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Abstract: During the last decade, Wireless sensor networks (WSNs) have attracted interest due
to the excellent monitoring capabilities offered. However, WSNs present shortcomings, such as
energy cost and reliability, which hinder real-world applications. As a solution, Relay Node (RN)
deployment strategies could help to improve WSNs. This fact is known as the Relay Node Placement
Problem (RNPP), which is an NP-hard optimization problem. This paper proposes to address two
Multi-Objective (MO) formulations of the RNPP. The first one optimizes average energy cost and
average sensitivity area. The second one optimizes the two previous objectives and network reliability.
The authors propose to solve the two problems through a wide range of MO metaheuristics from the
three main groups in the field: evolutionary algorithms, swarm intelligence algorithms, and trajectory
algorithms. These algorithms are the Non-dominated Sorting Genetic Algorithm II (NSGA-II),
Strength Pareto Evolutionary Algorithm 2 (SPEA2), Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D), Multi-Objective Artificial Bee Colony (MO-ABC), Multi-Objective Firefly
Algorithm (MO-FA), Multi-Objective Gravitational Search Algorithm (MO-GSA), and Multi-Objective
Variable Neighbourhood Search Algorithm (MO-VNS). The results obtained are statistically analysed
to determine if there is a robust metaheuristic to be recommended for solving the RNPP independently
of the number of objectives.

Keywords: deployment; energy cost; metaheuristic; multi-objective; relay node; reliability; sensitivity;
wireless sensor network

1. Introduction

Over the last years, Wireless Sensor Networks (WSNs) have attracted a great interest in
both industry and academy. This fact is because of the open possibilities for monitoring systems
and environments with reduced deployment and maintenance costs. As a result, many practical
applications were rolled out with the advancement of technologies. For instance, they were successfully
applied for smart grids, smart farming, and smart buildings [1–3].

A Traditional Wireless Sensor Network (T-WSN) is composed of many sensors capturing
information and a single sink node (or several ones) collecting all data. The sensors have some
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interesting features, which encourage the use of this technology. For instance, they are small,
power-autonomous, wireless, cheap, and able to capture different types of measures in the same
device. Moreover, the wire absence facilitates the network deployment, meaning a reduction of the
deployment costs. These features, among others, allow considering WSNs in environments, where the
deployment of wired technologies would be expensive or even impossible [4].

Nevertheless, WSNs also present important shortcomings, e.g., latency, coverage, energy efficiency,
computing capacity, security, and network lifetime. Such factors are important for maintaining the
Quality of Service (QoS), which is critical for many real-world applications [5]. One aspect of great
importance in WSNs is energy efficiency. This fact is due to sensors are usually powered by batteries,
whose replacement is often difficult, involving a cost and a loss of performance [6].

In case that a T-WSN considers a simple star topology, the energy cost distribution is similar
for all sensors over the operation time. However, in a real scenario, the topology is quite different
because of network size, application requirements, or land orography. Under these circumstances,
it is usual to consider a multi-hop topology, where sensors relay data. As expected, the energy
cost distribution in a multi-hop topology could be unbalanced due to the relaying task of sensors,
generating bottlenecks, i.e., sensors subject to higher energy costs than others, meaning that batteries
drain faster. These bottlenecks could generate disconnected areas in the WNS, negatively affecting
QoS. A possible solution to this issue is the T-WSN deployment with redundant sensors. However,
this focus implies high maintenance and deployment costs.

In response to the need to avoid bottlenecks in multi-hop topologies, a device specialized in
communication tasks and called Relay Node (RN) was added to T-WSNs [7]. RNs send all information
received to the sink node, so reducing the workload of sensors in the vicinity. There are two different
approaches under this network model: Single-Tiered and Two-Tiered WSNs, ST-WSNs and TT-WSNs,
respectively. The first model considers that all devices can communicate among them by following
a multi-hop routing protocol. The second model is a cluster-based network, where the sensors send
data to the RN in one hop; then, the RN forwards the data to the sink node in one or more hops,
where the path only includes other RNs and the sink node. In both network models, RNs should have
higher energy capacity than sensors, e.g., having large batteries, being plugged into the grid, or being
energy-harvesting devices. As a consequence, RNs are significantly more expensive than sensors,
and then their deployment should be carefully studied to maximise the investment.

The deployment of WSNs was defined as a Non-deterministic Polynomial-time hard (NP-hard)
optimization problem in the literature [8,9]. As known, exact techniques are not recommended for
solving NP-hard problems, due to computing time increases exponentially with the problem dimension.
Instead, approximate techniques should be considered, e.g., heuristics and metaheuristics [10].
Note that it is possible to solve NP-hard problems using exact techniques for instances of limited
size [11].

If the deployment problem considers a single-objective focus, the most relevant performance
metric is selected as the optimization objective, while the remaining metrics are treated as constraints.
This single-objective approach may be biased in real-world applications because it is supposed the
importance of one metric to the detriment of others. A Multi-Objective (MO) approach means a more
realistic focus, where several conflicting objectives are simultaneously optimized [12].

On this basis, this paper studies how to efficiently deploy energy-harvesting RNs in
previously-established static T-WSNs by following an ST network model. This problem is known as
the Relay Node Placement Problem (RNPP). To this end, the authors apply a set of MO metaheuristics
to solve two formulations of the same RNPP with a different number of objectives: two and three.
The goal of this analysis is to identify potential robust MO techniques, which could be recommended
as a general solving-method for problems as the one considered in this work. To the best of our
knowledge, this is the first work which performs this type of study for a WSN deployment problem.

The following tasks are performed through this study:
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• A formal statement is provided for the two formulations of the RNPP addressed. The first
formulation optimizes Average Energy Cost (AEC) and Average Sensitivity Area (ASA).
The second formulation optimizes the two previous objectives and Network Reliability (NR).

• The authors apply eight MO metaheuristics specially adapted for solving the problem addressed.
The algorithms are from the three main groups in the field [13]: Evolutionary Algorithms
(EAs), Swarm Intelligence Algorithms (SIAs), and Trajectory Algorithms (TAs). Concretely,
the authors consider three EAs: Non-dominated Sorting Genetic Algorithm II (NSGA-II) [14],
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [15], and Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) [16]. Three SIAs: Multi-Objective Artificial
Bee Colony (MO-ABC) [17], Multi-Objective Firefly Algorithm (MO-FA) [18], and Multi-Objective
Gravitational Search Algorithm (MO-GSA) [19]. A TA: Multi-Objective Variable Neighbourhood
Search Algorithm (MO-VNS) [20]. A modified approach of MO-VNS and called MO-VNS* is also
considered, as will be discussed in Section 5.

• The previously introduced MO metaheuristics are applied for solving the two formulations of the
RNPP while optimizing a freely available dataset proposed by ourselves in [21]. This is because
standard data sets do not exist for the problem definition. Instead, authors in the recent scientific
literature consider non-public or randomly generated data sets. Thus, the results obtained in this
paper could be replicated or improved by other authors in future works.

• The results obtained are analysed through an accepted statistical methodology to determine if
there is any metaheuristic which provides a significantly better performance for each formulation.
As a result, we could conclude if there is any metaheuristic which provides a robust performance
independently of the problem complexity and the number of objectives.

The rest of this paper is structured as follows. Section 2 discusses the related work. Section 3
describes the WSN model considered. Section 4 defines the two optimization problems. Section 5
discusses the MO metaheuristics considered. Section 6 includes the solving strategy. Section 7 exposes
the experimental results. Finally, conclusions and future lines of research are left for Section 8.

2. Background

This section reviews related works within the RNPP in WSNs, focusing on the two sets of
techniques mainly considered in the literature, which are heuristics and metaheuristics.

Starting with heuristics, we may cite the following relevant works. Hou et al. [7] deployed RNs in
TT-WSNs while minimizing the network geometric deficiencies and maximizing the network lifetime.
Tang et al. [22] applied two polynomial time approximation algorithms to determine which was the
minimum number of RNs to ensure fault-tolerance and connectivity in TT-WSNs. Wang et al. [23]
optimized the network cost in TT-WSNs with constraints on the lifetime and connectivity, while
considering two models: all nodes were energy limited and the RNs were not energy limited. Lloyd
and Xue [24] optimized the network lifetime and preserved connectivity in ST-WSNs by following
two approaches: between each pair of sensors there was a path composed of RNs and/or sensors,
and on the other hand, the path included only RNs. Han et al. [25] maximized fault-tolerance in
ST-WSNs while assuming sensors with different transmission radius. Xu et al. [26] studied the impact
of random device placement on connectivity and lifetime in TT-WSNs. Misra et al. [27] ensured
connectivity in ST-WSNs by deploying a minimum number of RNs, where the RNs were constrained to
be placed at a subset of candidate locations, this is the so-called Constrained RNPP (C-RNPP). Nigam
and Agarwal [28] designed a branch-and-cut algorithm to deploy the minimum number of RNs in
ST-WSNs, such that there was a prespecified delay bound between the sensors and the sink node.
Misra et al. [29] addressed the C-RNPP in ST-WSNs minimising the number of RNs needed, while
keeping connectivity, in an energy-harvesting network, in which the energy harvesting potential of
the candidate locations was known a priori. Ma et al. [30] proposed a connectivity-aware algorithm
for RN placement in TT-WSNs. Concretely, the authors considered a local search approximation
algorithm to solve the problem. Djenouri and Bagaa [31] proposed a heuristic method to prolong the
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network lifetime by deploying additional sensors and RNs in both ST and TT-WSNs by following
a C-RNPP. Ranga et al. [32] proposed a method to heal the network partition problem in ST-WSNs
focused on connectivity. Izadi et al. [33] proposed a fuzzy-based self-healing coverage scheme for
randomly deployed mobile sensor nodes in ST-WSNs. The proposed scheme determined the uncovered
sensing areas and then selected the best mobile nodes to be moved to minimize the coverage hole.
Sitanayah et al. [34] proposed two algorithms (Greedy-MSP and GRASP-MSP) for solving the problem
of multiple sink placement to minimise the deployment cost while ensuring that each sensor node in the
network was double-covered. They also proposed two algorithms (Greedy-MSRP and GRASP-MSRP)
for solving the problem of deploying sinks and RNs minimise the deployment cost and guarantee that
all sensor nodes in the network were double-covered. Bagaa et al. [35] tackled the deployment of RNs
in ST-WSNs by following a C-RNPP. The authors focused on minimising the outage probabilities when
constructing the routing tree by adding a minimum number of RNs that guaranteed connectivity.

