
sensors

Article

Deep Learning for Sensor-Based Rehabilitation
Exercise Recognition and Evaluation†

Zheng-An Zhu, Yun-Chung Lu, Chih-Hsiang You and Chen-Kuo Chiang *

Advanced Institute of Manufacturing with High-tech Innovations, Center for Innovative Research on Aging
Society (CIRAS) and Department of Computer Science and Information Engineering, National Chung Cheng
University, Chiayi 62102, Taiwan; cca104m@cs.ccu.edu.tw (Z.-A.Z.); lyc105m@cs.ccu.edu.tw (Y.-C.L.);
ych103m@cs.ccu.edu.tw (C.-H.Y.)
* Correspondence: ckchiang@cs.ccu.edu.tw; Tel.: +886-5-2729111
† This paper is an extended version of our paper published in: You, C.H.; Chiang, C.K. Dynamic Convolutional

Neural Network for Activity Recognition. In Proceedings of the Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA), Jeju, South Korea, 13–16 December 2016.

Received: 19 December 2018; Accepted: 16 February 2019; Published: 20 February 2019
����������
�������

Abstract: In this paper, a multipath convolutional neural network (MP-CNN) is proposed for
rehabilitation exercise recognition using sensor data. It consists of two novel components: a dynamic
convolutional neural network (D-CNN) and a state transition probability CNN (S-CNN). In the
D-CNN, Gaussian mixture models (GMMs) are exploited to capture the distribution of sensor data
for the body movements of the physical rehabilitation exercises. Then, the input signals and the
GMMs are screened into different segments. These form multiple paths in the CNN. The S-CNN uses
a modified Lempel–Ziv–Welch (LZW) algorithm to extract the transition probabilities of hidden states
as discriminate features of different movements. Then, the D-CNN and the S-CNN are combined to
build the MP-CNN. To evaluate the rehabilitation exercise, a special evaluation matrix is proposed
along with the deep learning classifier to learn the general feature representation for each class of
rehabilitation exercise at different levels. Then, for any rehabilitation exercise, it can be classified
by the deep learning model and compared to the learned best features. The distance to the best
feature is used as the score for the evaluation. We demonstrate our method with our collected dataset
and several activity recognition datasets. The classification results are superior when compared
to those obtained using other deep learning models, and the evaluation scores are effective for
practical applications.

Keywords: rehabilitation exercises; recognition; evaluation; deep learning; sensor data

1. Introduction

Rehabilitation exercise is one of the most important steps for recovery after surgery, especially
after joint disease surgery. A home exercise program is common for rehabilitation treatment where a
patient performs a set of physical exercises in a home-based environment. However, such exercises
are not always successful in helping the patients reach full recovery. One of the main barriers is that
patients do not comply with the prescribed exercise plans. In addition, this program lacks supervision
and the monitoring of patient performance.

In the computer vision and machine learning fields, action recognition has received increasing
attention. Activity recognition can be classified into two categories, namely, vision-based and
sensor-based methods. For vision-based methods, human actions can be viewed as a set of
spatio-temporal changes of appearances or motions. Methods devoted to effective visual representation
for action recognition in videos or still images include shape-based movement analysis [1], temporal

Sensors 2019, 19, 887; doi:10.3390/s19040887 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5276-1109
http://dx.doi.org/10.3390/s19040887
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/4/887?type=check_update&version=2

Sensors 2019, 19, 887 2 of 19

templates [2], and space–time volume [3]. Although many vision-based methods have been used
over the past decades, large variations in human pose, occlusion, and viewpoint change still make
this problem very challenging. Sensor technologies, especially low-power, high-capacity, wireless
communication, and data processing, have made substantial progress, making it possible for sensors
to evolve from low-level data collection and transmission to high-level inference. Wearable sensors
can be embedded into clothes, belts, smart watches, and mobile devices for information collection and
analysis. Rehabilitation movement is composed of a series of actions. In contrast to action recognition
which recognizes the action as different classes, action evaluation aims to score the action. This is
particularly important to rehabilitation because it indicates if the patient can complete the action or
not. Moreover, the score implies the level of recovery from a particular injury.

