Section 7 discusses the computational runtime
of the system; Section 8 provides results running synthetic, simulation, and real-world tests on
the localization system; and Section 9 concludes the paper.

2. Related Work

Monocular Simultaneous Localization and Mapping (SLAM) has been a targeted research topic
recently, mainly due to its wide-ranging potential applications. By itself, SLAM estimates the relative
camera motion while at the same time reconstructing the environment in which the camera moves.
Approaches can be categorized as either feature-based methods such as ORB-SLAM2 [4] where features
(e.g., ORB) are extracted from images to be used for tracking and the error minimized is based on the 2D
feature positions, or direct methods such as Direct Sparse Odometry (DSO) [5] which is featureless, and
the error is based on pixel intensities. Monocular SLAM is also sometimes coupled with an inertial
system, giving rise to integrated visual-inertial SLAM [6–9].

Given that arguably the main challenge when using a monocular camera is the ambiguity in scale
or depth of the scene, researchers have investigated various ways of resolving scale so that global
monocular localization or “visual odometry” can be achieved. It is important to note that, in order
for visual odometry to be applied, the initial camera pose needs to be known. One approach is
called object-SLAM and its goal is to recognize objects in the environment and compute the scale
utilizing priors on the sizes of such objects [10–13]. Alternatively, some methods rely on the fact that
the camera moves over a planar surface with constant altitude. Thus, the goal becomes endeavoring
to detect the road/floor region and estimate the ground plane or geometrical structure to resolve
the scale [14–17]. In addition, other works have presented systems to learn the scale via convolutional
neural networks [18–21]. The proposed positioning system alleviates some of the challenges inherent
to the aforementioned approaches. For example, in view of the ground plane estimation approach, it is
often the case that feature points on walls are more prevalent than feature points on the floor. Thus,
the proposed system relies on such features. In addition, using a floorplan which is architecturally
measured provides much better and more accurate a priori information than object size priors.

Feng et al. [22] approached global monocular localization utilizing a pre-built, dense 3D map
of an indoor environment, consisting of database images with respective global camera poses and
with each pixel mapped to a 3D world point. Although in principle attractive, this approach is far
from being ideal. An indirect assumption is that from the time the 3D map is created to the time
of running the localization system, the scene has not photometrically nor physically changed in a
significant manner. Furthermore, relying on a dense 3D map with prepared database images means
that the environment needs to be explored prior to the localization, which is not always desirable or
possible. Caselitz et al. [23] developed a monocular localization system using a priori information
of a 3D LiDAR map. While such an approach alleviates photometric issues since it is a geometric
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correspondence problem, it still requires pre-visiting the environment to create the map. In addition,
it assumes no geometric changes to the scene are made before localization, for example by introducing
new obstacles or by rearranging current obstacles in the environment. For the case considered in
this paper, using a floorplan neither requires traversing the scene before localization nor depends
on a dense 3D map. Moreover, the algorithm is insensitive to changes in the scene: obstacles can be
introduced or adjusted without significantly affecting localization results as long as the floorplan itself
is not modified.

3. Simple Example of the Positioning System

This section serves to provide intuition for how the system runs by providing a simple example.
Subsequent sections delve into the details of each of the system’s modules. The algorithm first extracts
features from the batch of images and computes tracks across the frames (Figure 2).

Figure 2. View of an environment with computed features.

An initial estimate of the 3D geometry of the environment and the camera motion up to scale is
obtained by running a general Structure from Motion (SfM) algorithm (Figure 3).

Figure 3. Top view projection of the unscaled point cloud from SfM.
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The point cloud computed by SfM is subsequently passed to the new Scale Invariant Planar
RANSAC (SIPR) algorithm, developed to extract the underlying planar structures of the scene; it is
called scale invariant because it is able to extract planes from point cloud data with scale ambiguity
(Figure 4).

Figure 4. Extracted planes from the point cloud.

Subsequently, scale is recovered using the Wall Plane Fusion (WPF) algorithm discussed below,
which finds correspondences between the computed planes and the walls as defined by the floorplan.
In order to use the WPF, one needs to deal with both planar and non-planar obstacles present in all
typical scenes and not included in the floorplan. As explained next, non-planar obstacles are handled
in the SIPR algorithm, while planar obstacles are filtered out by the WPF algorithm. The final output is
a best estimate for the wall–plane pair, representing the computed plane which most closely matches
a wall of the floorplan in view and the resulting alignment scale estimate. Figure 5 (left) shows the
best wall that was selected with the active 3D points on it after they were properly scaled according to
the scale estimate. A specially designed, constrained Bundle Adjustment optimization is run exploiting
this best wall–plane pair as an external constraint, returning a global positioning solution and refined
3D geometry (Figure 5 right). Note that a perfect line is not what is expected since the ground truth
should have a path which is not exactly a straight line.

Figure 5. Initialization: scaled camera motion and world points before (left) and after (right)
optimization.
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After performing initialization, an update routine takes over to handle all subsequent localization.
Utilizing the scale computed during initialization, each new camera pose as well as the corresponding
3D points computed from the batch of images are refined in the wall-constrained Bundle Adjustment
optimization. Figure 6 shows the solution (camera position and points) before (left) and after (right)
the optimization. Note that the illustrations are top view perspectives, and the camera at the new time
instance is highlighted in cyan.