Following with metaheuristics, we may cite the following relevant works. Zhao and Chen [36]
implemented a Particle Swarm Optimization (PSO) to minimize the energy expenditure in ST-WSNs.
Perez et al. [37] assumed an MO-EA to optimize the number of RNs deployed and the energy cost in
ST-WSNs by following a C-RNPP. Peiravi et al. [38] considered an MO-GA to optimize the network
lifetime for several delay values in TT-WSNs. Gupta et al. [39] proposed two algorithms for relay
node placement in ST-WSNs, providing k-connectivity of the sensor nodes, where the first algorithm
is a Genetic Algorithm (GA) and the second one is based on a greedy approach. Hashim et al. [40]
proposed an enhanced deployment algorithm based on Artificial Bee Colony (ABC) to extend the
lifetime in TT-WSNs. George and Sharma et al. [41] considered a GA to deploy RNs in ST-WSNs by
following a C-RNPP approach to minimise the number of RNs while providing maximum connectivity.
Yu et al. [42] studied how to deploy RNs in ST-WSNs while optimizing energy cost and reliability,
using to this end three MO metaheuristics.

The proposal in this work differs from the papers introduced before in the following: (i) the
network model considers a Single-Tiered (ST) approach, which is usual in medium-size networks
assuming low-cost devices, such as occurs in intensive agriculture [43]. (ii) In this model, the RNs are
similar to sensors, but without having electronics for capturing data, instead, they are specialized in
communication. Moreover, RNs have harvested capabilities and then, they can be deployed without
taking into account the existence of power sources, such as plugs. This fact results in an unconstrained
RNPP, meaning that the search space is greater than in the C-RNPP focus. (iii) We address the RNPP
through MO metaheuristics, providing a trade-off between the conflicting objectives, not as with
heuristics, which is useful in the decision-making of network designers. As introduced before, many
heuristics were proposed for addressing the ST-RNPP [24,25,27–29,31–33,35]. However, only a few
papers considered metaheuristics to this end [36,37,39,41,42]. Regarding these latest works, the authors
in [36,39,41] considered a single-objective focus and our proposal is MO. The authors in [37] considered
a MO focus for the number of NRs and energy cost, but following a C-RNPP. Finally, the authors
in [42] considered a similar focus to ours, but assuming three MO metaheuristics and an optimization
problem with two objectives (reliability and energy cost). In our proposal, we consider a wide range
(seven) of MO metaherustics to solve two formulations of the RNPP, with two and three objectives,
to identify a robust metaheuristic to solve the problem.

This work is partially inspired by some early papers. The bi-objective RNPP was addressed
in [44–46] for NSGA-II, SPEA2, MO-ABC, MO-GSA, MO-VNS, and MO-VNS*. The three-objective
RNPP was addressed in [47] for NSGA-II, SPEA2, MOEA/D, MO-ABC, MO-VNS, and MO-FA.
This paper presents a more complete development with an intensive statistical study comparing
the performance of the metaheuristics solving the two RNPPs. As expected, this work includes
experimental results never published before, such as the performance of MO-FA and MOEA/D solving
the bi-objective problem and MO-GSA and MO-VNS* for the three-objective case.
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3. Network Model

This section describes the WSN model considered, including general assumptions and specific
details about energy cost, sensitivity area, network lifetime, and network reliability. For clarity, the
mathematical notation used in this work is described in the abbreviation part of this document.

3.1. General Assumptions of the WSN Model

1. The network is composed of a sink node, s̃s sensors, and s̃r RNs, which can be linked following an
ST approach if they are at a distance lower than the communication radius rc. All these devices
are placed on a same outdoor unrestricted 2D-surface with size dx × dy, where there is not any
relevant obstacle nor external interference.

2. Sensors are powered by batteries. The sink node and RNs are energy-harvesting devices, having
enough energy capacity for operating over network lifetime.

3. Initially, at time t = 0, all sensors start with the same energy capacity iec in the batteries. If a
sensor is exhausted during operation (t > 0), it cannot be linked again, i.e., lifetime after battery
replacement is not considered.

4. Sensors capture information about the environment on a regular basis with a sensitivity radius rs,
i.e., a sensor covers a circumference of radius rs. All information captured is immediately sent to
the sink node.

5. The sink node is the only connection point of the network to the outside.
6. RNs are low-cost devices with a similar conception that sensors, but without capturing data. Thus,

they only send all the information received to the sink node.
7. RNs have the necessary computational resources to manage network traffic while maintaining a

low-power consumption to facilitate the harvesting design and reduce the cost of the solution.
This fact is usually addressed by using a low-power microprocessor, which generally has a higher
computing capacity than the one used in the sensors.

8. The routing protocol for all devices is the one provided by Dijsktra’s Algorithm [48] for minimum
path length among devices.

9. A perfect synchronization among devices and an efficient MAC protocol are supposed, reducing
energy cost because of retransmissions and idle time.

3.2. Energy Cost

We consider the energy model proposed by [49] to simulate the energy cost of sensors during
operation time. Note that sensors are the only devices which are subject to energy limitations in our
model. In this formulation, a sensor i = (x, y) ∈ Ss(t) where x ∈ [0, dx] and y ∈ [0, dy] sends a number
of packets Pi(t) at time t > 0 given by

Pi(t) = 1 + Rpi(t). (1)

This formulation considers the number of packets captured by i, a packet per instant time, and the
number of packets relayed by the sensor i, Rpi (t), because of the multi-hop routing protocol, which is
given by

Rpi(t) = ∑
j∈{Ss(t)−i}

zc
j,i(t), (2)

where zc
j,i(t) is a variable assuming 1 if i ∈ Ss(t) is in the minimum path between j ∈ Ss(t) and the

sink node c at t > 0, and 0 otherwise.
The energy cost Eei(t) of a sensor i at time t is given by

Eei(t) = Pi(t) β amp k (||i− wc
i (t)||d)α, (3)
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where || · ||d is the Euclidean distance between two points, β > 0 is the transmission quality parameter,
amp > 0 is the energy cost per bit of the power amplifier, k > 0 is the information packet size in bits,
wc

i (t) is the variable providing the next device in the minimum path between i ∈ Ss(t) and the sink
node at time t > 0, and α ∈ [2, 4] is the path loss exponent. Thus, the energy charge Eci(t) of a sensor i
at time t is given by

Eci(t) =

{
Eci(t− 1)− Eei(t) if t > 0
iec if t = 0

, (4)

where iec denotes the initial energy charge of the sensors, for iec > 0. Hence, if Eci(t) equals zero,
the sensor is out of energy, and then it cannot be linked. Otherwise, it is active.

3.3. Sensitivity Area

As stated before, a sensor covers a circumference of radius rs and area πr2
s . Therefore, at time t,

the WSN sensitivity area is calculated as the union of the areas of the active sensors at time t with a path
to the sink node, ss(t). The intersection calculation is a known complex problem, where computational
effort increases exponentially with the number of circles [50]. As a usual approach to approximate this
calculation, the set of binary demand points D̃p(t) is uniformly distributed on the surface [51–53] .
Then, the number of demand points d̃p(t) with an active sensor at a distance lower than rs are counted.
According to this approximation, the sensitivity area A(t) provided by a WSN at time t > 0 is given by

A(t) =
1

d̃p(t)
∑

p∈D̃p(t)

ap(t), (5)

where ap(t) is the indicator function defined as

ap(t) =

{
1 if ∃i ∈ Ss(t) : ||p− i||d < rs

0 otherwise
, (6)

i.e., ap(t) equals 1 if there is an active sensor i at a distance lower than rs from the demand point p.
Within this approach, we consider that demand points follow a grid distribution with a distance

between neighbouring points of dpn. Hence, the number of demand points at time t > 0 is

d̃p(t) =
dx dy

dpn
. (7)

3.4. Network Lifetime

The network lifetime tn is defined as the number of time periods over which the information
provided by the network is useful for an application. We formulate this concept based on a threshold
sensitivity area coth, that is

tn = ||{t > 0 ∈ τ : A(t) > coth}||, for τ = 0, 1, 2, . . . , (8)

where || · || is the cardinal of a set and τ is the set of time periods.

