
sensors

Article

Improvement of Noise Uncertainty and
Signal-To-Noise Ratio Wall in Spectrum Sensing
Based on Optimal Stochastic Resonance

Di He 1,*, Xin Chen 1 , Ling Pei 1, Lingge Jiang 2 and Wenxian Yu 3

1 Shanghai Key Laboratory of Navigation and Location-Based Services, Shanghai Jiao Tong University,
Shanghai 200240, China; xin.chen@sjtu.edu.cn (X.C.); ling.pei@sjtu.edu.cn (L.P.)

2 Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
lgjiang@sjtu.edu.cn

3 Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiao Tong University,
Shanghai 200240, China; wxyu@sjtu.edu.cn

* Correspondence: dihe@sjtu.edu.cn

Received: 19 December 2018; Accepted: 15 February 2019; Published: 18 February 2019
����������
�������

Abstract: Noise uncertainty and signal-to-noise ratio (SNR) wall are two very serious problems
in spectrum sensing of cognitive radio (CR) networks, which restrict the applications of some
conventional spectrum sensing methods especially under low SNR circumstances. In this study,
an optimal dynamic stochastic resonance (SR) processing method is introduced to improve the
SNR of the receiving signal under certain conditions. By using the proposed method, the SNR wall
can be enhanced and the sampling complexity can be reduced, accordingly the noise uncertainty
of the received signal can also be decreased. Based on the well-studied overdamped bistable SR
system, the theoretical analyses and the computer simulations verify the effectiveness of the proposed
approach. It can extend the application scenes of the conventional energy detection especially under
some serious wireless conditions especially low SNR circumstances such as deep wireless signal
fading, signal shadowing and multipath fading.

Keywords: cognitive radio (CR); spectrum sensing; energy detector (ED); signal-to-noise ratio (SNR)
wall; optimal stochastic resonance

1. Introduction

In the last decade, owing to the rapid development of wireless communications, such as the rapid
deployment of the 3G and 4G mobile communication systems around the world, some old spectrum
resource transferring through the market auction in many countries, the amount of information
transmitted will exceed the carrying capacity of the existing radio spectrum, the spectrum resource has
become very limited, which restricts the progress of high speed wireless communications seriously.
Simultaneously, the allocated spectrum has not been utilized effectively, which leads to many spectrum
holes in the licensed frequency bands frequently. To enhance the spectrum utility, cognitive radio (CR)
networks were proposed to allow the secondary users (SUs) access to the licensed users or primary
users’ (PUs) spectrum for transmission [1]. In the CR networks, generally there exists two kinds of
spectrum sharing modes, the overlay mode and the underlay mode, while in the overlay mode the
CR has some knowledge about existing transmission and may support PU in transmission utilizing
the channel for its purposes as well; and in the underlay mode it permits the SUs to transmit even if
the channel has been occupied by the PUs already, as long as the interference temperature is under a
regulatory limit [2]. In this study, we will focus on the overlay mode.
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In the overlay mode, to motivate the SU transmission without interrupting the PU transmission,
it will decide the existence of the PU signal in the SU’s receiver end first, say the spectrum sensing,
which is a very important task in CR networks. Based on previous studies, it can be found that
the spectrum sensing can be realized by non-cooperative sensing methods and cooperative sensing
methods [3–7], while the cooperative methods are usually used to overcome the problem of shadow
fading in wireless communications. Generally, the non-cooperative sensing methods are still the
basis of the cooperative sensing methods. Within various kinds of non-cooperative sensing methods,
the energy detection [4], feature detection [5], and matched-filter detection [6] are the most studied
methods, in which energy detection attracts a lot of research interest because it is easy to use and no
a prior knowledge of PU signal is required in the sensing process. However, at the same time, the
signal-to-noise ratio (SNR) wall problem [8] seriously restricts the application of the traditional energy
detection, which implies that the number of samples at the receiver may increase rapidly to reach a
certain high threshold to fulfill a higher detection probability under a constant false alarm rate (CFAR),
if there exists noise uncertainty in the SU’s receiver in the sensing process. The SNR wall problem
degrades the performance of energy detection especially under low SNR, which always appears in
wireless communications.

Besides the above studies and research, the survey in [9] briefly described the ways for obtaining
energy-efficiency in cooperative sensing, and it also summarized the algorithms leading to relative
energy saving while assuring high sensing performance in terms of the global probability of detection
or the global probability of false alarm. In [10], several topics and open problems worth mentioning in
spectrum sensing for CR were also proposed, such as quick detection, adaptive sensing and learning,
joint spectrum sensing and efficient resource utilization. While for the SNR wall problem, the detection
performance of generalized energy detector was studied in [11] under different distributions of noise
uncertainty and the problem of opportunistic spectrum access using full-duplex radios in the presence
of unknown PU channel statistics was studied in [12]. In [13] the recent advances in the spectrum
sensing framework as the main enabling technology for the interweaving cognitive radio model is
provided. References [14,15] derived the closed form expressions for the critical frame length that
equalizes the energy consumption and energy efficiency in CR schemes, which has been validated by
the simulation results.