Figure 6. Update routine: new camera position (cyan) and world points before (left) and after (right)
optimization.

4. Initialization Module

The initialization pipeline is shown in Figure 7 and the relevant coordinate systems are shown
in Figure 8.

Figure 7. Positioning initialization pipeline.

Figure 8. Coordinate systems—Top View; see [2].

4.1. Feature Detection and Tracking

Given a batch of images, feature points were extracted using the SIFT keypoint detector and
tracked across multiple frames. In this system, a track was considered valid if the corresponding
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feature point was seen in at least three frames. For the purposes of this system, the feature tracking
aspect was not the focus, and was thus treated more or less in a black-box fashion, where different
parameters (e.g., nearest-neighbor ratio, minimum track length, etc.) varied across experiments.

4.2. Structure from Motion Stage

Let us assume that at least two images are taken while the robot is performing a motion.
Tracked feature points are passed to a multi-frame Structure from Motion algorithm to generate
the initial motion and provide a sparse description of the environment (tens to hundreds of features
per frame). Note that the motion and the location of the points in the environment are up to scale, but
still, as explained next, can be used to extract a number of planes that serve as wall-candidates.

4.3. The Scale-Invariant Planar RANSAC

Once a point cloud is calculated, it could in principle be used to compute a number of planes that
could be identified with the walls described in the floorplan. However, upon further consideration,
a standard algorithm would not perform correctly due to the lack of scale in the data and the fact that
all surfaces of interest are in fact planar. Consequently, a new Scale Invariant Planar RANSAC (SIPR)
algorithm was developed to extract the underlying planar structures of the scene. Once the algorithm
extracts planes from point cloud data with scale ambiguity, a good scale estimate can be found
by comparing the result with the floorplan. In order for the planar extraction to be accomplished,
traditional methods were avoided—methods using predefined thresholds for determining whether
points are considered inliers or outliers and for determining the stopping criterion, when all planes in
the point cloud have been extracted. The algorithm is described in the following sections.

4.3.1. Plane Initialization

After transforming the solution to be in the coordinate frame of the camera at the first instance,
the point cloud is projected onto the plane parallel to the motion of the vehicle (the xy plane in world
coordinates). Because at least three points are needed to form a plane, the projected point cloud
is subdivided into three equal subsets. The direction of subdivision is either along the x- or y-axis
depending on which has a higher point distribution range. An illustration of this is shown in Figure 9.
Note that, while in the illustration the subdivisions align with the wall boundaries, this is not a
necessary condition.

Figure 9. Illustration of the point cloud subdivision for plane initialization.

While a standard approach suggests choosing the three points at random with uniform
independent probability, this method endeavors to improve the selections. While the first point
is chosen with equal probability from each of the subsets, the second point is selected with a higher
probability of it being in the same subset as the first point and a lower probability of it being in an
adjacent subset. Note that, given a point on a wall, it follows that points nearby have a relatively high
likelihood of also being on the same wall. Furthermore, no point is selected from any subset which is
not directly adjacent to the first subset. The majority of the time walls will exist in a single subset or
span across two adjacent subsets. If a wall exists in all three subsets, then picking from two subsets is
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sufficient to form the plane. In the case that a wall has a protrusion and that protrusion appears in
the second subset, whereas the setback wall occurs in the first and third subsets, choosing only points
from either the first or third subset to form the plane is also sufficient for properly finding the plane.
At a later stage as a part of the RANSAC process, where all points closest to the plane are collected,
both subsets’ points would be included. The third point is chosen similarly to the second point but
given an even higher probability of being selected in the same subset as the previous two. Refer to
Appendix A for details on the probabilities to compute the initial plane estimate.

4.3.2. The Refined Plane Estimate

After finding an initial plane estimate from three points of the point cloud, the distance error is
computed from each point to the plane estimate. Let emax refer to the largest such error. Then, all of
the points, pi for i ∈ 1...N, used during this refinement step are placed into an error histogram, He,
of size Nbins, where each bin corresponds to a fraction of the maximum error distance, emax. Note that
beforehand an initial filtering is done to remove any extreme outliers. Subsequently, the plane estimate
is iteratively refined by considering only points in the first bin.

In order to compute the refined plane, note that if the initial plane estimate Pl =

[
nl

dl

]
4×1

where

nl ∈ R3 is the normal vector and dl ∈ R is the distance parameter, then this vector must satisfy
the vector equality: 

pT
1 −1

pT
2 −1

...
pT

N −1


N×4

[
nl

dl

]
4×1

= 0, (1)

subject to ||nl || = 1. The actual computation can be performed by defining:

A .
=


pT

1
pT

2
...

pT
N


N×3

, a .
=


−1
−1

...
−1


N×1

, x = nl , and y = dl , (2)

and replacing the equality by the minimization problem:

min
x,y
||
[

A a
] [x

y

]
||2 subject to ||x|| = 1. (3)

If the normalization equality would apply to the whole vector

[
x
y

]
4×1

, then the answer to this

problem is immediate: the singular vector associated with the smallest singular value. The solution for
the problem posed here is slightly more complex as seen in the next Lemma.

