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Abstract: To implement a sensor structure analysis and design (as well as other engineering
applications), a two-parameter approach using elastic–plastic fracture mechanics (EPFM) could
be applied to analyze a structure more accurately than a one-parameter approach, especially for
structures with low crack constraint. The application of the J-A two-parameter approach on sensors
and other structures depends on the obtainment of a constraint parameter A. To conveniently and
effectively obtain the A parameter values, the authors have developed a T-stress-based estimate
method under a small-scale yielding (SSY) condition. Under a uniaxial external loading condition,
a simplified format of the T-stress-based estimate has been proposed by the authors to obtain
the parameter A much more conveniently and effectively. Generally, sensors and other practical
engineering structures endure biaxial external loading instead of the uniaxial one. In the current
work, the simplified formation of the estimate method is extended to a biaxial loading condition. By
comparing the estimated A parameter values with their numerical solutions from a finite element
analysis (FEA) results, the extension of the simplified formation of T-stress-based estimate method to
biaxial loading was discussed and validated. The comparison procedure was completed using a wide
variety of materials and geometrical properties on three types of specimens: single edge cracked plate
(SECP), center cracked plate (CCP), and double edge cracked plate (DECP).

Keywords: sensor design; sensor structure analysis; two parameter approach; constraint parameter;
small scale yielding; T-stress; estimate method; simplified format; biaxial loading

1. Introduction

The service life and reliability of sensors greatly affect the reliability of a prognostics and health
management (PHM) system [1–3], just like a battery management system. To ensure sensor service life
and reliability, an elastic–plastic fracture mechanics (EPFM) analysis of sensor structures is a significant
step in sensor structure analysis and design, especially for a sensor bracket structure.

Traditionally, a sensor structure EPFM analysis is based on a one-parameter J-based approach [4,5],
where only the applied external load is described by a J-integral parameter [6]. However, this only
works well for sensor structures under high constraint conditions. Under low constraint conditions,
the constraint effect on near-tip stress and displacement fields cannot be ignored. Under these
circumstances, a one-parameter approach usually overestimates the stress values of sensor structures.
It leads to an inappropriate structure maintenance strategy, and results in unnecessary component
replacements and labor costs accordingly.
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To describe the constraint effect, a second parameter needs to be introduced to the EPFM
approach. Thus, several two-parameter approaches have been developed based on the application the
J-integral for loading description. By extending a Williams solution [7] from an elastic material to an
elastic–plastic material, the J-T two-parameter approach was suggested by Betegon and Hancock [8] as
well as Al-Ani and Hancock [9], with T-stress illustrating the constraint effect. Using term Q as the
constraint (and second) fracture parameter, the J-Q two-parameter approach was proposed by O’Dowd
and Shih [10,11]. Yang et al. [12] developed the J-A2 two-parameter approach, whose three-term
expansion includes a J-integral and a second fracture parameter A2. As an alternative format to the
J-A2 approach, a J-A two-parameter approach was derived by Nikishkov et al. [13,14], in which the
second parameter A2 is replaced by A. In a wide variety of structure geometry configurations and
external loading conditions, all two-parameter approaches (J-T, J-Q and J-A2 (A)) provide an effective
characterization of elastic–plastic crack-tip (-front) fields [9,11,12,14].

To apply the EPFM two-parameter approaches to both the sensor structure analysis and design,
the values of the two parameters, J-integral and the constraint parameter (T-stress, Q, or A2 (A)) for
the considered sensor components, must first be obtained. Solutions of the J-integral had been well
established in the early developing stage of EPFM. Research efforts now focus on the obtainment
of constraint parameter solutions since the development of two-parameter approaches. As a linear
elastic constraint parameter, both numerical and analytical solutions of T-stress have been well
developed [15,16]. Dealing with material nonlinearities, the solutions of elastic–plastic constraint
parameters (Q and A2 (A), etc.) have not been well established, which depends on external loading
conditions, material hardening characteristics, and structure geometry.