To overcome the SNR wall problem stated above, a novel non-cooperative spectrum sensing
approach based on the combination of the dynamic analysis method of stochastic resonance (SR)
and the traditional energy detection is proposed in this study. It utilizes the special property of the
SR system that can improve the SNR of the SR system especially under certain conditions [16–19].
By introducing an optimal SR system as the pre-processor of the traditional energy detector, the
SNR wall can be improved and the number of samples at the receiver can be reduced effectively,
which results in the improvement of detection performance in CR networks. The optimal driving
parameters of the SR system can also be found through the optimization process. Theoretical analyses
verify the effectiveness of the proposed approach. The computer simulations also show that the SNR
wall problem can be solved effectively especially under low SNR circumstances.

The remaining part of this paper is arranged as follows: Section 2 explains the traditional
non-cooperative energy detection method and corresponding SNR wall problem briefly. In Section 3,
the SR-based energy detection approach is proposed and discussed together with its optimization
process. The theoretical performance improvement analyses are given in Section 4 in details based on
a well-known overdamped bistable SR system. Computer simulation results are given in Section 5
to verify the effectiveness of the proposed approach, and the comparison results with the traditional
spectrum sensing method are also presented. Finally the concluding remarks are summarized
in Section 6.
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2. Traditional Detection Methods and the Signal-To-Noise ratio Wall Problem

Within many different non-cooperative spectrum sensing methods, such as cyclostationary
detection, the covariance-based detection, the matched-filter detection etc. [4–6], energy detection has
the lowest computational cost and is the easiest to be used. Simultaneously, most detection methods
should know a prior knowledge of the PU signal except the energy detection, which also guarantees
that energy detection is a good property that can be applied in real applications.

Generally speaking, a spectrum sensing task can be abstracted as the following two-hypotheses
testing problem {

H0 : r(k) = n(k),

H1 : r(k) = h(k) · s(k) + n(k), (k = 1, 2, · · · )
(1)

where r(k) is the received real signal at the SU’s receiver, s(k) is the PU signal, n(k) is the additive
channel noise, and h(k) is the time-varying fading factor under wireless transmission circumstances.
To simplify the analyses in this this study, it can always be assumed that s(k) obeys a certain distribution
with mean 0 and variance σ2

s ; n(k) obeys Gaussian distribution with mean 0 and variance σ2
n , which is

independent of s(k) and can be regarded as a sum of additive channel noise, thermal noise, co-channel
multi-user interference and so on. h(k) obeys Rayleigh distribution with mean h and variance σ2

h , which
is independent of s(k) and n(k). Because the time period of spectrum sensing frame is relatively shorter
than the time period of transmission, it can be assumed that h(k) ≡ h is a constant in the theoretical
analyses and computer simulations thereafter.

In the traditional detection method, the SU’s receiver calculates the power A(r) of the received
signal r(k) as follows

A(r) =
1
K

K

∑
k=1

r2(k) (2)

where K is the total number of samples at the SU’s receiver. Then by comparing the statistic A(r)
with a fixed threshold value γED, one can decide whether the PU signal exists or not, which can be
expressed as

A(r)

H1

>

<

H0

γED (3)

The threshold γED is often chosen to guarantee the CFAR property of the traditional detector.
So the detection probability Pd(ED) and the false alarm rate Pfa(ED) of the traditional detection method
can be calculated by the following two equations, respectively

Pd(ED) = Pr{A(r) > γED|H1} (4)

Pf a(ED) = Pr{A(r) > γED|H0} (5)

where Pr{·} is the probability of the event.
From (2), it can be derived that

H0 :
E[A(r)] = σ2

n ,

var[A(r)] = 2
K σ4

n ;

H1 :
E[A(r)] = h

2 · σ2
s + σ2

n ,

var[A(r)] = 2
K ·
(

h
2 · σ2

s + σ2
n

)2

(6)
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where E[·] and var[·] are the mean and variance functions, respectively. Therefore, (4) and (5) can also
be rewritten as

Pd(ED) = Qχ2
K

(
γED

σ2
n

)
, (7)

Pf a(ED) = Qχ2
K

(
γED

h
2 · σ2

s + σ2
n

)
, (8)

where Qχ2
K
(·) is the right-tail probability of the central chi-squared probability density function (pdf)

under K degrees of freedom. To guarantee the detection performance under a certain CFAR, the
threshold γED can be determined by

γED =
(

h
2 · σ2

s + σ2
n

)
·Q−1

χ2
K

(
Pf a(ED)

)
, (9)

where Q−1
χ2

K
(·) is the inverse function of Qχ2

K
(·). In real applications, the parameters h

2
, σ2

s and σ2
n in (9)

can be replaced by corresponding estimates ĥ
2
, σ̂2

s and σ̂2
n , respectively. In the following analyses,

for simplicity, we assume that both h
2

and σ2
s are known or can be estimated unbiasedly at the SU’s

receiver, so the performance is only determined by the noise variance estimate σ̂2
n .

