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Abstract: In this paper, we investigate whether fusing depth information on top of normal RGB data
for camera-based object detection can help to increase the performance of current state-of-the-art
single-shot detection networks. Indeed, depth sensing is easily acquired using depth cameras such as
a Kinect or stereo setups. We investigate the optimal manner to perform this sensor fusion with a
special focus on lightweight single-pass convolutional neural network (CNN) architectures, enabling
real-time processing on limited hardware. For this, we implement a network architecture allowing us
to parameterize at which network layer both information sources are fused together. We performed
exhaustive experiments to determine the optimal fusion point in the network, from which we can
conclude that fusing towards the mid to late layers provides the best results. Our best fusion models
significantly outperform the baseline RGB network in both accuracy and localization of the detections.
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1. Introduction

Fast and highly accurate object detection is a key ingredient for a manifold of applications.
An example is the detection of objects in various industrial applications such as pick and place machines
or safety applications such as pedestrian collision avoidance systems for autonomous vehicles. For the
latter application, the demands are very stringent, both with respect to the detection accuracy as well
as in its real-time behavior. The current state-of-the-art literature describes highly accurate detection
systems. However, there are still several issues that remain to be solved. For example, detecting
individual objects in a group, or more generally detecting highly occluded objects, are some of the
remaining problems current detection systems are facing. Besides providing highly accurate detections,
many applications require these detectors to process images in real-time. Important steps have been
taken towards real-time detection systems with single-pass convolutional neural networks (CNN).
However, a weakness these real-time detection networks have, is the difficulty to provide accurate
bounding boxes around the detected objects. Optimal localization is crucial for further segmentation
or re-id applications.

Looking back, traditional computer vision techniques used hand-crafted features as input to a
learned classifier to perform various tasks such as object detection and classification [1–3]. In order to
increase the detection accuracy, these techniques have been successfully extended using features from
various different sources like thermal imaging [4,5] and depth [6–8]. Benenson et al. [9] also proved
that depth can be a strong cue for preprocessing images, reducing the detection search space.

However, with the rise of CNNs, deep learning has been outperforming traditional computer
vision techniques by a significant margin [10,11]. Object detection is often based on a combination of a
CNN for classification with a sliding-window or other region proposal approach [12,13]. While these
techniques have proven to be successful, a major drawback is that they are highly computationally
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expensive. These techniques generate a great number of region proposals, of which each needs to be
evaluated by a classification network. These issues have been partially solved by sharing computations
between the region proposal and classification pipelines [14,15].

Finally, the current state-of-the-art for fast object detection lies with single-pass detection networks,
such as YOLO [16–18] and SSD [19]. By re-framing object detection as a single regression problem,
one can use a single network which simultaneously outputs bounding box coordinates and class
scores. Beside the fact that these networks are orders of magnitude faster than previous work, they also
have the advantage of considering the entire image when computing bounding boxes (i.e., exploiting
context information). This additional information makes for even better detectors, outperforming
previous detection pipelines.

While these state-of-the-art detection networks have achieved impressive results for object
detection, there are still several issues that remain to be solved. Taking inspiration from traditional
computer vision techniques, some of these issues have been solved by combining these detectors with
sensor fusion [20–23]. For example, adding extra information in the form of thermal imaging allowed
these detectors to perform better in challenging day-and-night scenarios [23].

The combination of depth information with normal RGB data has already been successfully
used with CNNs to improve the accuracy on the classification task [24,25]. These techniques work
by running two networks for each data stream and only fuse the features at the end of the networks,
effectively performing late fusion. Initial steps have been taken towards the use of RGBD data with
CNN-based object detection [26,27], proving the added value of depth for this task as well. However,
they still consist of a suboptimal multi-stage approach, and only fuse the different features at the end
of their pipeline.

In previous work [28], we investigated the added value of RGB+Depth fusion for real-time
pedestrian detection systems, by fusing RGB and depth data in a single-shot end-to-end network.
We proved that depth is an interesting channel for pedestrian detection, as it provides a more simple
depiction of the environment with basic silhouettes of the persons. This allows a network to detect
individual objects more easily and helps to provide more accurate bounding boxes. However, this
previous work was naive in the exact position of the fusion in the network. Only few specific points
were considered in the network architecture to perform this sensor fusion. No emphasis was given to
the trade-off between fusion point and optimal accuracy. Moreover, it was only experimentally verified
that the arbitrary midway fusion was best for a specific object detection task, i.c. pedestrian detection.