Through their original definitions, theoretically, the solutions of Q and A2 (A) parameters could
be determined numerically, based on results of finite element analysis (FEA). A “point match” method
was used by Yang et al. [12] to numerically determine the A2 parameter values. A fitting method is
suggested by Nikishkov et al. [14] to determine the A solution from FEA results. However, determining
parameter A values through numerical methods is not effective for any engineering application, as for
example, for a fracture mechanics analysis of a sensor supporting structure. The reason for this is that
for a wide range of material, geometrical, and loading properties, the numerical determination of Q
and A2 (A) is a time-consuming endeavor. Systematically developing estimate (prediction) methods for
values of constraint parameters A2 (A) and Q are necessary to apply EPFM two-parameter approaches
conveniently and effectively to practical sensor engineering problems and theoretical investigation.

Both numerical and analytical solutions to elastic T-stress have been well established, as
mentioned in previous paragraphs. It is possible to obtain constraint A parameter values directly from
T-stress, as long as the relationship between parameter A and T-stress is determined. As mentioned,
the estimate method for a constraint parameter should be valid under small-scale yielding (SSY) cases,
as T-stress is a linear elastic parameter.

An estimate method for constraint parameter A under SSY has already been developed by
authors [17] to predict A values from T-stress conveniently and quickly. Its simplified formation
has also been obtained by authors [18] based on the shape similarity of A-T curves. The proposed
T-stress-based estimate method for parameter A and its simplified format are both developed based
on uniaxial external loading conditions. The load applied on a real component, specifically, a sensor
supporting bracket, is generally biaxial.

In the current work, the simplified format of the T-stress-based estimate method is extended
to a biaxial loading condition through the specimen analyses of single edge cracked plates (SECP),
center cracked plates (CCP) and double edge cracked plates (DECP). Theoretical backgrounds will be
illustrated in Section 2. The FEA process and numerical solutions of constraint parameter A will be
discussed under SSY in Section 3. In Section 4, the simplified format of the T-stress-based estimate
method will be extended to a biaxial loading condition with biaxial ratios λ = 0.5, 1.0, and the estimated
solutions of constraint parameter A will be compared with the corresponding FEA numerical solutions.
In Section 5, concluding remarks will be given.



Sensors 2019, 19, 717 3 of 12

2. Theoretical Background

2.1. J-T and J-A Two-Parameter Approach

For two-dimensional crack-tip stress fields, Williams [7] suggested a series solution,

σij(r, θ) =
K√
2π.r

fij(θ) + Tδ1iδ1j (1)

where T is a uniform stress parallel to the crack face, namely T-stress. K is the stress intensity factor. (r,
θ) are polar coordinates, with the origin located at the crack tip. fij (θ) are the non-dimensional angular
functions; δ1i and δ1j are Kronecker deltas, with a range of 1–2 for indices i and j. The expression is the
so-called K-T two-parameter approach for a linear elastic material.

Betegon and Hancock [8] as well as Al-Ani and Hancock [9] extended the K-T approach from
an elastic material to an elastic–plastic material range and suggested a EPFM J-T two-parameter
approach, where, by keeping the T-stress for constraint effect description, K is replaced by a J-integral
to characterize the loading level in elastic-plastic material. The J-T approach is generally only suitable
for an SSY condition with T-stress being a parameter of linear elastic fracture mechanics

Another important EPFM approach is the J-A2 (or J-A) two-parameter approach with a three-term
asymptotic expansion controlled by two fracture parameters. J and A2, the J-A2 approach is first
proposed by Yang et al. [12]. An alternative format of the J-A2 approach, the J-A approach, is derived
by Nikishkov et al. [13,14], where the constraint parameter A2 in J-A2 approach is replaced by its
alternative normalized form, A. The J-A approach is the one utilized by the present authors.

When hardening exponent n ≥ 3 according to the formula expressions and variable terminologies
used by Nikishkov et al. [13,14], a J-A three-term asymptotic solution for crack-tip stress fields could
be written as:

σij

σ0
= A0rsσ

(0)
ij (θ)− Artσ

(1)
ij (θ) +

A2

A0
r2t−sσ

(2)
ij (θ) (2)

where σ0 is yield stress; σij (θ) are stress components σr, σθ or σrθ in the polar coordinate system

with origin at the crack tip; and σ
(0)
ij (θ), σ

(1)
ij (θ) and σ

(2)
ij (θ) are normalized angular functions. The

amplitude A0 is expressed as A0 = (αε0In)−1/(n+1), which is determined based on a mathematical
derivation [13]. Here, ε0 is yield strain, α is material coefficient, and In is a scaling integral only
depending on material hardening exponent n (see [5,6] for details). The dimensionless radius r is
defined as r = r/(J/σ0), where J is the J-integral at the crack tip. The power t is an eigenvalue
depending on hardening exponent n, while the power s is defined as s = −1/(n + 1). The values of
asymptotic power t, scaling integral In and normalized angular functions σ