According to the Central Limit Theorem [3], when the total number of samples K at the SU’s
receiver is big enough, (7) and (8) can be approximated by

Pd(ED) ≈ Q
(

A(r)− σ̂2
n

σ̂2
n

)
, (10)

Pf a(ED) ≈ Q

(
A(r)− h

2 · σ2
s − σ̂2

n

h
2 · σ2

s + σ̂2
n

)
, (11)

where Q(·) is the standard Gaussian complementary cumulative distribution function (CDF) whose
definition can be found in [16].

Due to the uncertainty of the wireless channel in CR networks, there may exist some difference
between σ̂2

n and σ2
n , or there may be a distributional uncertainty of the noise power within the following

interval [8]

σ̂2
n ∈

[
1
ρ

σ2
n , ρσ2

n

]
, (12)

where ρ > 1 is a positive parameter which defines the size of the noise uncertainty [8]. Then the
sampling complexity of the conventional detection method NED is [8].

NED =
2
[

Q−1
(

Pf a(ED)

)
−Q−1

(
1− Pd(ED)

)]2

[
SNRi −

(
ρ− 1

ρ

)]2 , (13)

where SNRi is the SNR of r(k) under H1 in (1), which can be theoretically calculated by

SNRi =
h

2
σ2

s
σ2

n
. (14)

From (13) it can be found that when SNRi is reducing and approaching
(

ρ− 1
ρ

)
gradually,

the sampling complexity NED will approach infinity, which implies that the spectrum sensing



Sensors 2019, 19, 841 5 of 17

performance of Pd(ED) under certain Pfa(ED) cannot be guaranteed even if the number of samples
is big enough. So it is also called an SNR wall as

SNR(ED)
wall = ρ− 1

ρ
. (15)

In other words, when SNRi is lower than the SNR wall defined above, it is impossible for the
conventional detector to reach the certain spectrum sensing performance. However, the low SNR
condition is a very common circumstance in wireless CR networks, so it is a very serious problem
which restricts the application of the conventional detection method.

3. Optimal Stochastic-Resonance-Based Detection Approach under Low Signal-To-Noise Ratio

To overcome the SNR wall problem mentioned in the last Section, a novel spectrum sensing
approach based on the optimal SR technique and the conventional detection method was proposed,
especially for the application under low SNR.

Firstly, to give an intuitive explanation, we give the block diagram of the proposed optimal
SR-based detector in Figure 1. The received signal r(k) is first normalized to fulfill the input signal
requirement of the SR system, that is

d(k) =
1√

1
K

K
∑

k=1
r2(k)

· r(k), (k= 1, 2, · · · ) (16)

where d(k) is the normalization of the signal r(k).
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Figure 1. Block diagram of the proposed optimal stochastic resonance-based detector.

Use d(k) as one of the driving inputs to the SR system, and introduces a pseudo random noise η(k)
with mean 0 and variance σ2

η as another driving input to the SR system, which is independent of d(k)
as shown in Figure 1, then the dynamic equation of the SR system can be expressed by

x(k + 1) = f [x(k), d(k), η(k), P(k)], (17)

where f [·] is the nonlinear dynamic function of the SR system; x(k) is the state variable of the SR system;
and P(k) is the parameter vector of the selected SR system f [·].

As is known, SR is a kind of nontrivial behavior in nonlinear systems with the influence of noise.
It reveals the phenomena that the ordered response of a dynamic system with weak input signals can
be significantly increased by appropriately tuning the noise intensity to an optimal but nonvanishing
value [16]. By utilizing this special property of an SR system, it has been widely used in various
application areas, such as sequential detectors [20], feed-forward neural network [21], sigma-delta
modulators [22], and so on [23].
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Mathematically, according to the Linear Response Theory (LRT) of an SR system, when both d(k)
and η(k) are introduced into the SR system as two independent additive components, and if we set the
mean value of the unperturbed state variable 〈x(k)〉st = 0 [9], we have

〈x(k)〉asy = dSR(k) + ηSR(k), (18)

where 〈·〉st and 〈·〉asy are the steady state and asymptotic limit of the random process, dSR(k) and ηSR(k)
is the independent SR system responses to the driving signals d(k) and η(k), respectively.