Therefore, in this paper we take an extensive look at where in the network to best perform this
sensor fusion. To the best of our knowledge, no exhaustive search has been reported in literature of
where the optimal level is to fuse the two information streams, both for the case of RGB+Depth as well
as for the case of RGB+IR. Apart from this, we also validate our solution on object detection in general
and on different datasets with different methods of depth acquisition.

To summarize, our main contributions are:

• We propose a flexible fusion layer architecture that can be placed at any arbitrary level of a
neural network.

• We implemented a single-stage detection network for RGB+Depth sensor fusion, with a
parameterizable fusion level. This model was made available in our open-source PyTorch library,
Lightnet (https://www.gitlab.com/eavise/lightnet).

• We performed brute-force experiments to determine the optimal fusion location in our network,
by exhaustively training a model for every fusion level in our network.

• We validated the potential of sensor fusion to improve the performance of object detectors on
multiple datasets for diverse objects in different situations, both concerning detection accuracy
and localization.

https://www.gitlab.com/eavise/lightnet
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2. Materials and Methods

We assume the input of our algorithm consists of a sensor that both acquires an RGB image,
as well as a depth image (D). Both are assumed to be aligned with each other, yielding a 4-channel
RGBD image. The latter can easily be realized with an RGBD range camera based on e.g., structured
light, time-of-flight or a calibrated stereo setup. In the remainder of this section we will discuss our
network architecture, the training methodology that we employed and our evaluation metrics.

2.1. Network Architecture

We opted to base our architecture on the YOLOv2 architecture, a state-of-the-art single-pass
detection network [17]. This network achieves a very impressive speed-accuracy trade-off and as such
is able to perform detections on embedded devices like the NVIDIA Jetson TX2 in real-time [17,28].
It consists of 27 layers, which gives us 28 different possibilities to fuse our information streams, being
right before the first layer and after every of the 27 layers of the network.

As seen in Figure 1a, our fusion network first has two subnetworks, of which one processes our
main RGB channels and one the D channel. Both subnetworks have exactly the same architecture,
consisting of the first N layers of YOLOv2, but have different weights to process their respective inputs.
After these N separate layers, we fuse both streams together by means of concatenation, and then
continue our network for the last 27− N layers of the YOLOv2 detector.
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Figure 1. The main building blocks of our parameterizable fusion network. (a) The fuse layer can
be transparently implemented after any arbitrary layer, allowing for a parameterizable fusion level.
(b) The fuse layer combines both information streams and divides the number of output channels by two.

In our previous work, where we only naively fused at specific places in the network, we adapted
the convolutions where the fusion happened in the network [28]. As this becomes infeasible to do for
every different permutation of our fusion network, we created a special fuse layer. This layer easily
enables the parameterization of the fusion level (see Figure 1b). The fuse layer first concatenates the
feature maps of our two subnetworks, after which it performs a 1× 1 convolution on this combined
feature map. The practical purpose of this convolution is to reduce the number of output feature maps
of both concatenated streams back to the original number of feature maps in one network. This allows
the fuse layer to be placed anywhere in the network in a transparent manner. We also believe this
convolution to be beneficial for fusing both streams together. By combining together the feature
maps, the convolution is able to extract features that were represented in both the main and fusion
subnetworks and create a stronger combined feature map set than both sets individually.