(0)
ij (θ), σ

(1)
ij (θ) and σ

(2)
ij (θ)

could be determined through a computational algorithm developed by Nikishkov [13].
Equation (2) indicates that a three-term expansion could be used to describe the crack tip field,

which is controlled by two parameters, the magnitude of the first term (J-integral) and a second
parameter (A) in the second and third terms. Through determining the values of the two parameters J
and A, crack tip stress components of structures could be easily obtained from Equation (2).

To determine crack-tip stress fields of sensor structures through Equation (2), the solutions of the
J-integral and second parameter A must first be obtained. The ways to determine J-integral values have
been well established. Unfortunately, methods for the value obtainment of constraint parameter A are
still quite scarce. In next section, an estimate method developed by the authors [17] will be presented,
which predicts constraint parameter A values from T-stress both conveniently and effectively.
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2.2. T-Stress-Based Estimate of Constraint Parameter A

We [17] analytically proved the existence of a one-to-one relationship between constraint
parameter A and T-stress under an SSY (low load) condition,

A = AT

(
T
σ0

, n
)

(3)

where the symbol AT indicates the constraint parameter A solutions obtained from the T-stress directly.
A detailed expression of the one-to-one A-T relationship (Equation (3)) can be obtained by the

least square fitting method based on the parameter A solutions, which are obtained from FEA results
of modified boundary layer (MBL) formulation for various T-stress values (see Section 3 for details).
One could express the detailed A-T relationship as follows [17],

AT

(
T
σ0

, n
)
= ASSY(n) + m1(n)

(
T
σ0

)
+ m2(n)

(
T
σ0

)2
+ m3(n)

(
T
σ0

)3
. (4)

A third-order polynomial could be used to represent the detailed one-to-one A-T relationship
under the SSY condition for each case of a hardening exponent n value, see Equation (4). The values of
polynomial coefficients m1(n), m2(n), and m3(n) are determined through a fitting process, which depend
on the n values. ASSY(n) denotes the constraint parameter A value under the small-scale yielding (SSY)
condition when the T-stress value equals zero (T = 0).

In Equation (4), T-stress is normalized by yield stress σ0, T/σ0. It could be rewritten as follows
for the cases that sensor structures with the external load ratio σ/σ0 [17]:

T
σ0

=
T
σ
· σ

σ0
= V

( a
W

)
· σ

σ0
(5)

where σ0 is the yield stress, V = T/σ, a is specimen crack length and W specimen width, and V is the
normalized T-stress by external load σ.

A detailed expression of the A-T relationship could be obtained for sensor crack structures with
external loading ratio σ/σ0, by combining Equation (5) with (4) [17]:

AT

(
σ

σ0
,

a
W

, n
)
= ASSY(n) +

(
σ

σ0

)
g1(

a
W

, n) +
(

σ

σ0

)2
g2(

a
W

, n) +
(

σ

σ0

)3
g3(

a
W

, n) (6)

where gi (a/W, n) = [V(a/W)]i mi (n), with i = 1, 2, 3 for term g1, g2, and g3, respectively. ASSY(n), which
is the parameter A value under SSY condition for T = 0 case, is used here to closely approximate the A
value when external load ratio (σ/σ0) is very small. By determining values of polynomial coefficients
m1(n), m2(n), and m3(n), and the normalized T-stress, V, constraint parameter A under SSY can be
conveniently obtained through Equation (6) for various models including specimens SECP, CCP, and
DECP, as well as for final practical sensor structures.

3. Finite Element Analysis and Numerical Solution of Constraint Parameter A

3.1. Modified Boundary Layer Problem

To characterize the small-scale yielding (SSY) condition of cracked models (Figure 1), the modified
boundary layer (MBL) formulation is usually used. By combining J-T and K-T two-parameter
approaches, the MBL simulation is a practical investigating application.
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Figure 1. The modified boundary layer problem model.