Lemma 1. The optimal solution (n∗, d∗) to the constrained Least-Squares problem is such that

1. n∗ is the eigenvector for (ATA− ATaaTA
aTa ) associated with the smallest eigenvalue, and

2. d∗ = − 1
aTa aTAx.

Proof. See Appendix B.

In addition, some extra knowledge of the walls is used to help the refinement process.
More specifically, only horizontal planes (e.g., floor, ceiling) and vertical planes (e.g., walls, planar
obstacles) are considered during the plane extraction. Most buildings are comprised mainly of
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vertical and horizontal walls, thus the algorithm exploits this fact. Therefore, when refining the plane
estimate, first the Z-component is checked to be approximately 0 or ±1. The corresponding normal’s
Z-component is thereby set to 0, 1 or −1 accordingly and the normal is re-normalized. The best
plane estimate, as described in [2], for a point cloud with N points is thus given by

P∗ = argmax
Pl

N

∑
i=1

1
1 + |nl · pi − dl |

. (4)

In situations where walls in the floorplan are not vertical or horizontal (e.g., at a slant), those would
simply not be included in the a priori map of wall information to utilize.

4.3.3. Stopping Criterion

Because multiple walls could exist in a given point cloud, this algorithm continues to extract planes
until it reaches a stopping criterion. Thus, a stopping criterion is required to know when the points
left in the point cloud are noise and do not have any planar structure. To accomplish this, rather than
relying on predefined thresholds, a classifier was trained via a Support Vector Machine (SVM) to
classify a point cloud as containing a plane or not. The input to the classifier is the histogram He for
the best plane estimate, P∗.

To train the SVM, synthetic data was used so that correct labels could be appropriately applied.
Different synthetic data was used to train and test the SVM classifier than that presented in [2].
The number of planes in the environment varied from 0 to 5, the number of points on each plane
from 50 to 2000, and the outlier percentage from 0 to 15%. In addition, 1400 environments were
created and all of the histograms were exclusively separated into training data and testing data.
One thousand histograms were used to train the SVM classifier and 1323 histograms were used to
test it. Figure 10 is the Receiver Operating Characteristic (ROC) graph, showing approximately 0%
false positive percentage and about 97% true positive percentage. Notice that, having extracted all
of the planes in the scene, “corner points,” namely points that exist in the neighborhoods of wall
intersections, require special attention. To do this, each point is compared with all of the computed
planes and association is based on minimum plane-distance error. Although most points will remain
corresponding to the plane which they created, some of them could belong to the adjacent wall.

Figure 10. ROC graph of the SIPR stopping criterion classifier (different from that in [2]).
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4.4. Wall Plane Fusion

The Wall Plane Fusion algorithm focuses on forming associations between the extracted planes
and the walls of the floorplan. In addition, because obstacles may be present in the environment,
this algorithm handles removing them. In fact, in a scene, there are three types of obstacles which
could exist:

1. Non-planar obstacles,
2. Planar obstacles whose normal vectors match some of the walls’ normals,
3. Planar obstacles whose normal vectors do not match any of the walls’ normals.

Examples of non-planar obstacles include chairs and tables, while types of planar obstacles
include cabinets and bookshelves. It is assumed that there could exist planar obstacles which are right
next to walls, but no obstacle entirely covers the wall so as to occlude the view of it. In the situation
where an obstacle entirely covers a wall (e.g., shelving), then it is necessary that a different wall be in
view. As shown later in this section, at least one wall needs to be in view to properly obtain the scale
factor. Non-planar obstacles are removed during the SIPR algorithm because, as a result of extracting
the planes, all planar outliers are removed. One of the goals of this algorithm then is identifying and
eliminating planar obstacles.

4.4.1. Computed Plane—Wall Relationship

As mentioned in [2], given some wall, W = (n, d) and some plane, P = (ñ, d̃), defined by
the normal vector and distance parameters (n, ñ ∈ R3 and d, d̃ ∈ R), the transformation between the
plane and the wall is defined as follows:

n = Rñ, (5)

d = kd̃ + t · n, (6)

for some rotation R ∈ SO(3), scale factor k ∈ R, and translation t ∈ R3. The walls and planes are
defined in the Hesse normal form. Each camera pose for the first batch of images in this initialization
is transformed with respect to the camera at the first instance, so t refers to the camera position of the
first camera instance.

It is important to note that the meaning of the distance parameter for walls is different than that
for the computed planes. For the walls, d refers to the distance from the origin of the world coordinate
system to the corresponding wall. For the computed planes, d̃ refers to the unscaled distance from
the location of the first camera instance to the wall in view.