In this paper, we aim to propose sensor-based action recognition and evaluation models.
One challenge using sensor data for activity recognition is the data alignment problem. The start and
end time, as well as the speed, required to perform activities may be totally different. The data also
contain noises and variations when the activity is performed by different persons. To overcome this
issue, a dynamic convolutional neural network (D-CNN) is proposed. In addition, in order to capture
the hidden states of sensor data, a state transition probability convolutional neural network (S-CNN)
is proposed for feature representation by the transition probabilities between states. Then, a Multipath
convolutional neural network (MP-CNN) is constructed to recognize the class of rehabilitation exercise.
To evaluate the rehabilitation exercises, we propose to use a specially designed matrix along with the
learned classifier to infer the best feature of each class at different levels.

The contribution of our method is three-fold. First, we propose a new multipath deep learning
model for rehabilitation exercise classification. The dynamic CNN (D-CNN) is extended by combining
it with a state transition probability CNN (S-CNN) to overcome the data alignment problem and
find the hidden states of exercise for discriminative feature representation. Then, a novel evaluation
method is proposed by learning the best feature of each class. When the current exercise is classified,
the feature can be extracted. The evaluation score is obtained by examining the distance measure
of the current feature and the best feature of that class. We also collect a new rehabilitation exercise
dataset for the rehabilitation exercise evaluation. It contains four different rehabilitation actions at
three levels, defined by rehabilitation physicians. More details about our dataset can be found in
Section 5.1. Experimental results on our collected dataset and several activity recognition datasets
demonstrate the superior performance of the proposed model.

The rest of this paper is organized as follows. The literature reviews are introduced in Section 2.
Our action recognition method is presented in Section 3, including the state transition probability
CNN (S-CNN), the dynamic CNN (D-CNN), and the multipath CNN (MP-CNN). In Section 4, the
rehabilitation exercise evaluation model is introduced. Our collected dataset and the experimental
results are presented in Section 5. Discussion about the properties and problems of the approach is
given in Section 6. Finally, we conclude this paper in Section 7.

2. Related Work

With the recent advances in wearable devices, human activity recognition can be achieved by
collecting sensor data via such devices. Activity recognition plays an important role in daily life and
has a significant impact on many applications, such as daily lifelog [4], health care [5], elderly care [6],
and personal fitness [7]. Sensor-based human activity recognition has become an important issue in
recent years. Action recognition can be divided into three parts: preprocessing, feature extraction,
and posture recognition. In early research studies, sensor acquisition devices were limited and used
mainly for the development of new features and classifiers. To process sensor data, feature extraction
is usually adopted as the first step. Traditionally, it captures statistical information through the mean,
variance, or entropy to extract features [8–10]. Other statistical methods in the frequency domain,
such as Fast Fourier Transform (FFT) [11], are also widely used. However, these methods are applicable
to single-action identification and ineffective for the recognition of multiple actions [12]. Principal

Sensors 2019, 19, 887 3 of 19

component analysis (PCA) is a common technique used to capture sensor data features. Since it can
only capture the linear structure of feature space, nonlinear methods, such as support vector machine
(SVM) [13], hidden Markov models (HMMs) [14], etc., are required for complicated activities.

Representative human activity recognition methods can be classified into two categories, namely,
heuristic methods and template matching methods. The heuristic approach depends on knowledge
and is related to specific tasks. Reyes-Ortiz et al. [15] recognized actions and postural transitions by
designing temporal filters. Template matching methods are often derived from the Longest Common
Subsequence (LCSS) [16,17] and dynamic time warping (DTW) [18] methods. WarpingLCSS and
SegmentedLCSS were proposed by improving the LCSS algorithm, which were more robust to noisy
annotation. Hartmann and Link [18] constructed a segmented DTW method to bound and recognize
a gesture in each frame by finding the best matching among the objects as well as all templates of
different classes. For sensor-based action recognition, accelerometers are probably the most commonly
used wearable devices. They are effective in repetitive actions, such as running, walking, sitting,
and standing. In [19], a network of three-axis accelerometers was positioned over the user’s body.
It provided the orientation and movement of the body part. Subsequently, Lukowicz et al. [20]
recognized activities by measuring acceleration and angular velocity through accelerometers and
gyroscopes. Lee and Mase [21] proposed a dead-reckoning method to calculate a user’s location for
behavior recognition.