A typical MBL model is given in Figure 1, where R denotes the model maximum radius. As an
elastic–plastic near crack-tip (-front) problem, the MBL formulation has elastic boundary conditions;
that is, far-field stress intensity factor K and far-field T-stress characterize its asymptotic boundary
stress field. Through the stress intensity factor K and T-stress, loadings applied on an MBL model
are represented using displacement boundary conditions. At the far-field boundary of model, rmax =
R, the loadings are applied uniformly on the MBL finite element model. The values of plane strain
displacement components ux and uy could be calculated based on the K-T stress fields formula [17,19],
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K
2µ

√
r
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where ν is Poisson’s ratio, parameter κ = 3 − 4ν, and µ is the shear modulus. The far-field stress
intensity factor K for plane strain could be obtained based on the far-field J-integral value through the
relationships between them,

K =

√
JE

1− ν2 (8)

where E is the Young’s modulus.

3.2. Parameter A Numerical Solutions under SSY

The deformation theory of plasticity is used as a material model for the FEA of the MBL problem
as well as for the SECP, CCP, and DECP specimen. The Ramberg–Osgood power-law strain hardening
relation is included in the commercial finite element code ABAQUS [20]. The Ramberg–Osgood
relation for uniaxial stress-strain curve could be represented as,

ε

ε0
=

σ

σ0
+ α(

σ

σ0
)

n
(9)

where the relation between material yield strain ε0 and the yield stress σ0 is ε0 = σ0/E, α is a material
coefficient, and the material hardening exponent n should be greater than 1.

The finite element code ABAQUS was utilized to implement all finite element analyses. For the
finite element analyses of MBL and SECP, CCP, DECP, the material properties are: elasticity modulus E
= 2.0 × 1011 Pa; Poisson ratio ν = 0.3; yield stress σ0 = 4.0 × 108 Pa; material coefficient α = 1.0, and
hardening exponent n = 3, 4, 5, 7, 10. A wide range of strain hardening behaviors were covered.

To simulate the SSY (low load) condition of MBL problem, the far-field J-integral value was fixed
as 1.0 × 104 J/m2. It meanwhile determined the value of far-field stress intensity factor K through
Equation (8). With various hardening exponents n = 3, 4, 5, 7, 10, finite element analyses of MBL
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formulation were implemented for different T-stress values, T/σ0 = −0.8, −0.6, −0.4, −0.2, 0.0, 0.2,
0.4, 0.6, 0.8, respectively.

For the finite element analyses of the three specimens at hand (SECP, CCP, and DECP), some
geometrical properties were applied. H/W is the ratio of specimen length H to width W, which is
fixed as 1.875 here. Specimen finite element models were investigated based on various ratios of crack
length to specimen width a/W = 0.1, 0.3, 0.5, 0.7. See Figure 2 for reference. Biaxial loading were
applied on the four edges of the three specimen models, with biaxial ratios λ = 0.5, 1.0.
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For all cases of MBL and SECP, CCP, and DECP, the J-integral values were determined through
domain integral method [21], which is included in the commercial code ABAQUS [20]. Based on
FEA results, constraint parameter A values could be numerically determined using a fitting method
suggested by Nikishkov et al. [14]. See reference [14] and [17,19] for more details about the procedure
of the fitting method.

Table 1 illustrates the numerical solutions of constraint parameter A for MBL simulation under
SSY. By fitting the A numerical solutions for MBL (Table 1), the A-T relationship curves for various n
values could be obtained, which are shown in Figure 3. The A-T curves could be used to determine
the coefficients mi(n) of Equation (4), see next section. For the three crack specimens (SECP, CCP, and
DECP), the constraint parameter A values determined from FEA results vary with biaxial ratios λ =
0.5, 1.0 and normalized external load, σ/σ0.

Table 1. Parameter A values from FEA results for MBL formulation.

T/σ0 n = 3 n = 4 n = 5 n = 7 n = 10

−0.8 1.2297 0.8371 0.6433 0.4857 0.4189
−0.6 1.1626 0.7772 0.5913 0.4365 0.3659
−0.4 1.0866 0.7074 0.5254 0.3757 0.3050
−0.2 0.9959 0.6264 0.4529 0.3114 0.2429
0.0 0.8984 0.5432 0.3803 0.2489 0.1838
0.2 0.8077 0.4639 0.3114 0.1906 0.1298
0.4 0.7330 0.3957 0.2516 0.1409 0.0867
0.6 0.6767 0.3405 0.2032 0.0998 0.0522
0.8 0.6257 0.3011 0.1701 0.0652 0.0213
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4. Simplified Format of T-Stress-Based Estimate Method under Biaxial Loading

4.1. Simplified Formation of T-Stress-Based Estimate

The T-stress-based estimate method suggested by the authors to obtain constraint parameter A
values directly from T-stress was applied under SSY conditions (see [17]). In addition, its simplified
format was successfully developed based on a uniaxial external loading condition [18]. In our current
work, the simplified formation of the T-stress-based estimate was extended to sensor structures with a
biaxial external loading condition.