3.5. Network Reliability

We consider the network reliability formulation in [54], which is defined based on the number of
disjoint paths between a given sensor and the sink node through Suurballe’s Algorithm [55]. Thus,
the reliability rei of a sensor i of the initial sensor sets S̃s is

rei = 1−
djpc

i

∏
l=1

(
1− (1− err)hi,c

l

)
, (9)
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where djpc
i denotes the number of disjoint paths between the sensor i ∈ S̃s and the sink node, err ∈ [0, 1]

is the local channel error, and hi,c
l is the number of hops in the l-th disjoint path between i ∈ S̃s and the

sink node.

4. Optimization Problems

Let f1 ∈ R+ be the AEC of the sensors over the network lifetime defined as

f1 =
1
tn

tn

∑
t=1

 ∑
i∈Ss(t)

Eei(t)
ss(t)

 . (10)

This objective is related to the energy efficiency problem in WSNs [56], whose goal is to reduce
energy cost while balancing energy distribution and increasing network lifetime.

Let f2 ∈ [0, 1] be the ASA provided by the WSN over the network lifetime defined as

f2 =
1
tn

tn

∑
t=1

A(t). (11)

This objective is related to the coverage problem in WSNs [57], whose goal is to optimize diversity
and the amount of information provided by the network.

Let f3 ∈ [0, 1] be the NR based on the connectivity of sensors defined as

f3 =
1
s̃s

∑
i∈S̃s

rei. (12)

This objective is related to the reliability problem in WSNs [58], whose goal is to get
trustable networks.

On this basis, the authors define the bi-objective optimization problem as follows. Given a
previously deployed T-WSN, i.e., s̃s initial sensors and a sink node, the objective is to deploy s̃r

RNs assuming an ST network model to

min f1, max f2, (13)

subject to
∀r ∈ S̃r, r = (x, y) : x ∈ [0, dx] and y ∈ [0, dy]. (14)

That means, all the RNs deployed are in the limits of the scenario.
The three-objective optimization problem is similar to the bi-objective one stated before, but

including an additional objective, while maintaining the same constraints. That is, the goal is to

min f1, max f2, max f3. (15)

Note that f1, f2, and f3 are conflicting with each other as shown in [47]. As is well-known, this fact
is a fundamental requirement, which any MO optimization problem should fulfil.

5. Metaheuristics

This section describes the MO metaheuristics considered for solving the two problems.
As introduced before, some of the metaheuristics were exposed in prior works by ourselves and
then, we chose not to include the whole implementing information in the present proposal to avoid
duplicity. Instead, we next detail some key aspects adapting the meheuristics to solve the problem,
for further information we recommend readers going to the specific works [44–47]:
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• NSGA-II: It considers two populations Pg
n and Qg

n with psn individuals each, where Pg
n saves

the parents of the current iteration g and Qg
n saves the offspring generated based on Pg

n .
The individuals in the populations follow the same chromosome structure, where each individual
has many genes as RNs should be deployed in the solution. Note that a gene includes the
2D-coordinates of an RN. This structure is considered for the remaining algorithms exposed in this
section. Each individual in Qg

n is generated by applying crossover and mutation operators
based on two previously selected solutions from Pg

n . The crossover operator is the usual
one-point-crossover with a crossover probability cron. The mutation operator applies random
changes in the genes of the solution generated by the crossover operator according to a mutation
probability mutn. The populations for the next iteration are generated as follows. Pg+1

n is generated
by selecting the best psn solutions combining Pg

n and Qg
n according to the crowded-comparison

operator ≺n [14] and Qg+1
n is initialized to empty.

• SPEA2: It considers a regular population Pg
s of size pss and an auxiliary population Pg

n of size
pss, saving the best individuals found so far. The methodology followed by SPEA2 is similar to
NSGA-II, but considering a different selection strategy to ≺n when generating Pg+1

s . We consider
the same crossover and mutation operators as for NSGA-II with probabilities cros and muts.

• MO-ABC: It is an MO approach of ABC, which was adapted by ourselves based on the ≺n

concept. The algorithm considers a population Pg
a with size psa. The parameter sea determines

the percentage of solutions in Pg
a managed by employed forager bees and the remaining ones are

managed by onlooker bees. An employed forager bee tries to improve the solution by looking
in its surrounding, i.e., RN coordinates are lightly modified. Note that the new solution is only
accepted if it is better in fitness value; otherwise, it is discarded. If an employed forager bee tries
to improve the solution limita times without any improvement in fitness value, then the solution
is supposed exhausted, being mandatory be managed by an scout bee. An onlooker bee tries to
improve the solution by looking in the surrounding of a randomly selected employed forager
bee. As before, the solution is only accepted it it is better in fitness value. An scout bee generates
a new solution based on a randomly selected onlooker bee solution from the two first Pareto
fronts in Pg

a . Next, the Euclidean distance between the solution selected and all other solutions
in Pg

a is calculated. The new solution is obtained by combining the ka-nearest solutions to the
selected one, being ka a random value in 2, . . . , 11. On the contrary that for employed forager
and onlooker bees, the solution generated by the scout bee is directly accepted without analyzing
the improvement in fitness value. Pg+1

a is generated by including the solutions generated by the
corresponding bees.

• MO-FA: It is an MO approach of the Firefly Algorithm (FA), which was adapted by ourselves
based on the ≺n concept. In this algorithm, a firefly is a possible solution to the problem and
its brightness is defined by its solution quality. The attractiveness that a brighter firefly causes
in a less bright one implies a movement in its RNs controlled by r f ∈ [0, 1], β0 f ∈ [0, 1], and

λ f ∈ (0, ∞) parameters. Thus, MO-FA considers two populations Pg
f and Qg

f with size ps f , where

Pg
f saves the fireflies at the beginning of the iteration g and Qg

f contains the resulting fireflies

after applying the attractiveness mechanism in Pg
f . The populations for the next iterations are

generated as follows. Qg+1
f is initialized to empty and Pg+1

f is generated by selecting the ps f best

solutions combining Pg
f and Qg

f . Finally, in case that the percentage of non-dominated solutions

in Qg
f , regarding Pg

f is lower than when_sc f ∈ [0, 1], then the mutation operator discussed for

NSGA-II is applied with mutation probability mut f to each solution in Pg+1
f .

• MO-VNS: It considers two populations Pg
v and Sg

v with unlimited size, where Pg
v keeps only

non-dominated solutions and Sg
v saves the solutions from Pg

v considered to explore the search
space during the current iteration g, i.e., Sg

v is put to empty at the beginning of the iteration.
A non-considered solution is selected from Pg

v until all solutions were selected. The solution is
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used to generate new individuals in its surrounding based on neighv neighbourhood structures.
Each structure determines how different could be the new solution compared to the initial one
in terms of maximum displacement of the RNs, which is limited by the nsv ∈ [1, ∞) parameter.
Thus, the neighborhood structures are iteratively applied from higher to lower displacement,
generating new solutions to be included in Pg+1

v if they fulfill the non-dominated requirement.
• MO-VNS*: It considers the same focus as for MO-VNS but including a perturbation mechanism

at the end of each iteration. This mechanism is performed for each solution in Pg+1
v by applying

the mutation operator discussed for NSGA-II and SPEA2 with mutation probability mutv.
• MO-GSA: It is an MO approach of the Gravitational Search Algorithm (GSA), which was adapted

by ourselves based on the ≺n concept. In this algorithm, an object is a possible solution to the
problem and its mass is defined by its solution quality. All objects are mutually attracted by
the Newtonian gravity force, causing a global movement of all objects towards heavier masses,
corresponding the better solutions. The algorithm considers two populations Pg

ga and Qg
ga with

psga individuals, where Pg
ga saves the objects at the beginning of g, before acting gravitational

forces, and Qg
ga contains the resulting objects after applying the forces in Pg

ga. Pg+1
ga is generated

by selecting the best psga solutions combining Pg
ga and Qg

ga. Finally, in case that the percentage
of non-dominated solutions in Qg

ga, regarding Pg
ga is lower than when_scga, then the mutation

operator for NSGA-II is applied with mutation probability mutga to each solution in Pg+1
ga .

• MOEA/D: It decomposes an MO optimization problem into several single-objective sub-problems
by distributing reference points on the Convex Hull of Individual Minima (CHIM), based on the
NBI-Tchebycheff approach [59]. The distribution is performed according to CHIMincm ∈ [1, ∞)

and crowm ∈ (0, ∞) parameters, where CHIMincm defines how the extreme points of the CHIM
are reassigned to increase the search area and crowm defines the distance between two any
reference points. Each reference point is assigned a set of reference points in its neighbouring
according to the Euclidean distance, where the cardinal of this set is given by the neighm parameter.
On this basis, MOEA/D considers a regular population Pg

m, where each individual is associated
with a different reference point in the CHIM, and an auxiliary population Fg

m of undefined size.
Thus, Pg

m contains the individuals considered to generate solutions in the g-th iteration and Fg
m

saves the non-dominated solutions found until g. Over generations and for each solution in
Pg

m, two neighbouring solutions are selected (based on the neighbouring structure previously
generated) to then produce a solution based on the crossover and mutation operators defined for
NSGA-II, with crom and mutm, respectively. The solution generated replaces the previous one
only if it is better in fitness value for the corresponding single-objective sub-problem.

Some of the previously exposed metaheuristics were not considered in prior works for solving
any of the two problems addressed in the present proposal. These algorithms are:

• MO-FA and MOEA/D for the bi-objective approach.
• MO-GSA and MO-VNS* for the three-objective approach.