4.4.2. Orientation Filter

The first stage of this algorithm consists of finding candidate walls whose normals align with
those of the computed planes. Additionally, this part focuses on removing planar obstacles whose
normals do not match any normals of walls (refer to the sofa in Figure 11). More specifically, given N
walls and M computed planes, letWP be the set of N ·M wall–plane pairs whereWP = {(Wi, Pj)}.
To remove such currently unseen walls and dissimilar planar obstacles, only wall–plane pairs which
satisfy Equation (7) are kept, as discussed in [2]. Let (Wi, Pj) = (ni, di), (ñj, d̃j) be some wall–plane pair,

eij
R < δR, (7)

where
eij

R =
∣∣∣1− ni · ñj

∣∣∣ , (8)

and δR is some threshold. For the experimentation done in this paper, δR was chosen to be 0.015. Thus,
walls whose normals were different from any of the computed planes were removed as well as planar
obstacles whose normals were different from the walls of the floorplan.
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Figure 11. Example environment with planar obstacles and a wall protrusion.

4.4.3. Translation Filter

The next stage of the Wall Plane Fusion algorithm is to rule out cases of wall–plane pairs with
matching normals but mismatching distance parameters. Example situations of this type are wall
protrusions (refer to the wall protrusion in Figure 11) or planar obstacles with normals which match
those of nearby walls (consider the file cabinet in Figure 11).

Consider the case where a wall has a normal vector which is unique to the current room. It follows
that, if planes are found which share that normal, then, under specific concavity conditions, any planar
obstacle(s) can be detected and the correct wall determined. More specifically, let W be the wall in
view and (P1, P2, ...) be the computed planes from the point cloud. Suppose that n, the normal of the
wall, is unique to the current room in the building. Then, it follows (as shown in Figure 12) that if this
particular wall (e.g., W2) has left and right concavity, the correct plane to map to the wall is the one with
the largest distance from the camera. Here, concavity is defined as the angle between two consecutive
normals being acute from the perspective of the world coordinate system origin. The correct pair is
(W, Pj), where dj corresponds to the maximum distance from the camera for j = 1, 2, ...

Figure 12. Situation with left and right concavity.

In other situations where left or right concavity does not occur, identification of obstacles is
handled by evaluating pairwise characteristics of walls. In other words, because there is scale ambiguity
present, the distance parameters cannot be compared directly; however, because the solution is correct
relative to itself, it follows that relative characteristics between pairs of planes and pairs of walls are
invariant to overall solution scaling. To handle this, the relationship between pairs of walls and pairs
of planes is evaluated. We will denote such (wall-wall, plane-plane) pairs as “wall–plane collections”
and define them as follows:

Let L be the number of filtered wall–plane pairs following the Orientation Filter. We define
C = {((Wi, Wj), (Pm, Pl)), ...} to be the set of wall–plane collections with cardinality L(L−1)

2 .
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Given some collection ((Wi, Wj), (Pm, Pl)), it follows that if Wi pairs with Pm and Wj pairs with
Pl in an ideal sense, the following equation holds (refer to [2]):

di − t · ni

dj − t · nj =
kd̃m

kd̃l
=

d̃m

d̃l
. (9)

Therefore, for any plane pair which is not a direct match for the corresponding wall pair,
whether that includes walls that should not be in view or planar obstacles, again in an ideal sense,
Equation (9) does not hold. Thus, the translational error term for each collection is defined to be
the following, as shown in [2]:

eT =

∣∣∣∣ di − t · ni

dj − t · nj −
d̃m

d̃l

∣∣∣∣ . (10)

Note that eT is set to be such that di− t · ni < dj− t · nj. In order to handle situations where similar
geometry is present in various parts of the room, the encoder’s odometry information is introduced
to provide appropriate weights. Thus, given a wall–plane collection, the individual scale factors
are computed that would result from pairing corresponding walls and planes. These are denoted
by k1 and k2. These scale factors are subsequently used to scale the translation vector between two
Structure from Motion positions, and this is compared to the translation vector between the two
corresponding encoder-formed positions. The weights are then appropriately used to find the best
wall–plane collection.

The wheel encoders’ temporary position and orientation updates are governed by
the following equations:

ψs
enc = ψs−1

enc +
rs

out − rs
in

b
, (11)

ts
enc = ts−1

enc + rs

sin(ψs
enc)

cos(ψs
enc)

0

 , (12)

where rs
out and rs

in are the distances traveled according to the outer and inner wheel encoder readings,
respectively, rs is the average of rs

out and rs
in, and b is the vehicle front axle baseline:

k1 =
di − t · ni

d̃m
, (13)

k2 =
dj − t · nj

d̃l
, (14)

ρ1 = |k1(ts+1
s f m − ts

s f m)− (ts+1
enc − ts

enc)|, (15)

ρ2 = |k2(ts+1
s f m − ts

s f m)− (ts+1
enc − ts

enc)|, (16)

where ρ1 and ρ2 are the wall–plane collection weights. The best wall–plane collection is found by:

C∗ = argmax
((Wi ,Wj),(Pm ,Pl))

(
1

1 + min(ρ1, ρ2) · eT

)
. (17)