So when the PU signal exists in the sensing channel (under H1), (18) can also be written as

〈x(k)〉asy = SSR(k) + nSR(k) + ηSR(k), (19)

where sSR(k) and nSR(k) are the system responses to s(k) and n(k), respectively. If the PU signal does not
exist (under H0), it becomes

〈x(k)〉asy = nSR(k) + ηSR(k). (20)

Without loss of generality and to simplify the analyses thereafter, we can set the mean value of
〈x(k)〉asy under both hypotheses to be zero, that is

{
H0 : E[x(k)] = E[nSR(k) + ηSR(k)] = 0,

H1 : E[x(k)] = E[sSR(k) + nSR(k) + ηSR(k)] = 0.
(21)

Simultaneously, the power of both driving signals may be changed according to the Spectrum
Power Amplification (SPA) property of the SR system [16], that is

λs =
σ2

sSR

σ2
s

, (22)

λn =
σ2

nSR

σ2
n

, (23)

λη =
σ2

ηSR

σ2
η

, (24)

where λs, λn, λη are the SPAs of s(k), n(k) and η(k), respectively; σ2
sSR

, σ2
nSR

, σ2
ηSR

are the variances of
sSR(k), nSR(k) and ηSR(k), respectively.

Then the SNR of the asymptotic limit of x(k), say SNRo, can be calculated by

SNRo =
σ2

sSR

σ2
nSR

+ σ2
ηSR

. (25)

By introducing the above state variable x(k) of the SR system into the conventional detector as
shown in Figure 1, and by normalizing the output signal y(k) to a variable with unit variance, we have

H0 : y(k) = [nSR(k)+ηSR(k)]
2

1
K

K
∑

k=1
x2(k)

,

H1 : y(k) = [sSR(k)+nSR(k)+ηSR(k)]
2

1
K

K
∑

k=1
x2(k)

,
(k= 1, 2, · · · ). (26)

According to the Central Limit Theorem [3], when the number of samples K is large enough,
y(k) under both hypotheses can be approximated by the standard Gaussian distributions with a unit
variance but different mean values.
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Thus, the conditions in [24] to improve the CR networks spectrum sensing by using the optimal
SR can be fulfilled, especially under a low SNR circumstance. Here we also give the corresponding
Theorem as follows:

Theorem 1. (also appearing in [24], Theorem 6) For the weak signal-detection problem, if the test statistics
under both hypotheses can be well approximated by some Gaussian distributions with the same variance, then the
optimum detection performance can be obtained by adding a constant SR noise to the observed data and adjusting
the detector threshold.

In other words, we can carry out the optimization process as

{ f ∗[·], η∗(k), P∗(k)} = argmax
{ f [·],η(k),P(k)}

SNRo, (27)

where f ∗[·] is the optimal SR system, η∗(k) and P∗(k) are the corresponding optimal SR noise and
optimal system parameter vector of f ∗[·].

According to Theorem 1, and under the condition of (27), we can get

SNRo > SNRi, (28)

or a SNR gain can be achieved as

SNRgain = SNRo − SNRi > 0. (29)

Calculate the mean value of y(k) and compare it with a fixed threshold γOSR-ED to achieve a CFAR
as shown in Figure 1, the spectrum sensing decision can then be made by

B(y) =
1
K

K

∑
k=1

y(k)

H1

>

<

H0

γOSR−ED. (30)

If there exists a noise uncertainty ρ as in (12), the sampling complexity of the proposed optimal
SR-based detection method NOSR-ED is

NOSR−ED =
2[Q−1(Pf a(ED))−Q−1(1−Pd(ED))]

2[
SNRo−

(
ρ− 1

ρ

)]2

=
2[Q−1(Pf a(ED))−Q−1(1−Pd(ED))]

2[
SNRi−

(
ρ− 1

ρ−SNRgain

)]2

(31)

Compared with the conventional detector under the same CFAR and detection probability, it can
be found obviously based on (13), (29) and (31) that

NOSR−ED < NED, (32)

which implies that the sampling complexity can be reduced effectively based on the proposed approach.
Meanwhile, according to the definition of the SNR wall, it can be defined that the SNR wall of the
proposed optimal SR-based detection approach is

SNR(OSR−ED)
wall = ρ− 1

ρ
− SNRgain, (33)
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and we have
SNR(OSR−ED)

wall < SNR(ED)
wall . (34)

So the SNR wall of the proposed approach can also be improved accordingly.
Simultaneously, if we define the size of the noise uncertainty after the optimal SR-based detection

as ρ(OSR-ED), we have
SNR(OSR−ED)

wall = ρ(OSR−ED) − 1
ρ(OSR−ED)

= ρ− 1
ρ − SNRgain

, (35)

and it can also be deduced from (34) and (35) that

ρ(OSR−ED) < ρ, (36)

which indicates that the noise uncertainty of the received signal after the proposed optimal SR-based
detection processing can also be reduced. This can accordingly relieve the SNR wall problem and
improve the real application conditions of the conventional energy detection method especially under
low SNR.

4. Performance Improvement Analyses

In the following Section, we give a more detailed theoretical performance improvement analyses
based on the mostly studied overdamped bistable SR system model [16]. Because the performance of
the proposed SR-based detection approach and the conventional energy detector had close relationships
with the power of the signal, and to simplify the analyses, we first assumed that the PU signal was an
M-PSK modulated signal as follows

s(k) = AP · cos(ωPkT + ϕP), (k= 1, 2, · · · ) (37)

where AP,ωP and ϕP ∈
{

0, 2π
M , 4π

M , · · · , 2(M−1)π
M

}
are the amplitude, angular frequency and phase of

the PU signal, respectively; and T is the sampling time period. The channel noise n(k) in (1), is assumed
to be an additive white Gaussian noise with mean 0.