Without loss of generality, MO-FA, MO-GSA, and MO-VNS* can be implemented with minimal
changes independently of the number of objectives. Most changes are related to the implementation of
≺n as detailed in [45–47].

On the contrary, the implementation of MOEA/D for the bi-objective case requires further
explanation. Suppose a bi-objective optimization problem maximizing f1 and f2. Let F1 =

(maxF( f1), minF( f2)) and F2 = (minF( f1), maxF( f2)) be the two extreme points delimiting the
objective space, where maxF(·) and minF(·) denote the upper and lower bounds of a fitness function.
Let Υ = {r1, . . . , rpsm} be a set of points evenly distributed on the plane I, for ri = (rm

1 , rm
2 ) ∈ Υ,

m ∈ 1, . . . , psm, where psm is the cardinal of Υ and F1, F2 ∈ Υ. Let −→vn = (n1, n2) be a normal vector to
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the plane I. On this basis, the bi-objective optimization problem is decomposed into psm single-objective
minimization subproblems, where the m-th subproblem optimizes the function g(x : rm,−→vn ) given by

g(x : rm,−→vn ) = max{n1 ( f1(x)− rm
1 ), n2 ( f2(x)− rm

2 )}, (16)

where x is a solution to the optimization problem.
In addition of how to decompose the optimization problem, another important aspect in MOEA/D

is the distribution of the reference points Υ in the plane I. Algorithm 1 shows the procedure considered
for distributing such points for the bi-objective approach by following a straight line defined by F1

and F2. This algorithm considers as input F1, F2, crowm, and CHIMincm. Initially, at step 0 (lines
1–3), the new extreme points E1 and E2 depending on F1 and F2 are calculated solving the expression
given by

d(E1, E2) = d(F1, F2) CHIMincm, (17)

where d(·) provides the Euclidean distance between two points. At step 1 (line 4), the number of
divisions nE1,E2 in the segment E1E2 is calculated. Finally, at step 2 (lines 5–8), reference points in the
segment E1E2 are generated. From this point, MOEA/D can be implemented with minimal changes
independently of the number of objectives as detailed in [47].

Algorithm 1 Distribution of the reference points for two objectives.

1: Υ← { }
2: psm ← 0
3: (E1, E2)← scaleExtremePointsCHIM(F1, F2, CHIMincm)
4: nE1,E2 ← d(E1, E2)/crowm
5: for m← 0 to nE1,E2 do
6: Υ← Υ ∪ {E1 + m (E2 − E1)/(nE1,E2)

}
7: psm ← psm + 1
8: end for

6. Solving Strategy

This section discusses the dataset used for analyzing the algorithms, the experimental
methodology, and the parametric sweep task.

6.1. Dataset Description

We consider the freely available dataset in [21] composed of four scenarios. For each of them a
T-WSN was deployed considering that (i) the sink node was placed on the middle of the surface and
(ii) the number of sensors was the lower bound to cover the whole surface defined as

s̃s =
dx dy

π r2
s

. (18)

In this dataset, two rc values, 30 m and 60 m, are considered to simulate different communication
conditions. Hence, two homogeneous instances are defined for each scenario following the notation
dx × dy_rc. Table 1 shows additional details about the dataset, including scenario size, fitness values
without deploying any RN (s̃r = 0) for both rc values, hypervolume reference points, and test cases
(RNs to be deployed using the metaheuristics, while keeping a ratio of number of devices to RNs
lower than 20%). Note that for rc = 60 m, reliability is not necessary to optimize because the number
of disjoint paths is high between any sensor and sink node. Thus, instances with rc = 60 m will not
be optimized using the three-objective approach. The remaining parameters of the network model
take values α = 2.00, β = 1.00, coth = 0.70, k = 128 KB, rs = 15 m, iec = 5 J, and amp = 100 pJ/bit/m2

from the literature [51,60].
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Table 1. Dataset description.

Scenario
Fitness Values Fitness Values Hyp. Reference Points

Test Cases
(dx×dy)

(s̃r = 0, rc = 30) (s̃r = 0, rc = 60) (ideal,nadir)
(s̃r > 0)

f1 f2 f3 f1 f2 f1 f2 f3

50× 50 0.0353 0.9175 0.9964 0.0353 0.9175 (0.02,0.04) (1.00,0.60) (1.00,0.50) 1
100× 100 0.1091 0.8924 0.9567 0.1484 0.8663 (0.02,0.10) (1.00,0.60) (1.00,0.50) 2,3
200× 200 0.2791 0.8710 0.9323 0.3871 0.8243 (0.10,0.30) (1.00,0.60) (1.00,0.50) 2,4,6,9
300× 300 0.4225 0.7644 0.8528 0.6295 0.8122 (0.04,0.50) (1.00,0.60) (1.00,0.50) 6,12,18,24

6.2. Experimental Methodology

The dataset in Section 6.1 is optimized using the previously introduced metaheuristics for each of
the two optimization problems. To this end, we perform 31 independent runs for each metaheuristic,
instance, test case, and optimization problem. Five stop conditions are considered based on the number
of evaluations to study convergence, i.e., 50,000, 100,000, 200,000, 300,000, and 400,000 evaluations.
The results obtained are evaluated using hypervolume and set covering.

6.3. Parametric Sweep

The metaheuristics were configured for solving each problem as follows. (i) Starting from default
values, (ii) a parameter of the algorithm is selected to be tuned. (iii) Then, 31 independent runs
are performed for each value of the parameter in a range, while the others remain fixed. (iv) The
configuration providing the best average behavior based on hypervolume is selected, overwriting
the default parameter value. (v) Next, a non-configured parameter is selected going to step (ii).
This configuring methodology ends when all parameters were selected in step (v). Table 2 shows
the configurations selected (2Obj and 3Obj fields for the bi-objective and three-objective approach,
respectively) and the range studied.

Table 2. Parameter selection.

Parameter 2Obj 3Obj Range

NSGA-II
psn 100 50 [25,50,. . . ,300]
cron 0.50 0.80 [0.05,0.1,0.15,. . . ,0.95]
mutn 0.50 0.80 [0.05,0.1,0.15,. . . ,0.95]

SPEA2
pss 100 50 [25,50,. . . ,300]
pss 100 50 -
cros 0.50 0.60 [0.05,0.1,0.15,. . . ,0.95]
muts 0.50 0.70 [0.05,0.1,0.15,. . . ,0.95]

MO-VNS
neighv 7 9 [4,5,6,. . . ,14]
nsv 2 2 [1,2,3,4,5]

MO-VNS*
neighv 11 10 [4,5,6,. . . ,14]
nsv 3 2 [1,2,3,4,5]
perv 0.10 0.10 [0.05,0.1,0.15,. . . ,0.95]

MO-ABC
psa 100 50 [25,50,. . . ,300]
Sea 0.50 0.25 [0.30,0.35,0.40,. . . ,0.70]
limita 30 15 [10,15,20,. . . ,60]
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Table 2. Cont.

Parameter 2Obj 3Obj Range

MO-FA
ps f 100 100 [25,50,. . . ,300]
r f 0.50 0.85 [0.05,0.1,0.15,. . . ,0.95]
β0 f 0.75 0.70 [0.05,0.1,0.15,. . . ,0.95]
γ f 0.05 0.60 [0.05,0.1,0.15,. . . ,0.95]
mut f 0.60 0.10 [0.05,0.1,0.15,. . . ,0.95]
when_sc f 0.30 0.25 [0.05,0.1,0.15,. . . ,0.95]

MO-GSA
psga 100 25 [25,50,. . . ,300]
mutga 0.40 0.20 [0.05,0.1,0.15,. . . ,0.95]
when_scga 0.05 0.05 [0.05,0.1,0.15,. . . ,0.95]

MOEA/D
CHIMincm 1.30 1.30 [1.00,1.05,. . . ,2.00]
crowm 0.015 0.015 [0.010,0.015,. . . ,0.050]
neighm 0.55 0.05 [0.05,0.10,. . . ,0.95]
crom 0.15 0.15 [0.05,0.10,. . . ,0.95]
mutm 0.25 0.25 [0.05,0.10,. . . ,0.95]

7. Experimental Results

This section includes the experimental results obtained by solving both the bi-objective and the
three-objective RNPPs.

7.1. Bi-Objective Approach

Table 3 shows average hypervolume for MO-VNS*, MO-ABC, MO-VNS, MO-FA, MO-GSA,
and MOEA/D, solving the bi-objective RNPP for each test case and stop condition. In this table,
hypervolumes in bold correspond to results never before published. Note that the hypervolumes
for NSGA-II and SPEA2 were not shown to simplify the table because they reported significantly
lower hypervolumes than the other algorithms, instead, we refer readers to [46]. If we analyze how
hypervolumes change over stop conditions, we check that most algorithms show an homogeneous
growth, reaching an asymptotic trend for 400,000 evaluations. That means that the set of stop conditions
selected is representative to study convergence. On the other hand, if we analyze the tables focusing on
shaded cells showing higher (better) hypervolumes, we note that some algorithms seem to outperform
others. To check if the differences are significant, we analyze the data using the statistical methodology
as follows.