Given such a best wall–plane collection, the question is which pair is correct and if both are
correct, which is better? To handle this, the scale factor that would be computed from each wall–plane
pair is compared with the encoders’ rough scale factor, but that comparison is also weighted by
the rotational error term. That way, in the case where both are correct, having the more accurate normal
orientation can be taken into account in the selection process. Given any two camera translations
returned from Structure from Motion, ts

s f m and ts+1
s f m, the encoder rough scale estimate is computed as

follows, as shown in [2]:
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kenc =
|ts+1

enc − ts
enc|

|ts+1
s f m − ts

s f m|
, (18)

(W∗, P∗) = argmin
(Wi ,Pm)

γim

∣∣∣∣kenc −
di − t · ni

d̃m

∣∣∣∣ , (19)

where γim = eim
R . After applying this Translation Filter and obtaining the best wall–plane pair, the best

scale estimate, k∗ is directly given, as stated in [2], by:

k∗ =
d∗ − t · n∗

d̃∗
. (20)

The Structure from Motion relative camera positions and 3D points are subsequently scaled by k∗,
and this best wall–plane pair is used as an external constraint for a constrained Bundle Adjustment
optimization. Thus, it follows that a necessary condition for resolving the scale factor is that there
exists only one wall–plane pair, corresponding to having only a single wall in view. Note that the focus
of this work is to establish a positioning system with global scale. In this regard, the initial pose of
the vehicle is known and multi-hypothesis localization is not considered.

5. Positioning Update Routine

After initialization, an update routine continues on to provide the global positioning. Structure
from Motion is used to obtain the new camera pose and the new 3D points. The new camera pose and
3D points are subsequently transformed to be in the same coordinate frame as the previous batch of
images and then scaled by k∗. After scaling, the 3D points are mapped to walls.

Point-Wall Mapping

For all subsequent localization, it is necessary to determine whether the 3D points lie on
the walls of the floorplan or whether they are outliers. Therefore, the following defines the mapping
between each point pi and a potential corresponding wall W from among the walls of the floorplan,
Wl = (nl , dl).

For each point pi,
(W, ei) = argmin

Wl

∣∣∣pi · nl − dl
∣∣∣ . (21)

The point pi is then mapped to wall Wi such that

Wi =

{
W, if ei < τ,

∅, otherwise.
(22)

Here, τ is some threshold, and, for the experimentation in this paper, it was chosen to be 15 cm.
In other words, inlier 3D points were tolerated up to 15 cm off of their corresponding wall before
refinement in this update routine. The best wall was selected to be the one which had the most inliers.

6. Solution Refinement—Wall Constrained Bundle Adjustment

After computing an initialization using the algorithm described in Section 4 or an update solution
using the algorithm in Section 5, a Wall Constrained Bundle Adjustment is performed to refine
the solution at global scale. Thus, this algorithm is used to improve the initial solution and to improve
the update solution. First, the cost function contains a reprojection error term given by:

E = ∑
i,j

κij|| p̃
j
i − p̂j

i ||
2, (23)
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where p̃j
i represents the ith reprojected 3D point seen from the camera at the jth instance and p̂j

i
corresponds to the ith observed 2D point seen in the jth frame. In addition, κij is a weight that is
inversely proportional to the distance each 3D point is from each camera.

Here,
p̃j

i = [(vj
i)x/(vj

i)z, (vj
i)y/(vj

i)z]
Twhere vj

i = KR(Ψj)(pi − tj), (24)

where K ∈ R3×3 is the intrinsic camera calibration matrix, (tj, Ψj) is the camera pose, and pi is the 3D

world point. In addition, κij =

(
(vj

i)z
f

)2
, where f is the focal length of the camera in pixels.

Let WP∗ = (W∗, P∗) be the best wall–plane pair found from Wall Plane Fusion where
W∗ = (n∗, d∗). Furthermore, let pm ∈ R3 denote all of the world points which are supposed to
lie on the wall W∗. In an ideal sense, if the points pm lie exactly on the wall, then it follows that:

pm · n∗ − d∗ = 0. (25)

Therefore, a soft constraint is introduced thereby allowing feature points which are not exactly on
the wall to be tolerated in a more robust way:

κw ∑
m
(pm · n∗ − d∗)2, (26)

where κw is a tuned weight. In addition, there are other inherent platform constraints which can be
applied. Note that the camera is rigidly mounted onto the deck of the vehicle at a known height, hc.
It follows that the camera remains on average at a roughly constant altitude throughout execution.
Therefore, a soft constraint, as also shown in [2], is appended to handle any natural vertical movement
that may occur. Note that the vehicle contains shocks:

κc ∑
j
((tj)Z − hc)

2, (27)

with (tj)Z corresponding to the Z-component (in world coordinates) of the camera at the jth instance
and κc serves as a weight. Furthermore, in the same regard, the roll and pitch angles of the camera
on average are roughly constant and close to 0. Therefore, the cost function is augmented to incorporate
this knowledge in the form of two more soft constraints

κa ∑
j
(φj − 0)2, (28)

κa ∑
j
(θ j − 0)2, (29)

with weight κa. The Bundle Adjustment weights were chosen through tuning, and higher weight
was placed on the orientation cost terms compared to that of the world points or camera height.
For the experimentation done in this paper, κw = 1, κc = 1, and κa = 500. Thus, the entire modified
cost function is:

E = ∑
i,j

κij|| p̃
j
i − p̂j

i ||
2 + κw ∑m(pm · n∗ − d∗)2 + κc ∑j((tj)Z − hc)2 + κa ∑j(φ

j − 0)2 + κa ∑j(θ
j − 0)2. (30)

Note that, while there may be multiple wall–plane associations, only one wall–plane pair is
necessary to resolve the scale. Using only the best wall–plane pair reduces the computational cost
by only optimizing points on this computed plane. As a result, global positioning is achieved.
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7. Positioning System Computational Runtime

This section contains a discussion of the current and future expected run-times of the positioning
algorithm. Instead of attempting to establish actual complexity, a general indication is provided,
pointing to the most time-consuming aspects and their proposed solutions.

First, note that there is a wide difference between the initialization stage and the continuous
operation. Since it is assumed here that the former is performed only once, attention was restricted to
the latter. Specifically, the main efforts were placed in making the update routine as efficient as possible.
Currently, the constrained Bundle Adjustment and the RANSAC module dominate the complexity
of the overall scheme with the former sometimes taking an order of magnitude more time than the
latter. Other computations did not significantly affect the computation times. For example, for data
from one of the simulation tests presented later in Section 8, matching features between two frames
during the update routine took 2.02 s and the constrained Bundle Adjustment optimization took
13.23 s. The overall goal is to achieve near real-time behavior, since one can rely on the other sensors
available on the vehicle (e.g., encoder odometry and inertial navigation using IMU readings) to keep a
navigation solution updating in hard real time. In order to meet this objective, work is in progress in
two directions:

1. Bundle Adjustment (BA). An efficient implementation of the BA has been proposed in
the literature and one of them was implemented and tested. It was observed that the additional
wall constraints heavily affect computational times and hence alternative routes are currently
being explored. For example, because the camera height and camera roll and pitch angles are
known, then after the update routine computes a solution for the most recent camera, rather than
using the computed values for the height and roll and pitch angles, they can be set directly to
their known values. In addition, rather than setting the parameter τ described in Section 5 to
be an inlier constant, τ can be set dynamically using the previous batch’s minimal point error.
These were done in the second set of the simulation experiments presented, as mentioned later in
the paper.

2. RANSAC. The RANSAC algorithm is known to be capable of extracting a large number of features
while being computationally expensive. Alternative classifiers are currently being considered
that will give satisfactory performance under the constraints of the problem at hand. For example,
more specialized filtering can be done on the image correspondences to reduce the required
number of iterations.

8. Testing

To validate the system, extensive testing was performed on synthetic and simulated scenarios,
and then an actual lab test was conducted to verify the synthetic and simulated results. Note that
synthetic testing did not use images, but rather image points were synthesized by generating world
points and projecting them according to a pre-defined camera calibration matrix. Simulated testing
was accomplished via Unreal Engine and Microsoft Airsim. Realistic simulated images of a built indoor
environment were used, and this is especially a benefit to this paper as indoor positioning testing
in simulated environments is not very prevalent in current literature.

8.1. Synthetic Testing

In the synthetic case, artificial floorplans were created containing obstacles. Refer to Figures 13
and 14. For each scenario, a vehicle trajectory was created in a loop shape with curves and bends
so that the vehicle could view the majority of the walls. Artificial tracks were created for the 3D points
which were located on walls, obstacles, and some on the floor. Points placed on obstacles were verified
via ray tracing. Additional synthetic testing parameters are presented in Table 1.
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Figure 13. Artificial Floorplan 1, see [2].

Figure 14. Artificial Floorplan 2, see [2].

Table 1. Synthetic testing parameters.

Parameter Value

Number of Frames 30, 51 (type 1, type 2, resp.)
Waypoint Baseline (cm) 20

Image Noise (px) 0.5
Encoder Odometry Error (%) 7

As shown in the table, in order to simulate noise on image points, half-pixel noise was applied
to each of the points after projecting them onto the image plane. The camera calibration matrix
used to project the generated 3D points onto the artificial image plane was taken to be the same as
the physical camera used in the real world experimentation in Section 8.3. In addition, to simulate
encoder odometry, 7% error was applied to the waypoint positions of the cameras. This value was
chosen based on real-data experimentation. A sample trajectory for each artificial floorplan is shown in
Figures 15 and 16. The results for both types of artificial floorplans are presented in Table 2. Ten runs
were performed for each type of artificial floorplan. The results were obtained as follows: For each
run, the error between each solution position and ground truth position was obtained and then
averaged for all positions in the trajectory. The average error was subsequently averaged across
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all runs. The standard deviation of the position error was obtained in a similar manner as well
as the orientation counterparts. Furthermore, this computation of the error was used consistently
throughout the experimentation results analyses.

Table 2. Synthetic testing results.