By introducing the normalized received signal d(k) and an SR noise η(k) into the overdamped
bistable SR system, the dynamic equation of the SR system can be written as [16]

x(k+1)−x(k)
T

= a · x(k)− b · x3(k) + p1 · d(k) + p2 · η(k)
(38)

where a and b are the system parameters, p1 and p2 are the driving parameters corresponding to the
driving signals d(k) and η(k), respectively.

Due to the independency within x(k), n(k) and η(k) under H1, (38) can be rewritten as

x(k+1)−x(k)
T = a · x(k)− b · x3(k)

+p1 · h·AP ·cos(ωPkT+ϕP)√
1
2 A2

P+σ2
n

+p1 · n(k)√
1
2 A2

P+σ2
n
+ p2 · η(k).

(39)

To reach the optimal SR performance, it is required that the SR noise should be symmetric [24],
and in (39) it is obvious that both η(k) and n(k) play the role of SR noise simultaneously, so η(k) can
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also be chosen as a white Gaussian noise which is independent to n(k). Under the above assumptions,
(39) can be simplified to the following equation

x(k+1)−x(k)
T

= a · x(k)− b · x3(k)
+p3 · AP · cos(ωPkT + ϕP) + p4 · λ(k)

(40)

where we have

p3 =
p1 · h√

1
2 A2

P + σ2
n

, (41)

p4 =

√
p2

1 · σ2
n

1
2 A2

P + σ2
n
+ p2

2, (42)

and λ(k) is a standard Gaussian noise with mean 0 and variance 1.
In this case, the SNR of the received signal at the CR networks SU’s receiver is

SNRi =
1
2 h

2 · A2
P

σ2
n

, (43)

and the SNR of the output of the SR system, say SNRo of x(k), can be calculated by

SNRo

=
√

2ap2
3h

2
A2

Pc2

p4
4

e
− 2U0

p2
4 ·
(

1− 2p2
3h

2
A2

Pc2

p4
4

)−1

=
√

2ap2
3h

2
A2

Pc2

p4
4−2p2

3h
2

A2
Pc2

e
− 2U0

p2
4

(44)

where c =
√

a
b and U0 = a2

4b are fixed constants corresponding to the SR system parameters a and b.
Based on (43) and (44), and to guarantee the SNR improvement through the optimal SR system, it

requires SNRo > SNRi, that is √
2ap2

3h
2
A2

Pc2

p4
4 − 2p2

3h
2
A2

Pc2
e
− 2U0

k2
4 >

1
2 h

2
A2

P
σ2

n
, (45)

and it can be deduced that (
√

2U0 +
h

2
A2

Pc2

σ2
n

e
2U0
p2

4

)
p2

3 >
p4

4
2σ2

n
e

2U0
p2

4 . (46)

When SNRi is low enough, such as less than −10 dB, (46) can be simplified to

p2
3 >

p4
4

2
√

2U0σ2
n

e
2U0
p2

4 . (47)

It can be observed, obviously that p4 =
√

U0 is the maximal point of the right side expression of
(47) when U0 and σ2

n is fixed, so if the following condition can be fulfilled

p2
3 >

U0

2
√

2σ2
n

e2, (48)

the SNR improvement, say SNRo > SNRi, can be guaranteed effectively.
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At the same time, to get the maximum SNRo of the SR system, we can take (44) as an optimization
objective function and suppose that p3 is a constant, and let

∂SNRo

∂
(

p2
4
) = 0. (49)

Then we can find out that the optimal parameter p2
4 fulfills the following cubic equation(

p2
4

)3
−U0

(
p2

4

)2
+ 2U0 p2

3h
2
A2

Pc2 = 0. (50)

Or in other words, the optimal parameter p4 is the solution of the above cubic equation.
By calculating the discriminant ∆ of (50), we can get

∆ = U2
0 p4

3h
4
A4

Pc4 − 2
27 U4

0 p2
3h

2
A2

Pc2

= U2
0 p2

3h
2
A2

Pc2
(

p2
3h

2
A2

Pc2 − 2
27 U2

0

)
= U2

0 p2
3h

2
A2

Pc2
(

p2
3h

2
A2

P
a
b −

1
27 ·

a4

8b2

)
=

U2
0 ap2

3h
2

A2
Pc2

216b2

(
216p2

3h
2
A2

Pb− a3
) (51)

Then the optimization result can be achieved by the power or the amplitude of the driving PU
signal, that is:

(a) When p3hAP >
√

1
b
( a

6
)3, ∆ > 0, the only real solution of (50) is

p2
4 =

U0

3
+

3

√
U3

0
27
−U0 p2

3h
2
A2

Pc2 +
√

∆ +
3

√
U3

0
27
−U0 p2

3h
2
A2

Pc2 −
√

∆; (52)

