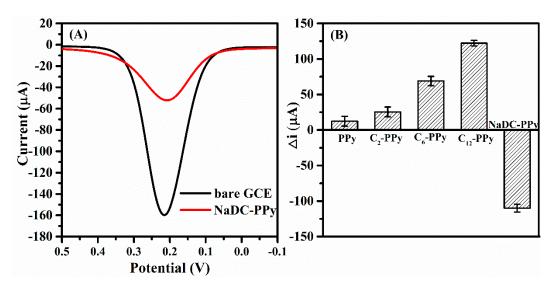

Ionic Liquid-Polypyrrole-Gold Composites as Enhanced Enzyme Immobilization Platforms for Hydrogen Peroxide Sensing

Meng Li¹, Jing Wu¹, Haiping Su¹, Yan Tu¹, Yazhuo Shang ^{1,*}, Yifan He^{2,*}, Honglai Liu¹


- ¹ Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; shangyazhuo@ecust.edu.cn
- ² Department of Biotechnology, School of Sciences, Beijing Technology and Business University, Beijing 100048, China; heyifan@btbu.edu.cn
- * Correspondence: shangyazhuo@ecust.edu.cn; Tel.: +86-21-6425-2767 (Y.Z.S.)

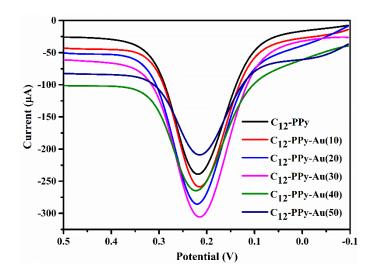

Figure S1. Zeta potential of different samples prepared in water, [C₂min]Br (1 M), [C₆min]Br (1 M), [C₁min]Br (1 M), NaDC (0.5 M) solutions respectively.

Figure S2. Nitrogen adsorption-desorption isotherms and BET surface area (inset) of C₁₂-PPy, C₆-PPy, C₂-PPy and PPy.

Figure S3. (**A**) DPV response of bare GCE and NaDC-PPy/GCE in 0.01 M PBS containing 5 mM $Fe[(CN)_6]^{3-/4-}$ and 0.1 M KCl (pH 7.0). (**B**) Comparison of current response variation of GCE modified by different material.

Figure S4. DPV response of C_{12} -PPy-Au/GCE obtained by scanning C_{12} -PPy/GCE for 10, 20, 30, 40, and 50 segments in 1 mM HAuCl₄ solution at a scan rate of 50 mVs⁻¹ respectively.