Artificial Floorplan Type Avg. Traj. Length (cm) ēpos (cm) σ̄pos (cm) ēyaw (rad) σ̄yaw (rad)

Type 1 659 (1.41, 0.06) (3.93, 4.16) 0.0010 0.0073
Type 2 1382 (0.72, 0.36) (0.72, 1.14) 0.0015 0.0040

Figure 15. Synthetic test trajectory 1 (different from that in [2]).

Figure 16. Synthetic test trajectory 2 (different from that in [2]).

8.2. Microsoft Airsim Simulation Testing

To further test the positioning system, we built an indoor simulation environment using Unreal
Engine and Microsoft Airsim (see Figure 17 for a sample view). Obstacles such as a chair, a sofa,
a cabinet, and a bookshelf were placed in the environment to provide both non-planar and planar
obstacles. The scene also contained other standard features such as a door, windows, a fireplace,
and more. In addition, a wall protrusion was included so that the environment contained quite
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a bit of complexities. In fact, the simulated environment was designed to be comparable to the
real experiment environment if not by detail then at least by general constraints it imposes on the
localization scheme. For instance, the number of walls, the wall protrusion, and similar obstacles were
designed to create an environment similar to the real lab setting. A single, simulated environment
was used for all experimentation, and the number of features detected during computation was about
3–4 times as many as those in the real world. The floorplan is shown in Figure 18.

Figure 17. Simulation indoor environment.

Figure 18. Indoor simulation environment floorplan.

Each experiment was performed as follows: A trajectory for the car moving in the scene
was defined; next, images from each viewpoint were rendered from the simulated environment
and captured using the functionality provided by Microsoft Airsim with a similar field of view and
altitude as in the experimental testing discussed in the next subsection. To simulate encoder odometry,
encoder tick readings were artificially produced where 1% systematic error (the vehicle front axle
length and wheel radius) was applied, non-systematic error was introduced according to [24], and
quantization was applied to the artificial encoder readings. Finally, the images, together with an
initial pose provided for initialization and wheel encoder readings, were fed as input together into the
positioning system. Three types of trajectories were created viewing different parts of the environment
with sample tests shown in Figures 19–21. For each type, the position of the vehicle was randomized,
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namely the position of the camera where the images were taken. In total, ten randomized variations
were run for each of the trajectory types and the result statistics are provided in Table 3.

Figure 19. Simulation test trajectory 1.

Figure 20. Simulation test trajectory 2.

Figure 21. Simulation test trajectory 3.
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Table 3. Advanced simulation results set 1.

Trajectory Type Traj. Length (cm) ēpos (cm) σ̄pos (cm) ēyaw (rad) σ̄yaw (rad)

Type 1 600 (−0.59, 0.11) (3.06, 4.06) 0.00076 0.0043
Type 2 420 (−0.15, −0.70) (0.72, 1.14) 0.0015 0.0012
Type 3 390 (0.90, 2.19) (3.00, 2.68) 0.0043 0.0096

The average values due to a limited number of tests were not large enough to rule out
the hypothesis that the mean error was 0. The average standard deviation of the error was about
1/10 the width of the car, so this value seems to be good enough for most applications.

The proposed positioning system was further tested with longer trajectories by navigating around
the indoor simulation environment in a circular fashion, viewing the entire environment. In these
experiments, as mentioned in Section 7, after computing the pose of the camera in the update routine,
the known values of the camera height and roll and pitch angles were set directly for that pose.
In addition, the inlier error parameter τ described in Section 5 was dynamically set each iteration,
using a weighted average between the previous batch’s minimal point error and the current batch’s
minimal point error. Note that minimal point error corresponds to the minimum distance a point is
from the wall on which it is supposed to be. More specifically, if εi represents the ith batch’s minimal
point error, then τi = 0.6εi−1 + 0.4εi. The results for these tests are shown in Table 4 and the trajectories
are presented in Figures 22 and 23.

Table 4. Advanced simulation results set 2.

Trajectory Type Traj. Length (cm) ēpos (cm) σ̄pos (cm) ēyaw (rad) σ̄yaw (rad)

Type 4 1854.95 (6.75, 7.53) (5.11, 3.97) 0.014 0.0076
Type 5 1560.0 (8.99, −3.81) (4.05, 4.64) 0.016 0.027

Figure 22. Simulation test trajectory 4.
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Figure 23. Simulation test trajectory 5.

8.3. Real Scenario Testing

In addition to synthetic tests and simulation tests, real scenario testing was done. The test
vehicle was the second generation BARC platform augmented with a monocular camera (IDS Imaging
Development Systems GmbH, Obersulm, Germany) [25] mounted onto the deck of the vehicle at a
height of 14.7 cm (refer to Figure 24). Extensive details on the BARC vehicle can be found at [26].
The on-board camera provided up to 57 fps at full resolution of 3.2 MP with a field of view of 65.6× 51.6
degrees. The vehicle length was 53.5 cm and its width was 28.1 cm. For ground-truth, data which
combined both manual and image-based measurements was used. The lab floorplan is shown in
Figure 25 with active walls shown in blue. The images were captured by the computer on the vehicle
and having the vehicle work autonomously is expected to happen in the near future. At the current
stage, the vehicle was used for data acquisition and actual computations were done offline on a
PC computer.