(b) When p3hAP =
√

1
b
( a

6
)3, ∆ = 0, the real triple solution of (50) is

p2
4 =

U0

3
+ 2

3

√
U3

0
27
−U0 p2

3h
2
A2

Pc2; (53)

(c) When p3hAP <
√

1
b
( a

6
)3, ∆ < 0, the corresponding three real solutions of (51) are

p2
4(1) =

U0

3
+

3

√
U3

0
27
−U0 p2

3h
2
A2

Pc2 +
√

∆ +
3

√
U3

0
27
−U0 p2

3h
2
A2

Pc2 −
√

∆, (54)

p2
4(2) =

U0
3 + −1+

√
3i

2 · 3
√

U3
0

27 −U0 p2
3h

2
A2

Pc2 +
√

∆

+−1−
√

3i
2 · 3

√
U3

0
27 −U0 p2

3h
2
A2

Pc2 −
√

∆
, (55)

p2
4(3) =

U0
3 + −1−

√
3i

2 · 3
√

U3
0

27 −U0 p2
3h

2
A2

Pc2 +
√

∆

+−1+
√

3i
2 · 3

√
U3

0
27 −U0 p2

3h
2
A2

Pc2 −
√

∆
. (56)

In the two cases (a) and (b) above, p4 has only one optimal solution; and in the last case (c), we can
substitute the three solutions p4(1), p4(2) and p4(3) back into (44), and then find out the optimal one
which reaches the maximal value of SNRo. Because p3 should satisfy (48), to make the optimization
process easier in real applications, we can choose a relatively big value of p3 to ensure ∆ > 0, so that
the optimization result of p4 in (52) can be realized.

Substituting the optimal results of p3 and p4, which can be expressed by p∗3 and p∗4 , back
into (41) and (42), the optimal driving parameters p∗1 and p∗2 in (38) can finally be calculated,
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which correspond to the driving parameters of the normalized receiving signal d(k) and the additive
SR noise η(k), respectively.

Simultaneously, by taking p∗3 and p∗4 into (44), the optimal output SNR of the SR system can be
calculated by

SNR∗o =

√
2ap∗23 h

2
A2

Pc2

p∗44 − 2p∗23 h
2
A2

Pc2
e
− 2U0

p∗24 . (57)

According to (33), (43) and (57), the SNR wall of the proposed optimal SR-based detection
approach under the size of noise uncertainty ρ is

SNR(OSR−ED)
wall = ρ− 1

ρ

−
√

2ap∗23 h
2

A2
Pc2

p∗44 −2p∗23 h
2

A2
Pc2

e
− 2U0

p∗24 +
1
2 h

2·A2
P

σ2
n

(58)

and the size of the noise uncertainty after the optimal SR-based detection ρ(OSR-ED) can be calculated
by solving the following equation

ρ(OSR−ED) − 1
ρ(OSR−ED)

= ρ− 1
ρ −

√
2ap∗23 h

2
A2

Pc2

p∗44 −2p∗23 h
2

A2
Pc2

e
− 2U0

p∗24

+
1
2 h

2·A2
P

σ2
n

(59)

So when the optimal SR is realized, the corresponding sampling complexity of the proposed
optimal SR-based detection approach NOSR-ED under selected Pfa(ED) and Pd(ED) is

NOSR−ED

=
2[Q−1(Pf a(ED))−Q−1(1−Pd(ED))]

2[
SNRi−

(
ρ(OSR−ED)− 1

ρ(OSR−ED)

)]2

=
2[Q−1(Pf a(ED))−Q−1(1−Pd(ED))]

2[
SNRi−SNR(OSR−ED)

wall

]2

(60)

Although the above performance improvement analyses and the corresponding derivations in
this Section were based on the assumption that the PU signal was an M-PSK signal, it can be discovered
very clearly that the total analyses process from Equation (37) to (60) is only related to the signal
amplitude AP, and is not related to the signal angular frequency ωP and signal phase ϕP of the PU
signal at all. So according to this interesting phenomenon, we can get a more general conclusion that
the proposed optimal SR-based signal detection approach in CR networks is suitable for any kind of
PU signal whose modulation scheme is not related to amplitude modulation. In other words, many
classic and typical signals such as the frequency modulation (FM) signal, phase modulation (PM)
signal, and orthogonal frequency division multiplexing (OFDM), which is generally used in 4G and
5G mobile communication systems are all suitable for this kind of proposed approach, which also
indicates that the proposed approach may have a wide range of application areas.

5. Computer Simulations

In this Section, some computer simulations are given to evaluate the performances of the proposed
optimal SR-based detection approach and the conventional energy detection method.