First, we remove possible outliers from the hypervolume distributions. Next, we analyze if data
follow a normal distribution or not through Kolmogorov-Smirnov-Lilliefor’s and Shapiro-Wilk’s
tests with hypothesis H0: data follow a normal distribution and H1: otherwise. As both tests
provided p-values lower than 0.05 for all cases, we should consider a non-parametric test to
compare the algorithms two by two. Specifically, as samples are independent, we consider
Wilcoxon-Mann-Whitney’s test with hypothesis H0: Hypi ≤ Hypj, ∀i, j ∈ {1 = NSGA, 2 =

SPEA2, 3 = MO-VNS, 4 = MO-VNS*, 5 = MO-ABC, 6 = MO-FA, 7 = MO-GSA, 8 = MOEA/D},
i 6= j and H1: Hypi > Hypj. Table 4 shows the percentage of test cases where a metaheuristic is
significantly better than any other based on the p-values obtained before analyzed with a significance
level of 0.05 and according to instance size.
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Table 3. Median hypervolume obtained solving the bi-objective RNPP.

MO-VNS*(Hyp) MO-ABC(Hyp)

Evaluations (Stop Condition) Evaluations (Stop Condition)dx × dy_rc(s̃r)

50,000 100,000 200,000 300,000 400,000 50,000 100,000 200,000 300,000 400,000

50 × 50_30(1) 66.79% 66.84% 66.88% 66.94% 66.98% 67.07% 67.07% 67.07% 67.07% 67.07%
50 × 50_60(1) 66.57% 66.79% 66.92% 66.96% 67.00% 67.07% 67.07% 67.07% 67.07% 67.07%

100 × 100_30(2) 41.90% 42.73% 43.49% 44.69% 44.69% 44.64% 44.64% 44.65% 44.66% 44.66%
100 × 100_30(3) 58.17% 58.48% 58.53% 58.52% 58.57% 58.79% 59.11% 59.15% 59.16% 59.18%

100 × 100_60(2) 34.46% 34.56% 34.56% 34.58% 34.59% 34.39% 34.40% 34.41% 34.41% 34.41%
100 × 100_60(3) 60.74% 61.29% 61.62% 62.20% 62.32% 61.57% 61.95% 62.02% 62.04% 62.06%

200 × 200_30(2) 35.44% 37.35% 38.35% 38.66% 39.03% 37.98% 37.98% 37.99% 37.99%
200 × 200_30(4) 48.64% 50.13% 51.56% 52.88% 53.71% 48.41% 49.89% 52.59% 53.21% 53.28%
200 × 200_30(6) 66.48% 67.06% 67.47% 67.70% 67.80% 59.69% 62.60% 65.80% 67.74% 68.27%
200 × 200_30(9) 77.99% 78.97% 79.63% 80.06% 80.31% 73.07% 75.35% 77.40% 78.79% 80.08%

200 × 200_60(2) 23.43% 24.26% 24.51% 24.59% 24.66% 24.73% 24.82% 24.83% 24.84% 24.85%
200 × 200_60(4) 61.83% 61.95% 62.16% 62.27% 62.39% 59.82% 61.88% 62.45% 62.50% 62.55%
200 × 200_60(6) 76.83% 77.42% 77.84% 78.06% 78.30% 73.92% 75.29% 77.00% 78.19% 78.70%
200 × 200_60(9) 89.74% 90.46% 91.08% 91.37% 91.43% 87.02% 88.66% 90.19% 91.19% 92.09%

300 × 300_30(6) 41.09% 41.66% 42.18% 42.42% 42.56% 40.24% 41.45% 42.51% 43.09% 43.46%
300 × 300_30(12) 47.31% 47.95% 48.50% 48.77% 48.87% 47.46% 49.40% 50.52% 51.04% 51.38%
300 × 300_30(18) 51.31% 52.08% 52.78% 53.28% 53.51% 51.90% 54.31% 56.07% 56.79% 57.41%
300 × 300_30(24) 55.94% 57.58% 58.86% 59.26% 59.64% 55.41% 59.05% 61.93% 63.46% 64.24%

300 × 300_60(6) 37.45% 37.89% 38.31% 38.57% 38.73% 34.55% 35.89% 37.86% 39.17% 39.94%
300 × 300_60(12) 56.61% 57.35% 57.87% 58.18% 58.32% 52.61% 54.36% 55.75% 56.63% 57.30%
300 × 300_60(18) 63.11% 63.67% 64.08% 64.34% 64.48% 62.55% 63.96% 65.31% 65.93% 66.37%
300 × 300_60(24) 67.86% 68.47% 69.00% 69.25% 69.46% 67.46% 68.78% 69.86% 70.41% 70.78%

MO-VNS(Hyp) MO-FA(Hyp)

Evaluations (Stop Condition) Evaluations (Stop Condition)dx × dy_rc(s̃r)

50,000 100,000 200,000 300,000 400,000 50,000 100,000 200,000 300,000 400,000

50 × 50_30(1) 63.08% 67.03% 67.03% 67.03% 67.03% 67.07% 67.07% 67.07% 67.07% 67.07%
50 × 50_60(1) 67.03% 67.03% 67.03% 67.03% 67.03% 67.07% 67.07% 67.07% 67.07% 67.07%

100 × 100_30(2) 43.62% 44.67% 44.69% 44.69% 44.69% 44.66% 44.68% 44.69% 44.69% 44.69%
100 × 100_30(3) 58.33% 58.65% 58.85% 59.09% 59.24% 58.47% 58.59% 58.74% 58.83% 58.84%

100 × 100_60(2) 34.55% 34.58% 34.60% 34.61% 34.63% 33.99% 34.10% 34.25% 34.36% 34.41%
100 × 100_60(3) 61.41% 62.05% 62.17% 62.25% 62.33% 61.54% 61.84% 62.00% 62.08% 62.14%

200 × 200_30(2) 37.63% 38.82% 39.93% 40.75% 41.07% 38.06% 38.60% 41.02% 41.03% 41.05%
200 × 200_30(4) 51.99% 53.29% 54.31% 54.74% 54.96% 49.95% 50.63% 50.95% 51.20% 51.16%
200 × 200_30(6) 64.36% 65.47% 66.31% 66.63% 66.87% 66.70% 67.29% 67.52% 67.71% 67.68%
200 × 200_30(9) 74.57% 75.84% 77.12% 77.75% 78.28% 78.92% 80.26% 80.76% 81.19% 81.30%

200 × 200_60(2) 24.43% 24.55% 24.65% 24.68% 24.72% 24.38% 24.52% 24.61% 24.70% 24.74%
200 × 200_60(4) 61.28% 61.68% 61.95% 62.17% 62.29% 61.61% 61.73% 61.79% 61.83% 61.86%
200 × 200_60(6) 75.95% 76.75% 77.22% 77.61% 77.86% 76.38% 76.99% 77.19% 77.24% 77.34%
200 × 200_60(9) 89.42% 90.21% 91.02% 91.39% 91.59% 90.84% 91.30% 91.51% 91.64% 91.71%

300 × 300_30(6) 39.85% 40.57% 41.22% 41.67% 41.89% 40.68% 41.15% 41.40% 41.58% 41.65%
300 × 300_30(12) 45.28% 46.39% 47.45% 47.97% 48.33% 49.20% 50.25% 51.06% 51.25% 51.41%
300 × 300_30(18) 48.49% 49.51% 50.47% 51.04% 51.59% 54.15% 56.56% 58.06% 58.72% 59.13%
300 × 300_30(24) 50.54% 51.88% 52.92% 53.75% 54.28% 59.68% 63.40% 65.98% 66.58% 66.90%

300 × 300_60(6) 35.79% 36.39% 37.26% 37.69% 38.11% 38.09% 38.57% 38.83% 38.90% 38.99%
300 × 300_60(12) 53.68% 54.99% 55.95% 56.51% 56.86% 58.28% 58.97% 59.40% 59.55% 59.64%
300 × 300_60(18) 61.69% 62.75% 63.79% 64.26% 64.57% 65.19% 66.47% 66.93% 67.21% 67.30%
300 × 300_60(24) 66.52% 67.44% 68.28% 68.69% 68.95% 69.25% 70.59% 71.34% 71.59% 71.69%

MO-GSA(Hyp) MOEA/D(Hyp)

Evaluations (Stop Condition) Evaluations (Stop Condition)dx × dy_rc(s̃r)

50,000 100,000 200,000 300,000 400,000 50,000 100,000 200,000 300,000 400,000

50 × 50_30(1) 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07%
50 × 50_60(1) 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07% 67.07%

100 × 100_30(2) 43.51% 44.10% 44.46% 44.53% 44.64% 44.22% 44.25% 44.32% 44.34% 44.35%
100 × 100_30(3) 55.57% 56.21% 57.32% 58.03% 58.24% 58.30% 58.39% 58.41% 58.43% 58.43%

100 × 100_60(2) 33.59% 33.85% 34.20% 34.33% 34.39% 33.33% 33.61% 33.76% 33.92% 34.04%
100 × 100_60(3) 60.47% 61.07% 61.61% 61.81% 61.89% 57.79% 58.09% 58.40% 58.65% 58.81%

200 × 200_30(2) 37.36% 37.46% 37.92% 38.51% 38.87% 37.25% 37.57% 37.86% 37.97% 38.25%
200 × 200_30(4) 47.42% 48.89% 51.24% 52.56% 53.02% 48.08% 48.71% 49.68% 50.01% 50.63%
200 × 200_30(6) 60.76% 63.50% 65.13% 65.90% 66.44% 60.91% 63.55% 63.35% 63.57% 63.98%
200 × 200_30(9) 72.35% 74.83% 76.78% 77.69% 78.48% 74.45% 75.41% 76.25% 76.56% 76.78%