For one such test, the proposed method was compared to a method which coupled
ORB-SLAM2 [4] with a ground plane estimation algorithm. Because ORB-SLAM2 does not provide
global scale camera motion automatically, the scale was obtained during an initialization framework
which ran LIBVISO2 [27] on the first nine frames to extract the scale from ground plane estimation
using the camera height. This scale value was subsequently applied to the entire ORB-SLAM2 solution.
The results are presented in Table 5. The proposed system performed with significantly higher
accuracy in both position and orientation. As shown in Figure 26, due to the undershoot nature of
the ORB-SLAM2 trajectory, it can be seen that computing the global scale using a wall–plane pair with
the proposed system was more effective than relying on ground plane estimation. Thus, as can be seen,
the standard deviation of the positioning error for the proposed system was shown to be about five
times less than that for the compared system in the x-direction. In addition, the standard deviation of
the orientation error of the proposed system was about 2.5 times less than that of the ORB-SLAM2
system. Because the scale factor does not directly affect the orientation, this result is attributed to
the refinement from the constrained Bundle Adjustment optimization which utilizes a wall–plane pair
as an external constraint.
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Table 5. Real-world test comparison.

Method Approx. Traj. Length (cm) ēpos (cm) σ̄pos (cm) ēyaw (rad) σ̄yaw (rad)

Proposed 728 (−0.39, −4.49) (4.09, 5.46) −0.0022 0.034
ORB-SLAM2 +

Ground Plane Est. 728 (−29.16, −18.86) (20.03, 8.87) 0.016 0.087

Figure 24. Robotic vehicle, see [2].

Figure 25. Lab floorplan, see [2].

Figure 26. Real-world test comparison.
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9. Conclusions

This work proposes a vision-based indoor positioning system of a small robotic vehicle.
In comparison to contemporary approaches, the proposed system achieves global positioning without
any dense 3D map or prior scene exploration or infrastructure installation. By utilizing the sparse
knowledge of the floorplan and providing special algorithms to associate extracted planar structure
with a wall of the building, the scale factor, which is inherently lacking in monocular vision, is able
to be resolved. A specially designed Bundle Adjustment optimization provides refinement for the
camera motion while enforcing the localization solution to be at global scale. It was shown that,
in order to obtain global positioning, only a single wall needs to be in view. Throughout this paper,
an idealized floorplan with no errors was assumed. The setup of the problem was idealized also in
other senses such as no illumination problems were assumed and the camera was assumed to be
perfectly calibrated. The effect of more realistic assumptions on the performance of the algorithm is
currently under study together with other possible sources of localization error.
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Appendix A. Probabilities for the Initial Plane Computation

Let S1, S2, and S3 be the three subsets of the point cloud. Furthermore, let p1, p2, p3 be the three
points selected to form the plane (refer to [2]):

Pr(p1 ∈ Si) =
1
3

, (A1)

Pr(p2 ∈ Si|p1 ∈ Si) = α, (A2)

Pr(p2 ∈ Sj|p1 ∈ Si) =


1− α, if j 6= i and Si adj only to Sj,
1−α

2 , if j 6= i and Si adj to Sj and another subset,

0, otherwise,

(A3)

Pr(p3 ∈ Si|p2 ∈ Si ∧ p1 ∈ Si) = β if Si adj to only one subset, (A4)

Pr(p3 ∈ Sj|p2 ∈ Si ∧ p1 ∈ Si) =

{
1− β if j 6= i and Si adj only to Sj,
1−β

2 if j 6= i and Si adj to Sj and another subset,
(A5)

Pr(p3 ∈ Sj|p2 ∈ Si ∧ p1 ∈ Sj) =
1
2

if j 6= i and Si adj to Sj. (A6)

Note that α and β are tuning parameters and β > α. For the experimentation presented
in this paper, α was chosen to be 0.6 and β was selected to be 0.7.

Appendix B. Proof of the Planar Extraction Lemma

Introducing Lagrange multipliers:

L(x, y, λ) =
1
2

[
xT y

] [AT A ATa
aT A aTa

] [
x
y

]
+

1
2

λ(1− xTx), (A7)

L′(x, y, λ) =

[
AT A ATa
aT A aTa

] [
x
y

]
−
[

λx
0

]
=

[
0
0

]
, (A8)
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From the second row:
aT Ax + aTay = 0, (A9)

y = − 1
aTa

aT Ax, (A10)

From the first row:
AT Ax + ATay− λx = 0, (A11)

Plugging in y gives:

AT Ax− ATaaT A
aTa

x− λx = 0, (A12)(
AT A− ATaaT A

aTa

)
x = λx. (A13)

To find x, the above eigenvalue problem is solved. Furthermore, the optimal solution is one
such that λ is minimized:

||
[

A a
] [x

y

]
||2 =

[
xT y

] [AT A ATa
aT A aTa

] [
x
y

]

=
[

xT y
] [λx

0

]
= λxTx

= λ.

(A14)

Thus, minimizing ||
[

A a
] [x

y

]
||2 corresponds to minimizing λ.
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