For rehabilitation action recognition, Kinect is used for analyzing depth images. According to the
key points of the human body, vector angle and vector modulus ratio are combined for body feature
representation. Then, a dynamic time warping (DTW) algorithm is applied for action matching [22].
In [23], support vector machines (SVMs) and random forests (RF) were introduced on the PCA feature
space to accurately classify Kinect’s kinematic activities. Global descriptors [24] of the dynamical
attractor’s shape were proposed as features for modeling actions. It outperformed kinematic analysis
and chaotic invariant-based methods in the estimation of movement quality. Many studies based on
deep learning have been conducted recently. These works are mainly derived from convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) [25–28]. The CNN is one of the most
popular methods in deep learning [29,30]. Features extracted by the CNN from sensor signals for
activity recognition have two advantages. The CNN can capture local dependency of signals and
also process signals in different scales, such as frequency or amplitude. In this paper, we propose a
rehabilitation action evaluation and classification model based on the CNN technique.

3. Sensor-Based Rehabilitation Exercise Recognition

Rehabilitation movement consists of one or more time series actions. For example, the user may
raise his hands first with fingers crossed and then bend over to the right of the body. Other movements
may contain only one action, such as move shoulders upward. In this paper, we propose a multipath
CNN (MP-CNN) to capture local dependency of activity signals and classify the action class based on
our previous work [31]. The MP-CNN consists of two sub-networks: a dynamic convolutional neural
network (D-CNN) and a state transition probability CNN (S-CNN). We also propose a new evaluation
method to score the rehabilitation exercise based on the classifier learning of deep models. We will
explain each component in the sub-sections.

3.1. State Transition Probability CNN (S-CNN)

Conventionally, features can be represented by the transition probabilities between states using
the probabilistic finite state automata (PFSA) [32]. However, the computational complexity of
calculating the transition probabilities is high. Therefore, we propose to use the CNN to model the
relations between input signals and the transition probabilities between states for more discriminative
feature representation.

The Lempel–Ziv–Welch (LZW)-coded PFSA [32] uses the LZW coding to symbolize sensor data
and the PFSA to compute the state transition probabilities between hidden states. It consists of three

Sensors 2019, 19, 887 4 of 19

steps: quantization, LZW coding, and PFSA construction. The flowchart is shown in Figure 1. We built
an S-CNN to model the transition probabilities in the LZW-coded PFSA [32] to extract discriminative
features. We explain the LZW-coded PFSA method first and then how to combine the state transition
probabilities into the CNN model as an S-CNN.

Sensors 2019, 19 FOR PEER REVIEW 4

discriminative features. We explain the LZW-coded PFSA method first and then how to combine the
state transition probabilities into the CNN model as an S-CNN.

Figure 1. Flowchart of the Lempel–Ziv–Welch (LZW)-coded probabilistic finite state automata (PFSA)
method.

3.1.1. Quantization

All training signals are first concatenated into a single vector and then sorted in ascending order.
The vector is then divided into K parts to represent K levels. The boundary of each part denotes the
level boundary. Next, the raw data are symbolized into the level index by each level boundary to
reduce the complexity of processing the raw data.