200 × 200_60(2) 22.69% 23.38% 24.28% 24.37% 24.57% 23.82% 23.98% 24.11% 24.17% 24.18%
200 × 200_60(4) 58.79% 60.20% 61.16% 61.41% 61.66% 57.01% 57.68% 58.15% 58.32% 58.42%
200 × 200_60(6) 72.31% 74.04% 75.77% 76.58% 77.02% 70.97% 71.72% 72.19% 72.50% 72.83%
200 × 200_60(9) 83.86% 86.74% 89.78% 90.54% 91.09% 84.15% 84.71% 85.28% 85.58% 85.74%

300 × 300_30(6) 37.70% 38.89% 39.95% 40.52% 40.89% 37.78% 38.41% 38.95% 39.21% 39.41%
300 × 300_30(12) 43.71% 45.79% 47.68% 48.44% 49.04% 46.02% 46.68% 47.38% 47.84% 48.04%
300 × 300_30(18) 48.67% 51.12% 54.09% 55.25% 56.38% 53.29% 54.00% 54.65% 55.09% 55.30%
300 × 300_30(24) 56.82% 60.25% 62.50% 63.56% 64.47% 58.03% 59.22% 60.05% 60.44% 60.70%

300 × 300_60(6) 33.80% 35.10% 36.81% 37.57% 37.99% 36.51% 36.86% 37.40% 37.56% 37.65%
300 × 300_60(12) 54.37% 56.14% 57.33% 57.97% 58.54% 55.13% 56.01% 56.61% 56.80% 56.96%
300 × 300_60(18) 62.37% 63.81% 65.78% 66.70% 67.36% 62.97% 63.60% 64.27% 64.56% 64.77%
300 × 300_60(24) 66.15% 67.92% 70.01% 71.17% 71.72% 67.65% 68.27% 68.79% 69.11% 69.31%
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Analyzing Table 4, for 50 × 50 instances, we check that MO-ABC, MO-FA, MO-GSA, and
MOEA/D provide a similar behavior with up to 9.71%, followed by MO-VNS and MO-VNS* with up
to 6.31% and 4.85%, respectively. For 100 × 100 instances, MO-VNS provides the best behavior with up
to 11.37%, followed by MO-FA and MO-ABC with up to 9.51% and 9.41%, respectively. For 200 × 200
instances, MO-FA provides the best behavior with up to 10.77%, followed by MO-VNS and MO-VNS*
with up to 10.03%. For 300 × 300 instances, MO-FA provides the best behavior with up to 13.71% with
up to 13.71%, followed by MO-ABC and MO-VNS* with up to 8.75% and 7.45%, respectively. For all
instances, MO-FA provides the best behavior with up to 11.49%, followed by MO-ABC and MO-VNS*
with up to 8.88% and 8.40%, respectively. From this hypervolume analysis, we conclude that MO-FA
provides the best behavior solving the problem in general. Focusing on instance size, MO-FA is also
the best algorithm solving small and large instances (50 × 50, 200 × 200, and 300 × 300) and MO-VNS
is better suited for medium size instances (100 × 100).

In Table 4, the behavior of MO-VNS and MO-VNS* is significantly different although their focus
is almost the same, i.e., MO-VNS is better for small instances, while MO-VNS* is better for large ones.
This fact is due to, for small instances, the perturbation mechanism in MO-VNS* penalizes the number
of evaluations available for exploitation, while search space is not of concern, resulting in a better
performance of MO-VNS. On the other hand, the perturbation mechanism in MO-VNS* is useful for
exploring bigger search spaces in large instances, without being of concern the number of evaluations
consumed by the process, resulting in a better performance of MO-VNS*.

Table 5 shows the average set coverage metric of an algorithm compared to the others according
to instance size. The metric was calculated using the median Pareto front obtained for each algorithm
solving a given instance. Analyzing this table, for 50 × 50 instances, we check that MO-ABC, MO-FA,
and MOEA/D provide a similar behavior with up to 100.00%, followed by MOEA/D and MO-VNS
with up to 90.00% and 88.28%, respectively. For 100 × 100 instances, MO-VNS provides the best
behavior with up to 87.56%, followed by MO-VNS* and MO-FA with up to 83.11% and 75.93%.
For 200 × 200 instances, MO-FA provides the best behavior with up to 77.52%, followed by MO-VNS*
and MO-VNS with up to 68.92% and 66.62%. For 300 × 300 instances, MO-FA provides the best
behavior with up to 86.47%, followed by MO-VNS* and SPEA2 with up to 51.86% and 45.46%,
respectively. For all instances, MO-FA is the best algorithm with up to 81.47%, followed by MO-VNS*
and MO-ABC with up to 63.82% and 58.92%. From this set coverage analysis, we reach similar
conclusions as for hypervolume. MO-FA provides the best behavior solving the problem in average
term. If we focus on instance size, MO-VNS is the best algorithm for medium size instances and
MO-FA is better suited for small and large ones.

Table 4. Based on hypervolume, percentage of average test cases where a metaheuristic is significant
better than any other solving the bi-objective RNPP.

Instance Size

50 × 50 100 × 100 200 × 200 300 × 300 All
NSGA-II 0.00% 2.35% 2.44% 2.27% 2.17%
SPEA2 0.00% 0.29% 1.11% 5.72% 2.52%
MO-VNS 6.31% 11.37% 10.03% 2.11% 7.16%
MO-VNS* 4.85% 8.53% 10.03% 7.45% 8.40%
MO-ABC 9.71% 9.41% 8.55% 8.75% 8.88%
MO-FA 9.71% 9.51% 10.77% 13.71% 11.49%
MO-GSA 9.71% 5.00% 4.72% 5.83% 5.57%
MOEA/D 9.71% 3.53% 2.34% 4.16% 3.81%
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Table 5. Average set coverage for a metaheuristic compared to any other solving the bi-objective RNPP.

Instance Size

50 × 50 100 × 100 200 × 200 300 × 300 All

NSGA-II 26.06% 14.94% 19.95% 30.79% 23.54%
SPEA2 30.63% 10.05% 14.90% 45.46% 26.56%
MO-VNS 88.28% 87.56% 66.62% 20.83% 53.12%
MO-VNS* 44.63% 83.11% 68.92% 51.86% 63.82%
MO-ABC 100.00% 75.90% 54.78% 44.29% 58.92%
MO-FA 100.00% 75.93% 77.52% 86.47% 81.47%
MO-GSA 100.00% 45.45% 36.58% 38.87% 41.94%
MOEA/D 90.00% 34.30% 18.38% 25.59% 27.21%

7.2. Three-Objective Approach

Table 6 shows average hypervolume for MO-VNS*, MO-VNS, MO-FA, MO-GSA, and MOEA/D,
solving the three-objective RNPP for each test case and stop condition. In this table, hypervolumes
in bold correspond to results never before published. Note that the hypervolumes for NSGA-II,
SPEA2, and MO-ABC were not shown to simplify the table because they reported significantly lower
hypervolumes than the other algorithms, instead, we refer readers to [47].

Analyzing Table 6, we verify that the algorithms show a homogeneous growth with an
asymptotic trend in 400,000 evaluations, as for the bi-objective approach. Hence, the stop condition
is representative to analyze the performance of the algorithms. Higher hypervolumes in Table 6 are
shaded, reaching that some algorithms seem to outperform others. The differences observed are
analyzed following the same methodology as for the bi-objective study. After removing possible
outliers, we checked that data do not follow a normal distribution, and then we considered the same
hypothesis as before for the Wilcoxon-Mann-Whitney’s test. As a result, Table 7 shows the percentage
of test cases where a metaheuristic is significantly better than any other according to the p-values
obtained with a significance level of 0.05.

Analyzing Table 7, for 50× 50 instances, we check that MO-FA provides the best behavior with up
to 13.36%, followed by MOEA/D and MO-ABC with up to 9.92% and 9.54%, respectively. For 100× 100
instances, we check that MO-VNS provides the best behavior with up to 11.55%, followed by MO-VNS*
and MO-FA with up to 10.92% and 8.61%, respectively. For 200× 200 instances, we check that MO-FA
provides the best behavior with up to 12.50%, followed by MOEA/D and SPEA2 with up to 11.00%
and 7.00%, respectively. For 300× 300 instances, we check that MO-FA provides the best behavior with
up to 11.90%, followed by MOEA/D and MO-ABC with up to 11.17% and 8.46%, respectively. For all
instances, MO-FA provides the best behavior with up to 11.62%, followed by MOEA/D and MO-VNS
with up to 9.74% and 6.37%. From this analysis based on hypervolume, we check that MO-FA is the
best algorithm in general. For small and large instances, MO-FA is also the best algorithm. For medium
size instances, MO-VNS is the best algorithm.