A phenomenon was observed in the MBL FEA process in authors’ previous work [17]. Referring
Figure 3, it can be found that, the shape of A vs. T/σ0 curves (MBL A-T curves) for various hardening
exponent n values is similar. The A-T curves for different n values are “parallel”, and only differ from
each other by constant parameter A values, ASSY(n).

Therefore, once the A vs. T/σ0 curve of MBL formulation for any specified n is obtained, it could
be used to predict the A vs. T/σ0 curves for other n values (see Figure 3). With the obtained parameter
A values for n = 10, for example, A solutions of MBL formulation for any other n value could be
obtained from the T-stress using following formula [18],

AT

(
T
σ0

, n
)
= ASSY(n) +

{
AT

(
T
σ0

, n = 10
)
− ASSY(n = 10)

}
(10)

Combining Equations (4) and (10), a simplified format of Equation (4) could be obtained with
condition of hardening exponent n = 10,

AT

(
T
σ0

, n
)
= ASSY(n) + m1(n = 10)

(
T
σ0

)
+ m2(n = 10)

(
T
σ0

)2
+ m3(n = 10)

(
T
σ0

)3
(11)

Here, coefficients m1, m2 and m3 for the n = 10 case are denoted as m1 (n = 10), m2 (n = 10) and m3

(n = 10).
Meanwhile, combining Equation (5) with (11), Equation (6) could be rewritten for the specimen

and sensor structure models with normalized external load σ/σ0 as variable,

AT

(
σ
σ0

, a
W , n

)
= ASSY(n) +

(
σ
σ0

)
g1(

a
W , n = 10) +

(
σ
σ0

)2
g2(

a
W , n = 10) +

(
σ
σ0

)3
g3(

a
W , n = 10) (12)

where gi (a/W, n) = [V(a/W)]i mi (n = 10), with i = 1, 2, 3.

4.2. Determining Constraint Parameter A under Biaxial Loading

Under SSY conditions, the simplified T-stress-based estimate method (Equation (12)) could
be used to predict the parameter A directly from T-stress for the analysis of sensor structures and
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specimens—such as SECP, CCP, and DECP—based on the obtainment of ASSY (n) solutions, coefficients
mi (n) values, and normalized T-stress, V (V = T/σ).

As mentioned in Section 2.2, ASSY (n) solutions are the parameter A values of MBL for T = 0 cases,
which are available in Table 1. Based on Equation (4), coefficients mi (n) values could be determined
from parameter A numerical solutions of MBL (Table 1 or Figure 3) for various n values through
the least square fitting process. The ASSY (n) solutions and coefficients mi (n) values for various n
values [17,19] are listed in Table 2.

Table 2. Values of coefficients for one-to-one A-T relationship polynomials.

n = 3 n = 4 n = 5 n = 7 n = 10

ASSY 0.8984 0.5432 0.3803 0.2489 0.1838
m1 −0.4588 −0.4064 −0.3581 −0.3039 −0.2808
m2 0.0443 0.0398 0.0412 0.0415 0.0570
m3 0.1300 0.1124 0.0972 0.0643 0.0509

In practical application, the T-stress values of structures vary with external load. To effectively
apply the T-stress-based estimate method for parameter A, T-stress solutions need to be obtained
conveniently and quickly through estimation instead of the time-consuming numerical computation
(FEA). Through a T-stress superposition estimation method, the weight function method suggested by
Wang [16], the T-stress and its normalized value V could be obtained. The proposed weight functions
are highly accurate, which are originally developed through FEA.

T =
∫ a

0
σ(x)w(x, a)dx + σ(λ− 1)|

x=a
(13)

Here, σ(x) is the stress distribution on the crack face and w(x, a) is the weight function for the T-stress;
σ is the applied far field load (see Figure 2); λ is the biaxial loading ratio.