In the simulations, a QPSK signal is chosen as the PU signal with M = 4 and ϕP ∈
{

0, π
2 , π, 3π

2
}

.
The amplitude and angular frequency of the QPSK signal are set as AP = 1 and ωP = 2π × 106 in (37).
The signal amplitude AP can also be set to some other constant value, but it will not influence the
performance of the proposed approach, and the reason for selecting AP = 1 here lies in that it may
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simplify the signal normalization and the noise variance estimation process at the receiver as shown in
the following Equation (61) to (64). The fading factor is chosen as h = 1. The sampling time period
is T = 0.0195. In the overdamped bistable SR system, the parameters are chosen as a = 2 and b = 1 in
(38). The parameters chosen for T, a and b here can guarantee the overdamped bistable SR system
could possess the best SR performance including SNR improvement and signal power amplification
compared with other parameter values [16].

The maximum likelihood estimation (MLE) method in [6] is used to estimate the amplitude AP of
the PU signal at the input angular frequency ωP especially under low SNR, that is

ÂP =
√

α̂2
1 + α̂2

2, (61)

where we have

α̂1 =
2
K

K

∑
k=1

r(k) · cos ωPkT, (62)

α̂2 =
2
K

K

∑
k=1

r(k) · sin ωPkT. (63)

and the noise variance of the received signal can be estimated by [20]

σ̂2
n =

1
K

K

∑
k=1

r2(k)− 1
2

Â2
P. (64)

By taking the estimates of ÂP in (61) and σ̂2
n in (64) to substitute AP and σ2

n in the last Section, the
optimization process can then be followed.

Figure 2 shows the SNRo performance of the overdamped bistable SR system with parameters
a = 2 and b = 1 under SNRi = −30 dB. It can be found that a maximal SNRo can be reached when
p2 approaches the optimal value, and SNRo has almost no relationship with p1 when it fulfills the
SNR improvement requirement. The optimal performance can be observed much clearly in Figure 3
where p1 is fixed and p∗2 is the corresponding optimal value of p2. Figures 4 and 5 give the same
evaluations under SNRi = −25 dB, which indicates that the proposed optimal SR-based detection
approach is efficient even under low SNR, and it can overcome the shortcoming of the conventional
energy detection method well.
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To give a more convincing explanation of the SNR improvement of the proposed optimal SR-based
approach, Figures 6 and 7 give the optimal SNR improvement performance of the overdamped bistable
SR system with parameters a = 2 and b = 1. It can be seen that the positive SNR gain can be obtained
within a wide range of SNRi including very low SNR circumstances.
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Figures 8 and 9 compares the SNR walls of the conventional energy detector and the proposed
optimal SR-based detector under SNRi = −30 dB and SNRi = −25 dB, respectively. It can be found that
9.1424 dB SNR gain under SNRi = −30 dB and 10.3117 dB SNR gain under SNRi = −25 dB are obtained
by using the proposed approach, which can improve the corresponding spectrum sensing performance
of the CR networks importantly. Besides, the SNR wall comparisons between the energy detector and
the proposed optimal SR-based detector under different noise uncertainty ρ = 1 dB, ρ = 0.1 dB and
ρ = 0.01 dB are plotted in Figure 10. It can be observed that the SNR walls of the proposed approach is
much lower than the corresponding SNR walls of the conventional energy detection method under the
same noise uncertainty. At the same time, under the same SNRi and noise uncertainty ρ, the sampling
complexity can be reduced significantly by using the proposed approach, which can improve the
spectrum sensing performance of the energy detector seriously. Or in other words, if we compare
the noise uncertainties of both approaches under the same sampling complexity, it can be found that
the noise uncertainty of the proposed approach can also be reduced compared with the conventional
energy detection method.
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Finally, to evaluate the validity of the proposed approach based on the SR technique, especially
the application in some scenario and implementation in the CR networks, we carried out a
computer simulation as follows. A QPSK signal was still selected as the PU signal with M = 4 and
ϕP ∈

{
0, π

2 , π, 3π
2
}

. The SNR was set at −15 dB. A fixed detection threshold was set to maintain the
CFAR of PU signal detection. The receiver operating characteristic (ROC) curves of the proposed
SR-based detection approach and the traditional energy detector under SNR = −15 dB and ρ = 0.01 dB
is given in Figure 11. As can be found in Figure 11, the detection probabilities of the proposed SR-based
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detection approach were higher than those of the traditional energy detector, particularly within the
range of Pfa value from 0.1 to 0.5, which means that the PU signal can be more easily detected under the
fixed threshold by using the proposed approach than the conventional method. In other words, due to
the reason that the SNR wall is reduced based on the proposed approach, the PU signal can then be
detected with much higher detection probabilities in this condition, while for the conventional energy
detection method it still cannot work reliably with much lower detection probabilities. Therefore,
it also reveals the real applicability of the proposed approach.
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6. Conclusions

In this paper, a non-cooperative SR-based detection approach used in CR networks is proposed,
and it can relieve the SNR wall and corresponding noise uncertainty problems in traditional energy
detectors especially under low SNR circumstances. By introducing the normalized received signal and
an independent SR noise into the dynamic SR system as the driving signals, and by optimizing their
driving parameters, the SNR of the received signal can be improved and then the SNR wall can be
reduced accordingly. Theoretical analyses and computer simulation results verify the effectiveness
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9. Cichoń, K.; Kliks, A.; Bogucka, H. Energy-efficient cooperative spectrum sensing: A survey. IEEE Commun.