Table 8 shows the average set coverage metric of an algorithm compared to the others for the
median Pareto front. Analyzing this table, for 50× 50 instances, MO-GSA is the best algorithm with up
to 81.78% followed by MO-FA and MO-VNS* with up to 72.00% and 67.86%, respectively. For 100× 100
instances, MO-VNS* is the best algorithm with up to 73.19%, followed by MO-VNS and MO-FA with
up to 72.36% and 65.68%, respectively. For 200× 200 instances, MO-FA is the best algorithm with up to
83.71%, followed by MO-VNS* and MO-VNS with up to 49.37% and 48.77%, respectively. For 300× 300
instances, MO-ABC is the best algorithm with up to 63.12%, followed by MO-FA and MO-VNS with
up to 51.12% and 40.80%, respectively. For all instances, MO-FA is the best algorithm with up to 67.52%
followed by MO-VNS and MO-VNS* with up to 50.80% and 49.61%, respectively. From this study,
we check that MO-FA is the best algorithm on average term, followed by MO-VNS and MO-VNS*.
Focusing on instance size, MO-GSA is the best algorithm for small instances, MO-VNS* is the best
algorithm for medium size instances, and MO-FA is the best algorithm for large instances.
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Table 6. Median hypervolume obtained solving the three-objective RNPP.

MO-VNS(Hyp) MO-FA(Hyp)

Evaluations (Stop condition) Evaluations (Stop condition)dx × dy_rc(s̃r)

50,000 100,000 200,000 300,000 400,000 50,000 100,000 200,000 300,000 400,000

50 × 50_30(1) 64.58% 64.58% 64.59% 64.59% 64.60% 64.63% 64.63% 64.63% 64.63% 64.63%

100 × 100_30(2) 41.73% 41.77% 41.81% 41.81% 41.82% 41.66% 41.71% 41.75% 41.77% 41.78%
100 × 100_30(3) 54.87% 55.19% 55.45% 55.55% 55.59% 54.79% 55.19% 55.29% 55.35% 55.38%

200 × 200_30(2) 31.98% 33.18% 34.41% 35.37% 35.84% 35.05% 35.57% 35.98% 36.00% 36.06%
200 × 200_30(4) 41.94% 43.76% 45.09% 45.60% 46.05% 43.65% 44.58% 45.21% 45.56% 45.91%
200 × 200_30(6) 52.49% 54.94% 57.05% 58.10% 58.74% 55.22% 56.54% 57.89% 58.38% 58.96%
200 × 200_30(9) 63.30% 65.41% 67.30% 68.39% 69.13% 65.87% 67.83% 69.82% 70.50% 70.94%

300 × 300_30(6) 30.37% 30.97% 31.61% 31.97% 32.18% 30.28% 31.39% 32.59% 32.90% 33.02%
300 × 300_30(12) 34.06% 35.13% 36.08% 36.75% 37.13% 34.63% 36.24% 37.76% 38.25% 39.17%
300 × 300_30(18) 36.62% 37.80% 38.95% 39.58% 40.09% 37.97% 39.63% 41.18% 41.90% 42.54%
300 × 300_30(24) 39.59% 40.96% 42.20% 42.90% 43.45% 40.83% 42.88% 44.35% 45.13% 45.59%

MO-GSA(Hyp) MOEA/D(Hyp)

Evaluations (Stop condition) Evaluations (Stop condition)dx × dy_rc(s̃r)

50,000 100,000 200,000 300,000 400,000 50,000 100,000 200,000 300,000 400,000

50 × 50_30(1) 64.56% 64.56% 64.56% 64.56% 64.56% 64.62% 64.62% 64.63% 64.63% 64.63%

100 × 100_30(2) 39.70% 40.24% 40.77% 41.08% 41.21% 41.07% 41.20% 41.31% 41.35% 41.39%
100 × 100_30(3) 52.40% 53.15% 53.75% 54.05% 54.18% 54.82% 55.12% 55.36% 55.42% 55.48%

200 × 200_30(2) 32.53% 32.82% 33.21% 33.50% 33.59% 32.32% 32.76% 33.27% 33.54% 33.71%
200 × 200_30(4) 41.03% 42.97% 44.66% 45.62% 45.96% 43.85% 44.82% 46.18% 46.72% 46.69%
200 × 200_30(6) 50.75% 52.58% 55.82% 57.24% 57.98% 57.48% 58.62% 59.56% 60.01% 60.38%
200 × 200_30(9) 61.53% 63.79% 67.15% 69.10% 69.64% 69.60% 70.96% 72.16% 72.87% 73.35%

300 × 300_30(6) 29.05% 29.82% 30.81% 31.27% 31.47% 30.54% 31.25% 31.82% 32.08% 32.26%
300 × 300_30(12) 33.49% 34.74% 36.40% 37.68% 38.00% 36.39% 37.56% 38.48% 38.85% 39.11%
300 × 300_30(18) 37.57% 38.85% 41.62% 43.18% 43.72% 40.53% 42.22% 43.92% 44.74% 45.21%
300 × 300_30(24) 42.37% 44.51% 47.76% 49.86% 50.33% 45.09% 47.51% 49.82% 51.04% 51.75%

MO-VNS*(Hyp)

Evaluations (Stop condition)dx × dy_rc(s̃r)

50,000 100,000 200,000 300,000 400,000

50 × 50_30(1) 64.60% 64.61% 64.62% 64.62% 64.63%

100 × 100_30(2) 41.75% 41.79% 41.81% 41.81% 41.82%
100 × 100_30(3) 54.96% 55.17% 55.45% 55.56% 55.61%

200 × 200_30(2) 31.76% 34.00% 34.60% 35.22% 35.49%
200 × 200_30(4) 42.81% 44.38% 45.24% 45.78% 46.14%
200 × 200_30(6) 54.27% 56.20% 56.80% 57.13% 57.47%
200 × 200_30(9) 63.48% 64.30% 65.33% 65.87% 66.45%

300 × 300_30(6) 30.39% 30.93% 31.23% 31.34% 31.40%
300 × 300_30(12) 33.88% 34.56% 35.31% 35.68% 35.83%
300 × 300_30(18) 37.04% 37.83% 38.48% 38.77% 39.01%
300 × 300_30(24) 40.14% 40.85% 41.48% 41.79% 41.95%

Table 7. Based on hypervolume, percentage of average test cases where a metaheuristic is significant
better than any other solving the three-objective RNPP.

Instance Size

50×50 100×100 200×200 300×300 All

NSGA-II 0.00% 3.15% 5.13% 1.15% 2.68%
SPEA2 0.00% 3.78% 7.00% 5.01% 4.89%
MO-VNS 5.73% 11.55% 6.13% 4.18% 6.37%
MO-VNS* 7.63% 10.92% 5.50% 1.98% 5.41%
MO-ABC 9.54% 7.35% 0.00% 8.46% 5.65%
MO-FA 13.36% 8.61% 12.50% 11.90% 11.62%
MO-GSA 3.82% 0.00% 2.75% 6.16% 3.65%
MOEA/D 9.92% 4.62% 11.00% 11.17% 9.74%
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Table 8. Average set coverage for a metaheuristic compared to any other solving the
three-objective RNPP.

Instance size

50×50 100×100 200×200 300×300 All

NSGA-II 21.00% 23.95% 39.52% 22.80% 28.92%
SPEA2 21.24% 28.12% 40.54% 37.38% 35.38%
MO-VNS 55.83% 72.36% 48.77% 40.80% 50.80%
MO-VNS* 67.86% 73.19% 49.37% 33.51% 49.61%
MO-ABC 40.48% 43.20% 28.75% 63.12% 44.94%
MO-FA 72.00% 65.68% 83.71% 51.12% 67.52%
MO-GSA 81.78% 12.74% 10.68% 30.43% 24.70%
MOEA/D 38.69% 12.15% 20.43% 18.66% 19.94%

7.3. Bi-Objective vs. Three-Objective Approaches

Comparing the results obtained for the bi-objective and three-objective approaches in the two
previous subsections, we verify that MO-FA could be recommended as a general solving method for
the two approaches studied. Focusing on instance size, MO-FA provides robust performance in small
and large instances, while MO-VNS provides robust performance in medium ones. This conclusion
is supported by Figure 1, which shows the average performance for each metaheuristic according
to the set of instances addressed. This figure was generated by combining hypervolume and set
coverage values through a 1–2 standardization for the case studied. Thus, Figure 1a–d show the
average performance of the metaheuristics for small, medium, large, and all instances.

The difference in performance between these two metaheuristics, as well as with the others, could
be due to the movement operator used in MO-FA. This operator successfully fits the RNPP, defining a
way of producing new solutions by moving the RNs in an individual according to promising solutions,
resulting in that the population evolves towards better solutions. This is the reason why MO-FA
provides a robust performance independently of the instance size.

For the case of MO-VNS, the algorithm defines a successfully way of generating new solutions
based on an incremental local search, which is a search in the vicinity. This local search fits the
RNPP, defining a way of improving a previous solution by boundedly moving the RNs. However,
the performance of MO-VNS is mainly due to the application of this local search. Thus, MO-VNS
is less competitive to other algorithms in large instances because the search space is large and the
algorithm fails in exploration. For the case of small instances, MO-VNS is also less competitive because
the search space is reduced and then, it is relatively simple for a metaheuristic to find good solutions
to the problem. As a result, MO-VNS provides good performance in medium instances.
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Figure 1. Average performance of the metaheuristics solving the two RNPPs.

8. Final Remarks

This work addresses the RNPP in WSNs from two MO formulations with the purpose of
searching for robust methods solving this deployment problem within a realistic perspective. The first
formulation includes two objectives, energy cost and average sensitivity, and the second formulation
includes three objectives, the two previous ones as well as network reliability. On this basis, the authors
propose to study how performs a wide range of MO metaheuristics from the three main groups in
the field: evolutionary algorithms (NSGA-II, SPEA2, and MOEA/D), swarm intelligence algorithms
(MO-ABC, MO-FA, and MO-GSA), and trajectory algorithms (MO-VNS and MO-VNS*).