2.2. Training Methodology

We trained and evaluated these models on three highly diverse application cases (see Section 3),
following the same methodology for both of them.
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First we trained a regular RGB detection network, as well as a depth-only network. These models
give us a baseline to compare our results, as well as a way to tune our hyperparameters. Most of the
hyperparameters are identical to the default YOLOv2 parameters, but the length of the training was
changed to take into account the size of the dataset. As is customary when training object detection
networks, we start from pretrained weights and perform transfer learning on our datasets. YOLOv2,
which is based on the darknet-19 classification network, uses pretrained weights from this classification
network on the ImageNet dataset [29], up to its 23th layer. For the RGB network we followed the exact
same procedure. Since depth only consists of one channel and thus has a different first convolutional
layer, it is not optimal to use these pretrained weights. However, as there are no equivalent ImageNet
datasets available for depth, we decided to use the RGB pretrained weights, but removed the weights
of the first layer. The motivation for this is that the network looks for similar features in both the
depth maps and RGB images, and thus will still benefit from RGB pretrained weights over randomly
initialized weights.

We then proceeded with the training of the 28 different fusion networks. For this purpose,
we used exactly the same training hyperparameters as for the RGB network. This ensured that we did
not fine-tune the hyperparameters for the fusion networks better as compared to the RGB baseline,
resulting in a fair comparison of the different models. However, this implies that our fusion models,
which have more parameters to train, might perform suboptimally.

We employed the same procedure of transfer learning and used these same ImageNet pretrained
weights on our RGB subnetwork, as well as on the main network after the fusion, up to its 23th
layer (see Figure 2). For the depth subnetwork we faced the same problem as explained above,
but decided not to use the same pretrained RGB ImageNet weights without first layer. The fusion
networks have more parameters and thus might have a more difficult time to converge. On top of that,
if the depth subnetwork does not provide any substantial information compared to the RGB network,
the fusion layer could possibly ignore those feature maps. Therefore we decided to use the weights
from our previously trained depth-only network as pretrained weights for the depth subnetwork.
These weights will already be trained to extract meaningful information from the depth maps and
would thus be a better starting point to training our fusion network.

Layer 23

RGB Pretrained Weights

Depth Pretrained Weights

Random Weights

(a)

RGB Pretrained Weights

Depth Pretrained Weights

Random Weights

Layer 23

(b)

Figure 2. The pretrained weights we used when starting the training of our fusion networks. (a) Pretrained
weights when fusing before convolutional layer 23. (b) Pretrained weights when fusing after convolutional
layer 23.

As an additional experiment we kept the weights after the fusion layer randomly initialized.
Our motivation for this was to reduce the bias of the network towards the RGB features. However,
our experiments indicated that the performance significantly decreased for the earlier fusion levels,
since this means that those models have less layers with pretrained weights.
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2.3. Evaluation Metrics

To compare our different networks we use the traditional precision-recall curves (PR) and average
precision scores (AP). These metrics give us a global overview of the accuracy of a network, as well as
insight in where the network fails (False Positives and False Negatives). We count an object as properly
detected if the detection bounding box overlaps the annotation bounding box with an intersection
over union (IoU) threshold of at least 50%.

One of our main hypotheses about the advantages of fusing depth maps is the fact that the clearly
distinguishable silhouettes in the depth maps allow for more accurate bounding boxes around the
detected objects. To evaluate this, we measure the AP of our networks, using the relatively new COCO
IoU thresholding scheme [30], which is defined as follows.

APCOCO =
∑IoU∈I APIoU(Annotations, Detections)

I
; I = {0.50, 0.55, 0.60, ..., 0.95} (1)

This means the metric rewards techniques that offer a better localization and is thus a good fit for
proving our hypothesis.

3. Results

We performed exhaustive experiments on three different application cases: pedestrian detection,
multi-class road user detection and the detection of screws on PCBs. The first application case is
evaluated using a dataset which consists of Kinect RGBD images of persons. For the second application
case we use stereo RGB images of cars, cyclists and pedestrians. Hence, this enables us to investigate
the influence of the quality of the depth acquisition on the fusion potential. The third case has more of
an industrial context. It consists of grayscale and depth images from printed circuit boards (PCB) in
which the goal is to detect screws. This case is included to proof that our RGB and depth fusion easily
generalizes itself to highly diverse scenarios.

3.1. Kinect Pedestrian Detection

We first evaluated our new networks on the application of pedestrian detection (see Figure 3).
For this, we used the EPFL Pedestrian Dataset [31], which we recently relabeled [28]. This dataset
consists of around 5000 RGBD images of persons, captured with a Kinect V2 and calibrated with
the color camera. We split this dataset in the same train, validation and test set as explained in [28].
We trained our networks for 40,000 batches of 64 images and compared the different networks on our
test set (see Figure 4).