The expression of stress distribution σ(x) depends on the applied external load, which is available
in reference [16] for various external load types. For current uniform external load condition, the
stress on crack face is equal to the external load, that is, σ(x) = σ. The weight function w(x, a) can be
expressed as,

w(x, a) =
2

πa
[D1(1−

x
a
)

1
2
+ D2(1−

x
a
)

3
2
] (14)

The coefficients D1 and D2 in Equation (14) can be determined through,

D1 =
15
16

π(5V0 − 7V1) (15a)

D2 =
5

16
π(35V1 − 21V0) (15b)

The values of coefficients V0 and V1 depend on structure geometry, such as SECP, CCP, and DECP
specimens, which could be found in reference [16]. With the obtained T-stress values, the normalized
T-stress, V, can be determined through V = T/σ.

Through the weight function method (Equation (13)), the normalized T-stress values (V) for SECP,
CCP, and DECP in current work were obtained. See reference [16] for more details about the weight
function method and the T-stress determining procedure.

4.3. Validation and Discuss

Through the simplified format of the T-stress-based estimate method (Equation (12)) and
corresponding coefficient values (Table 2), solutions of constraint parameter A for SECP, CCP, and
DECP specimens were determined directly from the normalized T-stress, V. As the T-stress-based
estimate method was only valid under an SSY condition, the maximum applicable external load
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(applicability range) of simplified format estimate (Equation (12)) should be discussed. With 10% as
the acceptable prediction error, the maximum applicable load ratio (σ/σ0) of the simplified format
estimate method under biaxial loading are listed in Table 3.

Table 3. Maximum applicable load ratio (σ/σ0) of simplified format of T-stress-based estimate under
biaxial loading.

λ = 0.5 λ = 1.0

Model n a/W = 0.1 a/W = 0.3 a/W = 0.5 a/W = 0.7 a/W = 0.1 a/W = 0.3 a/W = 0.5 a/W = 0.7

SECP

3 2.100 1.400 0.380 0.095 0.600 1.050 0.450 0.100
4 1.900 1.150 0.350 0.085 0.600 0.950 0.400 0.090
5 1.800 0.950 0.320 0.080 0.600 0.950 0.380 0.080
7 1.700 0.850 0.320 0.070 0.600 1.000 0.350 0.070

10 1.600 0.810 0.320 0.060 0.500 0.950 0.300 0.060

CCP

3 2.200 1.800 0.450 0.250 1.200 1.300 1.450 0.400
4 1.800 1.800 0.550 0.250 1.000 1.200 1.400 0.350
5 1.500 1.750 0.650 0.250 1.000 1.000 1.300 0.400
7 1.200 1.500 1.200 0.350 1.000 1.000 1.200 0.500

10 1.000 1.200 1.150 0.400 1.000 1.000 1.100 0.500

DECP

3 2.100 2.100 1.250 0.700 0.650 0.650 0.750 1.050
4 2.000 2.200 1.250 0.600 0.500 0.500 0.650 1.100
5 2.000 2.200 1.050 0.550 0.650 0.650 0.650 1.200
7 1.900 2.000 0.950 0.550 0.750 0.750 0.850 0.650

10 1.800 1.700 0.940 0.540 0.750 0.900 1.050 0.550

The predicted A values through a simplified format of the T-stress-based estimate method
(Equation (12)) for biaxial ratio λ = 0.5 and 1.0 were compared with those solutions obtained from FEA
results. Based on the relative crack length a/W = 0.1, 0.3, 0.5, 0.7 with various hardening exponents
n = 3, 4, 5, 7, and 10, respectively, the comparisons for SECP, CCP, and DECP were implemented
extensively. As an example, Figure 4 illustrates A value comparison for CCP with a/W = 0.5 and λ = 1.0.
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Figure 4. Comparisons of predicted A values from T-stress with FEA data for CCP, a/W = 0.5, λ = 1.0.

When external load ratios are not greater than the maximum applicable ones (Table 3), for SECP,
CCP, and DECP with λ = 0.5, 1.0, most differences between predicted A values and its FEA solutions
are less than 5%. The maximum difference overall is 10.99% for all three specimens with the two biaxial
ratios, showing good agreement.