The eight MO metaheuristics were applied for solving four deployment scenarios, in both
optimization problems, of increasing complexity, while considering a different number of RNs and
communication conditions. The experimental results were analyzed through an accepted statically
methodology, where two standard MO metrics were considered, i.e., hypervolume and set coverage.
As a result, we concluded that MO-FA provided a robust performance independently of the number of
objectives and instance size, and then MO-FA could be recommended as a general solving method
for this problem. Additionally and focusing on instance size, we concluded that MO-FA provided a
robust performance in small and large instances, while MO-VNS provided the best performance in
medium instances.

As future lines of research, it could be interesting to extend the network model considered.
For instance, simulating additional MAC and routing protocols. Moreover, it could be interesting to
try to extend the results obtained to a real WSN deployment.
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ABC Artificial Bee Colony
AEC Average Energy Cost
ASA Average Sensitivity Area
CHIM Convex Hull of Individual Minima
C-RNPP Constrained Relay Node Placement Problem
EA Evolutionary Algorithm
FA Firefly Algorithm
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GSA Gravitational Search Algorithm
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T-WSN Traditional Wireless Sensor Network
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ST-WSN Single-Tiered Wireless Sensor Network
TT-WSN Two-Tiered Wireless Sensor Network
WSN Wireless Sensor Network
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α path loss exponent, α ∈ [2, 4].
A(t) sensitivity area provided by the WSN at time t > 0 ∈ τ.
ap(t) variable assuming 1 if there is at least one sensor i ∈ Ss(t) at a distance to the demand point

p ∈ D̃p(t) lower than rs.
amp energy cost per bit of the power amplifier, amp > 0.
β transmission quality parameter, β > 0.
β0 f parameter determining the performance of the movement operator based on attractiveness in

MO-FA, β ∈ [0, 1].
c sink coordinates, c = (x, y) where x ∈ [0, dx] and y ∈ [0, dy].
CHIMincm parameter defining how the extreme points of the CHIM are reassigned to increase the search

area in MOEA/D, CHIMincm ∈ [1, ∞).
coth coverage threshold, coth ∈ [0, 1].
crom crossover probability in the MOEA/D algorithm.
cron crossover probability in the NSGA-II algorithm.
cros crossover probability in the SPEA2 algorithm.
crowm distance between two consecutive reference points in MOEA/D, crowm ∈ (0, ∞).
D̃p(t) set of demand points at time t > 0, ∀p ∈ D̃p, p = (x, y) where x ∈ [0, dx] and y ∈ [0, dy].
d̃p(t) number of demand points. It is the cardinal of D̃p(t).
dpn distance between two neighbouring demand points.
djpc

i number of disjoint paths between the sensor i ∈ S̃s and the sink node.
dx width of the surface, dx > 0.
dy height of the surface, dy > 0.
E1, E2 extreme points depending on F1 and F2; E1, E2 ∈ Y.
Eci(t) energy charge of a sensor i ∈ Ss(t) at time t.
Eei(t) energy expenditure of a sensor i ∈ Ss(t) at time t > 0.
err local channel error, err ∈ [0, 1].
F1 extreme point (maxF( f1), minF( f2) delimiting the objective space, F1 ∈ Y.
f1 AEC of the sensors over the network lifetime.
F2 extreme point (minF( f1), maxF( f2) delimiting the objective space, F2 ∈ Y.
f2 ASA provided by the WSN over the network lifetime.
f3 NR provided by the WSN at the beginning of the network lifetime.
Fg

m auxiliary population of undefined size in MOEA/D, saving the non-dominated solutions found
until the g-iteration.

g(x : rm,−→vn ) function of the m-th single -objective minimization problem in MOEA/D.
hi,c

l number of hops in the l-th disjoint path between i ∈ S̃s and the sink node.
iec initial energy charge of the sensors, iec > 0.
k information packet size in bits, k > 0.
ka random value representing the number of nearest solution used to obtain a new solution

by an scout bee in the MO-ABC algorithm, ka = 2, . . . , 11.
λ f parameter determining the performance of the movement operator based on attractiveness in

MO-FA, λ ∈ (0, ∞).
limita threshold determining when a solution managed by an employed bee should be managed by

an scout bee in MO-ABC.
maxF(·) lower bounds of a fitness function.
minF(·) upper bounds of a fitness function.
mut f mutation probability in the MO-FA algorithm.
mutga mutation probability in the MO-GSA algorithm.
mutm mutation probability in the MOEA/D algorithm.
mutn mutation probability in the NSGA-II algorithm.
muts mutation probability in the SPEA2 algorithm.
mutv mutation probability in the MO-VSN* algorithm.
n1, n2 coordinates of the normal vector −→vn to the plane I.
nE1,E2 number of divisions on the segment ¯E1E2.
neighm number of neighbouring reference points associated to a reference point in MOEA/D.
neighv number of neighbourhood structures in the MO-VSN algorithm.
nsv parameter limiting how different could be a solution according to the neighbourhood structure

selected in MO-VNS, nsv ∈ [1, ∞).
Pi(t) number of packets sent by the sensor i ∈ Ss(t) at time t > 0.
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Pg
a population of size psa in the MO-ABC algorithm.

Pg
f population of size ps f saving the the fireflies at the beginning of the iteration g in MO-FA.

Pg
ga population of size psg saving the the objects at the beginning of g, before acting gravitational

forces in the MO-GSA algorithm.
Pg

m regular population in MOEA/D, where each individual is associated to a reference point.
Pg

n population of size psn saving the parents of the iteration g in the NSGA-II algorithm.
Pg

s regular population of size pss in the SPEA2 algorithm.
Pg

s auxiliary population of size pss in the SPEA2 algorithm.
Pg

v population of unlimited size, saving only non-dominated solutions during the iteration g in the
MO-VNS algorithm.

psa population size in the MO-ABC algorithm. It is the cardinal of Pg
a .

psm number of points evenly distributed in the plane I. It is the cardinal of Y.
ps f population size in the MO-FA algorithm. It is the cardinal of Pg

f and Qg
f .

psga population size in the MO-GSA algorithm. It is the cardinal of Pg
ga and Qg

ga.
psn population size in the NSGA-II algorithm. It is the cardinal of Pg

n and Qg
n.

pss regular population size in the SPEA2 algorithm. It is the cardinal of Pg
s .

pss auxiliary population size in the SPEA2 algorithm. It is the cardinal of Pg
s .

Qg
f population of size ps f saving the resulting fireflies after applying the attractiveness mechanism

in Pg
f in the MO-FA algorithm.

Qg
ga population of size psg saving the resulting objects after applying the forces in Pg

ga in the MO-GSA
algorithm.

Qg
n population of size psn saving the offspring generated based on Pg

n in the NSGA-II algorithm.
rei reliability of the sensor i ∈ S̃s.
rc communication radius, rc > 0.
Rpi(t) number of relayed packets sent by the sensor i ∈ Ss(t) at time t > 0.
r f parameter determining the performance of the movement operator based on attractiveness in

MO-FA, r ∈ [0, 1].
rm m-th point of Y.
rm

1 , rm
2 coordinates of the vector rm.

rs sensitivity radius, rs > 0.
sea percentage of solutions in Pg

a managed by employed forager bees in MO-ABC.
S̃r set of RN coordinates, ∀r ∈ S̃r, r = (x, y) where x ∈ [0, dx] and y ∈ [0, dy].
s̃r number of RNs. It is the cardinal of S̃r.
S̃s set of initial sensor coordinates, ∀i ∈ S̃s, i = (x, y), where x ∈ [0, dx] and y ∈ [0, dy].
s̃s number of initial sensors. It is the cardinal of S̃s.
Ss(t) set of sensor coordinates, holding that the energy charge is greater than 0 and that there is any

path to the sink node, both at time t > 0, Ss(t) ⊆ S̃s, ∀i ∈ Ss, i = (x, y), where x ∈ [0, dx] and
y ∈ [0, dy].

ss(t) number of sensors, holding that the energy charge is greater than 0 and that there is any path
to the sink node, both at time t > 0. It is the cardinal of Ss(t), ss(t) ≤ s̃s.

Sg
v population of unlimited size saving the solutions from Pg

v considered to explore the search space
during the iteration g in the MO-VNS algorithm.

τ set of time periods, τ = {0, 1, 2, . . .}.
t time instant, t > 0.
tn network lifetime of the WSN based on the coverage threshold coth.
−→vn normal vector (n1, n2) to the plane I.
when_sc f threshold defining when the anti-stagnation mechanism is performed in MO-FA, when_sc f ∈ [0, 1].
when_scga threshold defining when the anti-stagnation mechanism is performed in MO-GSA, when_scga ∈ [0, 1].
wc

i (t) variable which provides the next device in the minimum path between i ∈ Ss(t) and the sink
node at t > 0, wc

i (t) ∈ {Ss(t) ∪ S̃r}+ c− i.
Y number of points evenly distributed in the plane I, Y = {r1, . . . , rpsm}.
zc

j,i(t) variable assuming 1 if i ∈ Ss(t) is in the minimum path between j ∈ Ss(t) and the
sink node c at t > 0, and 0 otherwise.
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