Figure 4a displays the AP metric versus the position of the fusion layer for our different networks.
First and foremost, we note that almost all of our fusion networks outperform our RGB baseline,
with midway to late fusion giving the best results with a maximal increase of 3.3%. This demonstrates
that object detection indeed benefits from using depth information on top of regular RGB data.

It can also be observed that our depth-only network outperforms the RGB network as well.
This might point to the fact that depth is even more meaningful than RGB for this dataset. Indeed,
when looking at the example images in Figure 3b, we can clearly distinguish persons from the
silhouettes in the depth maps only. Despite its good performance, we note that 14 of the fusion
networks offer an even better detection accuracy than the pure depth network, proving the advantage
of sensor fusion in this case. The best accuracy is reached at the 14th fusion level, indeed supporting
our previous naive claim [28] that midway fusion is optimal. Figure 4a also shows a best fit parabola
to remove training-induced noise, indicating that a theoretical optimal fusion level in this case is located
around level 18.

The APCOCO, depicted in Figure 4b, follows the same trend. The difference between our RGB
baseline and best fusion network is 3.8%, which indicates that the silhouettes in the depth maps help
the networks to provide better located bounding boxes. This can also be seen in the example images in
Figure 3, where we see that the fusion detections provide better bounding boxes around the persons,
without cutting of parts of the head or feet.
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(a) (b)

Figure 3. Example images from the test set of the Relabeled EPFL Pedestrian dataset. Detections from
our best fusion model (RGBD_18) are shown in comparison with our baseline RGB and D models.
(a) Resulting detections of our RGB model (top images—blue boxes) and best fusion model (bottom
images—orange boxes). (b) Resulting detections of our Depth model (top images—blue boxes) and
best fusion model (bottom images—orange boxes).

(a)

(b)

Figure 4. The results of our different networks on the Relabeled EPFL Pedestrian Dataset. (a) The regular
AP metric of our different networks. (b) The APCOCO metric of our different networks.

3.2. Multi-Class Road User Detection Based on Stereo Depth

To further investigate the added value of depth on top of normal RGB for multi-scale road users
detection, we also evaluated our networks on the KITTI dataset [32]. This dataset consists of around
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7500 stereo RGB images, captured from a car driving around a city and has annotations for cars,
cyclists and pedestrians. To compute depth maps from this stereo data, we used the stereoSGBM [33]
algorithm from OpenCV [34] (see Figure 5b). Since the test set of this dataset is part of a benchmark,
the annotations are not publicly available. We thus split the original training set in a training and
validation set, and will report the results of our networks on this validation split. We train a single
network for the three different classes and train each network with the default YOLOv2 configuration,
because the lack of a different validation and test set does not allow us to fine-tune the hyperparameters.

(a) (b)

Figure 5. Example images from our validation set of the KITTI dataset. Detections from our best
fusion model (RGBD_08) are shown in comparison with our baseline RGB and D models. (Cars—blue;
Cyclists—green; Pedestrians—orange). (a) Resulting detections of our RGB model (top image) and best
fusion model (bottom image). (b) Resulting detections of our Depth model (top image) and best fusion
model (bottom image). Note that we increased the brightness and contrast of these images for clarity.

We followed the same procedures for evaluation as explained in the KITTI benchmark paper [32].
This means an IoU overlap of 70% for cars, and 50% for cyclists and pedestrians is required to account
for a true positive detection. We computed an AP metric for each of the three difficulty levels described
in the benchmark (easy, moderate, hard) and also computed a mean AP (mAP), by averaging the
results of the different classes (see Table 1). Note that, as opposed to the previous application case,
we do not perform APCOCO metric evaluations for this dataset, since the different IoU settings for the
various classes results in an unfair comparison.

Table 1. AP values of our different models on the KITTI dataset. The best results are highlighted in red.