3.1.2. Flowchart of the Lempel-Ziv-Welch (LZW) Coding

The LZW algorithm first computes the LZW table and uses the table to encode the sequence. In
the first step, the input stream is aaab and it is used to initialize the coding table. In the second step,
P is a, C is a, and P + C is not in the table from the first step. Thus, it is added into the table and sets P
= C. In the third step, P + C is in the table from the second step. Therefore, P = P + C is aa. In addition,
C is b and P + C is not in the table from the third loop. It is added into the table and P = C. In the fourth
step, the stream is empty, so the loop is stopped. In the fifth step, it starts to encode the string. The
stream is initialized. In the sixth step, P is a, C is a, and P + C is in the table from the first loop. Therefore,
P = P + C is aa. In addition, C is a and P + C is not in the table from the second loop, so P is encoded
and then P = C. In the seventh step, C is b and P + C is not in the table from the third loop, so P is
encoded and then P = C. In the eighth step, the stream is empty, so the loop is stopped and then P is
encoded. The symbolized data encoded by a modified LZW is shown in Algorithm 1. In order to
reduce the number of states, C states are chosen in each class that occurs most frequently to compose
a state dictionary D. Then, the dictionary is used to quantize the state which is not in the dictionary
D by computing the Levenshtein distance between the state and each state in D. The quantization can
be applied as (1): 𝑆 (𝑠) = 𝑚𝑖𝑛 , ∈ 𝑙𝑒𝑣 , (|𝑠 |, |𝑠 |), (1)

where 𝑠 is the state not in the dictionary D, 𝑠 is the state in the dictionary D, 𝑙𝑒𝑣 , (.) is the
operator to calculate the Levenshtein distance, |𝑠 | is the string of the 𝑠 state, |𝑠 | is the string of
the 𝑠 state, and 𝑆 is the mapping function to quantize the 𝑠 into 𝑠 .

3.1.3. PFSA Construction

The PFSA is used to record the state transition probabilities of the state symbolized data from
LZW coding. The PFSA is a state diagram which records the transition probabilities between each
state. The state transition probabilities can be computed as (2): 𝑃 𝑜 𝑜 = (,)∑ (,) ∀𝑜 , 𝑜 ∈ 𝑂, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, (2)

where O is the set of states, n is the number of states, and 𝑁(𝑜 , 𝑜) is the number of transitions from 𝑜 to 𝑜 . Therefore, the state transition probabilities can be represented by a matrix π as (3):

Figure 1. Flowchart of the Lempel–Ziv–Welch (LZW)-coded probabilistic finite state automata
(PFSA) method.

3.1.1. Quantization

All training signals are first concatenated into a single vector and then sorted in ascending order.
The vector is then divided into K parts to represent K levels. The boundary of each part denotes the
level boundary. Next, the raw data are symbolized into the level index by each level boundary to
reduce the complexity of processing the raw data.

3.1.2. Flowchart of the Lempel-Ziv-Welch (LZW) Coding

The LZW algorithm first computes the LZW table and uses the table to encode the sequence.
In the first step, the input stream is aaab and it is used to initialize the coding table. In the second step,
P is a, C is a, and P + C is not in the table from the first step. Thus, it is added into the table and sets
P = C. In the third step, P + C is in the table from the second step. Therefore, P = P + C is aa. In addition,
C is b and P + C is not in the table from the third loop. It is added into the table and P = C. In the
fourth step, the stream is empty, so the loop is stopped. In the fifth step, it starts to encode the string.
The stream is initialized. In the sixth step, P is a, C is a, and P + C is in the table from the first loop.
Therefore, P = P + C is aa. In addition, C is a and P + C is not in the table from the second loop, so P is
encoded and then P = C. In the seventh step, C is b and P + C is not in the table from the third loop, so
P is encoded and then P = C. In the eighth step, the stream is empty, so the loop is stopped and then P
is encoded. The symbolized data encoded by a modified LZW is shown in Algorithm 1. In order to
reduce the number of states, C states are chosen in each class that occurs most frequently to compose a
state dictionary D. Then, the dictionary is used to quantize the state which is not in the dictionary D by
computing the Levenshtein distance between the state and each state in D. The quantization can be
applied as (1):

Smap(su) = minsk , k∈D levsu ,sk (|su|, |sk|), (1)

where su is the state not in the dictionary D, sk is the state in the dictionary D, levsu ,sk (.) is the operator
to calculate the Levenshtein distance, |su| is the string of the su state, |sk| is the string of the sk state,
and Smap is the mapping function to quantize the su into sk.