The maximum applicable external load (applicability range) of the original format of
T-stress-based estimate method (Equation (6)) are listed in Table 4, which has been obtained in
previous work [19]. Comparing the current maximum applicable loads of simplified format estimate
method (Table 3) with those from original format estimate (Table 4), it could be found that, for the
SECP, CCP, and DECP specimens, generally, the applicability range (maximum applicable loads) of
the simplified format (Equation (12)) is slightly smaller than that of the original format (Equation (6)).
Current simplified format (Equation (12)) is based on n = 10, thus a decrease of the applicability range
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only occurs for n = 3, 4, 5 and 7. The same phenomenon was found for the cases under a uniaxial
loading condition (see [18]).

Table 4. Maximum applicable load ratio (σ/σ0) of T-stress-based estimate under biaxial loading.

λ = 0.5 λ = 1.0

Model n a/W = 0.1 a/W = 0.3 a/W = 0.5 a/W = 0.7 a/W = 0.1 a/W = 0.3 a/W = 0.5 a/W = 0.7

SECP

3 1.800 1.400 0.350 0.080 1.000 1.400 0.350 0.080
4 1.700 1.300 0.320 0.070 0.900 1.200 0.300 0.070
5 1.600 1.100 0.320 0.070 0.850 1.150 0.300 0.070
7 1.600 0.900 0.320 0.070 0.750 1.100 0.300 0.060

10 1.600 0.810 0.320 0.060 0.500 0.950 0.300 0.060

CCP

3 1.800 1.800 1.200 0.640 1.200 1.300 1.300 0.750
4 1.500 1.800 1.200 0.400 1.000 1.000 1.200 0.750
5 1.200 1.750 1.200 0.400 1.000 1.000 1.200 0.750
7 1.200 1.500 1.200 0.400 1.000 1.000 1.100 0.540

10 1.000 1.200 1.150 0.400 1.000 1.000 1.100 0.500

DECP

3 2.000 2.000 1.250 0.700 1.000 1.100 1.200 1.200
4 2.000 2.200 1.250 0.650 0.900 1.000 1.100 0.870
5 1.900 2.200 1.150 0.550 0.900 0.900 1.050 0.650
7 1.900 2.000 0.950 0.550 0.900 0.900 1.050 0.550

10 1.800 1.700 0.940 0.540 0.750 0.900 1.050 0.550

The reason for the reduced applicability range is the same as that of the simplified format
T-stress-based estimate applied under uniaxial loading condition [18]: the curves of the A value vs.
normalized T-stress, T/σ0, in Figure 3 are not identical in shape, they are only “similar”. However,
only one curve shape for a specified hardening exponent n, for example n = 10, was utilized in the
simplified format estimate method (Equations (11) and (12)) to predict A solutions for other n values.

Just like for a uniaxial loading condition [18], a biaxial loading, although with the reduced
applicability range, can use the simplified formation of T-stress-based estimate method to estimate A
solutions for other n values based on available FEA results of MBL formulation for arbitrary single
value of n. The simplified format of the T-stress-based estimate method enables determining A values
from T-stress much more conveniently and quickly than its original formation for sensor components
and other structures under biaxial loading condition.

5. Conclusions

To enable the application of two-parameter EPFM approaches on sensor structure design as
well as other engineering applications, an T-stress-based estimate method was developed by the
authors under an SSY condition, which determines the solutions of constraint parameter A in the J-A
two-parameter approach directly from structure T-stress, both conveniently and effectively. Based on
the relation curve shape similarity between parameter A and T-stress, a simplified formation of the
T-stress-based estimate was also proposed under a uniaxial external loading condition, which enabled
much more convenient and quick estimates of constraint parameter A values than its original format.

Sensor components and other engineering structures generally endure biaxial external loading
instead of the uniaxial one. In the current work, through analysis and discussion of specimens SECP,
CCP, and DECP, the simplified format of T-stress-based estimate method was extended to a biaxial
loading condition for sensor structure design and other engineering applications.

Through an extensive comparison between the predicted values and the numerical solutions of
constraint parameter A for SECP, CCP, and DECP, the extension of simplified format T-stress-based
estimate method to biaxial loading condition was validated. Based on the biaxial loading ratio λ = 0.5
and 1.0, the validation comparison was implemented based on crack specimens SECP, CCP, and DECP,
with the relative crack length a/W = 0.1, 0.3, 0.5, and 0.7 for various hardening exponents n = 3, 4, 5, 7,
and 10, respectively, covering a wide variety of material and geometric properties.
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