Class Pedestrian Cyclist Car mAP
Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
RGB 41.66 33.31 25.62 40.01 26.62 28.26 88.12 76.98 65.73 56.6 45.64 39.87
D 12.12 15.47 12.24 57.06 35.36 33.24 83.88 63.68 54.1 51.02 38.17 33.19
RGBD_00 40.92 33.52 25.69 52.83 37.39 37.08 82.77 73.84 63.64 58.84 48.25 42.14
RGBD_02 29.73 27.91 21.92 45.46 28.99 28.46 86.6 76.13 65.45 53.93 44.34 38.61
RGBD_04 33.98 33.44 25.75 52.22 36.04 34.37 84.2 78.06 67.08 56.8 49.18 42.4
RGBD_06 41.41 39.44 30.54 55.43 39.66 38.57 84.9 73.86 63.66 60.58 50.99 44.26
RGBD_08 43.29 36.3 28.16 71.82 47.31 47.78 87.86 79.15 68.53 67.66 54.25 48.16
RGBD_10 40.78 38.54 29.67 31.11 21.63 20.0 90.24 77.13 66.25 54.05 45.77 38.64
RGBD_12 39.42 36.12 28.07 70.46 48.92 48.26 84.2 74.55 64.04 64.69 53.2 46.79
RGBD_14 38.07 31.94 25.08 38.8 26.05 24.88 87.03 79.46 68.38 54.63 45.81 39.45
RGBD_16 49.86 39.83 31.29 63.31 42.44 41.38 90.79 78.84 68.5 67.98 53.7 47.06
RGBD_18 41.11 35.6 27.8 56.51 36.18 33.63 85.91 76.54 65.98 61.18 49.44 42.47
RGBD_20 39.89 33.59 25.73 54.08 34.58 33.35 86.53 74.65 64.24 60.17 47.61 41.11
RGBD_22 36.55 34.44 26.62 43.74 27.55 25.37 86.13 71.99 61.85 55.47 44.66 37.95
RGBD_24 38.65 34.59 26.81 48.9 28.47 26.93 85.09 70.26 60.48 57.55 44.44 38.07
RGBD_26 33.13 30.47 24.56 47.22 30.58 28.67 86.13 71.13 61.27 55.49 44.06 38.17
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Figure 6 shows the different AP values for the moderate difficulty, which is the main evaluation
metric of the benchmark. These bar charts show the same tendency as for the previous dataset. Overall,
our fusion models outperform the baseline RGB detector and the parabolas show the optimal fusion
point to be around level 15. We do note that the results for the car class are quite a bit higher than the
results of the other classes. This is most likely due to the imbalance of class instances in this dataset,
as there are 28,742 cars, 1627 cyclists and 4487 pedestrians in the images and we did not account for
that (e.g., by weighing our loss function for the different classes). However, we do not think this
imbalance influences the interpretability of our results to prove the added value of depth fusion on top
of normal RGB. Indeed, this experiment proves that this fusion approach is also beneficial if the quality
of the depth is not ideal, which is mostly the case for depth computed from stereo images (for instance,
depth cannot be calculated on image regions with limited texture). Moreover, in this experiment we
only used a very basic stereo depth estimation technique based on block matching, which is nowadays
greatly surpassed by CNN-based techniques.

(a) (b)

(c) (d)

Figure 6. The regular AP metric of our different networks on the KITTI dataset (moderate difficulty).
(a) Pedestrian class. (b) Cyclist class. (c) Car class. (d) mAP.

3.3. Localization of Screws on PCBs

In order to validate the generalizability of our methodology on more diverse objects and situations,
we evaluated our fusion networks on an industrial dataset consisting of grayscale and depth images of
electronic devices, with the aim of detecting the screws on them [35]. For this, we use the GD Screws
dataset provided by the Life Cycle Engineering lab of KU Leuven (see Figure 7). The images in this
dataset are acquired using a sheet-of-light scanner, which provides highly accurate depth maps, better
than the Kinect in the previous case. However, this dataset provides only grayscale images instead
of RGB.