Surv. Tutor. 2016, 18, 1861–1886.
10. Axell, E.; Leus, G.; Larsson, E.G.; Poor, H.V. Spectrum sensing for cognitive radio: State-of-the-art and recent

advances. IEEE Signal Process. Mag. 2012, 29, 101–116. [CrossRef]
11. Kalamkar, S.S.; Banerjee, A.; Gupta, A.K. SNR wall for generalized energy detection under noise uncertainty

in cognitive radio. In Proceedings of the 2013 19th IEEE Asia-Pacific Conference on Communications (APCC),
Denpasar, Indonesia, 29–31 August 2013; pp. 375–380.

12. Hammouda, M.; Zheng, R.; Davidson, T.N. Full-duplex spectrum sensing and access in cognitive radio
networks with unknown primary user activities. In Proceedings of the 2016 IEEE International Conference
on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2015; pp. 1–6.

13. Ali, A.; Hamouda, W. Advances on spectrum sensing for cognitive radio networks: Theory and applications.
IEEE Commun. Surv. Tutor. 2017, 19, 1277–1304. [CrossRef]

14. Saud, A.; Granelli, F. Energy efficiency analysis of soft and hard cooperative spectrum sensing schemes
in cognitive radio networks. In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference
(VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5.

15. Saud, A.; di Renzo, M.; Granelli, F. Towards energy-efficient cooperative spectrum sensing for cognitive
radio networks: An overview. Telecommun. Syst. 2015, 59, 77–91.

16. Anishchenko, V.S.; Astakhov, V.V.; Neiman, A.B.; Vadivasova, T.E.; Schimansky-Geier, L. Nonlinear Dynamics of
Chaotic and Stochastic Systems: Tutorial and Modern Developments; Spring: Berlin/Heidelberg, Germany, 2002.

17. Mitaim, S.; Kosko, B. Adaptive stochastic resonance. Proc. IEEE 1998, 86, 2152–2183. [CrossRef]
18. McNamara, B.; Wilesenfeld, K. Theory of stochastic resonance. Phys. Rev. A 1989, 39, 4854–4869. [CrossRef]
19. Harmer, G.P.; Davis, B.R.; Abbott, D. A review of stochastic resonance: Circuits and measurement. IEEE Trans.

Instrum. Meas. 2002, 51, 299–309. [CrossRef]
20. Guerriero, M.; Marano, S.; Matta, V.; Willett, P. Stochastic resonance in sequential detectors. IEEE Trans.

Signal Process. 2009, 57, 2–15. [CrossRef]
21. Mtetwa, N.; Smith, L.S. Precision constrained stochastic resonance in a feed forward neural network.

IEEE Trans. Neural Netw. 2005, 16, 250–262. [CrossRef] [PubMed]
22. Oliaei, O. Stochastic resonance in sigma-delta modulators. Electron. Lett. 2003, 39, 173–174. [CrossRef]
23. Chen, H.; Varshney, P.K.; Kay, S.M.; Michels, J.H. Theory of the stochastic resonance effect in signal detection:

Part I—Fixed detectors. IEEE Trans. Signal Process. 2007, 55, 3172–3184. [CrossRef]
24. Chen, H.; Varshney, P.K. Theory of the stochastic resonance effect in signal detection: Part II—Variable

detectors. IEEE Trans. Signal Process. 2008, 56, 5031–5041. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSAC.2004.839380
http://dx.doi.org/10.1016/j.comnet.2006.05.001
http://dx.doi.org/10.1109/TCOMM.2006.887483
http://dx.doi.org/10.1109/78.317857
http://dx.doi.org/10.1109/TVT.2009.2028030
http://dx.doi.org/10.1109/JSTSP.2007.914879
http://dx.doi.org/10.1109/MSP.2012.2183771
http://dx.doi.org/10.1109/COMST.2016.2631080
http://dx.doi.org/10.1109/5.726785
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://dx.doi.org/10.1109/19.997828
http://dx.doi.org/10.1109/TSP.2008.2005087
http://dx.doi.org/10.1109/TNN.2004.836195
http://www.ncbi.nlm.nih.gov/pubmed/15732404
http://dx.doi.org/10.1049/el:20030128
http://dx.doi.org/10.1109/TSP.2007.893757
http://dx.doi.org/10.1109/TSP.2008.928509
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Traditional Detection Methods and the Signal-To-Noise ratio Wall Problem 
	Optimal Stochastic-Resonance-Based Detection Approach under Low Signal-To-Noise Ratio 
	Performance Improvement Analyses 
	Computer Simulations 
	Conclusions 
	References