The size of this dataset is limited (75 images), and as such we decided to perform a random train
and test split of 75% and 25%. Without validation set there is again no justifiable manner to tune the
hyperparameters. We therefore used the default YOLOv2 values, and only altered the length of the
training to 2000 batches of 16 images each.
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Looking at Figure 8, we observe the same trend as with our previous experiments. Globally, our
fusion networks outperform our Grayscale baseline, with our best fusion network having an increase
in AP of 1.0%. The smaller gain compared to the previous datasets is most likely due to the fact that
the scores are higher overall and thus the room for improvement is smaller.

(a) (b)

Figure 7. Example images from the test set of the GD Screws dataset. Detections from our
best fusion model (GD_21) are shown in comparison with our baseline Grayscale and D models.
(a) Resulting detections of our Grayscale model (top images—blue boxes) and best fusion model
(bottom images—orange boxes). (b) Resulting detections of our Depth model (top images—blue boxes)
and best fusion model (bottom images—orange boxes).

(a)

(b)

Figure 8. The results of our different networks on the GD Screws Dataset. (a) The regular AP metric of
our different networks. (b) The APCOCO metric of our different networks.
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When looking at the APCOCO, we conclude that depth indeed helps our fusion networks provide
better bounding boxes, as the maximal increase here is 4.9%. Screws being small objects means that
providing accurate bounding boxes is more difficult. The bigger increase in the APCOCO again validates
our hypothesis that the depth maps allow the network to provide better bounding boxes.

4. Discussion

Our experiments indicate that RGB+Depth fusion offers significant benefits to the detection
accuracy, which we measured using the AP metric. The different datasets all have different ways
of acquiring the depth maps, demonstrating that our architecture can be used in a multitude of
applications and setups. The fitted parabolas show that a mid to late fusion level performs better
than earlier levels of fusion. This is likely due to the fact that lower level features (such as edges and
basic shapes) might not always align perfectly between our main and fusion channels. In our first and
second dataset this is mainly caused due to different lens distortions and camera calibrations. In the
last dataset we detect different features in both information source: e.g., the specific disc-shape of the
screw in the grayscale image and the black border around the screws in the depth maps. However,
the deeper we advance through the network, the more abstract the features become and the more we
spatially sub-sample through max-pooling layers. This allows the network to more easily cope with
the misalignment in matching features between both information sources, leading to better results for
later fusion levels.

The APCOCO metrics demonstrate our claim that depth maps offer a way to provide better
localized bounding boxes. The increase in APCOCO score between our RGB baseline and the fusion
models is indeed more pronounced than the regular AP metric for most cases. This implies that our
fusion models perform better compared to the baseline when increasing the IoU threshold on the
evaluation metric, thus validating our hypothesis. This can also be seen in the example images, where
the bounding boxes have a better fit around the detected objects.

5. Conclusions

In this paper we proposed the fusion of RGB+Depth images using single-pass detection networks.
We performed exhaustive experiments, in order to determine the best level to fuse both information
sources. For this purpose, we constructed a fuse layer architecture, capable of fusing both streams at
any arbitrary layer in the network. This layer—as well as the complete detection architecture—has
been added to our open-source PyTorch library, Lightnet.

Our experiments show that RGB+Depth fusion increases both the general detection accuracy
and the localization performance of the bounding boxes, regardless of the depth acquisition method.
Furthermore, our results seem to indicate that mid to late fusion performs best, though there is no exact
pronounced optimal fusion level. As such, the fusion level could be an additional hyperparameter,
which should be tuned separately for every different case.

In the future, we aim to investigate whether more complex fusion mechanisms could further
improve the results of our models. Indeed, using different or more convolutions in the fuse layer,
or adding non-linearities in the form of activation functions might improve the performance of our
fusion networks even more. Another possibility would be to look at whether different representations
of the depth maps, like three-channel colorized depth would improve the results as well. In the case of
stereo, we could also fuse both camera viewpoints, effectively skipping the computation of the depth map.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Average Precision
APCOCO Average Precision measured with a varying IoU (see Equation (1))
CNN Convolutional Neural Network
GD Grayscale, Depth (channels of an image)
IoU Intersection over Union
IR Thermal Infrared
mAP mean Average Precision
PCB Printed Circuit Board
PR Precision-Recall curve
RGB Red, Green, Blue (channels of an image)
RGBD Red, Green, Blue, Depth (channels of an image)
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