3.1.3. PFSA Construction

The PFSA is used to record the state transition probabilities of the state symbolized data from
LZW coding. The PFSA is a state diagram which records the transition probabilities between each
state. The state transition probabilities can be computed as (2):

P
(
oi
∣∣oj
)
=

N
(
oj, oi

)
∑n

i=1 N
(
oj, oi

) ∀oi, oj ∈ O, 1 ≤ i, j ≤ n, (2)

where O is the set of states, n is the number of states, and N(oj, oi) is the number of transitions from oj
to oi. Therefore, the state transition probabilities can be represented by a matrix π as (3):

Sensors 2019, 19, 887 5 of 19

π =

 P(o1|o1) · · · P(on|o1)
...

. . .
...

P(o1|on) · · · P(on|on)

. (3)

Algorithm 1: Modified LZW encoding algorithm

1 Task 1: Encoding the sequence S and finding the LZW table T
2 Initialization: Initializing table T with single character in the sequence S
3 Output: code and table T
4 Set P = first input character in S
5 while not end of the sequence S
6 C = next input character in S
7 if P + C is in the table T
8 P = P + C
9 else
10 add P + C to the table T
11 P = C
12 end if
13 end while
14 Set P = first input character in S
15 while not end of the sequence S
16 C = next input character in S
17 if P + C is in the table T
18 P = P + C
19 else
20 output the code for P
21 P = C
22 end if
23 end while
24 output code for P

3.1.4. S-CNN Model

The state transition matrix π from Section 3.1.3 is formed into a vector as the output (ground
truth) of the S-CNN model. The raw data are used as input to train the S-CNN with two layers of both
convolution and pooling. Then, the results obtained by the last layer of pooling are used as input to the
fully connected layers. The S-CNN model can be viewed as a regression model to map sensor signals
to the state transient probabilities learned by the LZW-coded PFSA in order to find discriminative
features for classification.

The input signals of our method are retrieved from three-axis accelerometers and used for the
S-CNN to obtain the transition probabilities. To train the second component, the D-CNN, features
are extracted from the raw data. To preprocess the raw data, a fixed-size sliding window is applied.
Then, a median filter (size: 3) is used to remove the signal noises. The signals are then normalized to
the range [0, 1]. To extract features from input signals, a low-pass filter [33,34] is applied to extract
the gravity and body acceleration as two features of the three-axis signals. The gravity feature is the
signal associated with the gravitational acceleration. The signals without gravitational acceleration
correspond to the body feature.

3.2. Dynamic CNN (D-CNN)

One of the challenges using sensor data for activity recognition is the data alignment problem.
In practical applications, the start and end time of activities may be different. The data also contain
noises or variations when the activity is performed by different persons. Therefore, a dynamic CNN
is proposed based on the construction of a Gaussian mixture model–Gaussian mixture regression

Sensors 2019, 19, 887 6 of 19

(GMM-GMR) model. The GMM is learned for each activity as the comparison standard. During testing,
the proposed dynamic assignment method is applied via two operations, namely, data partition and
channel fitting, to fit the data and the GMM. Then, the matched data are used as the input into the
corresponding channel in the CNN model.

3.2.1. Gaussian mixture model–Gaussian mixture regression (GMM-GMR) Model

GMM-GMR [35] is used to model the distributions of different activities. This overcomes
the within-class variations when collecting sensor data for one activity. We define gt =(
t, gx(t), gy(t), gz(t)

)
, gt ∈ R4, t = 1, . . . , T, where time size is T and bt =

(
t, bx(t), by(t), bz(t)

)
,

bt ∈ R4, t = 1, . . . , T. GMM with K components are used to model gt and bt. We define µk ∈ R4 and
∑k ∈ R4×4 as the mean vector and the covariance matrix, and for gt, where k = 1, . . . , K. We use GMR
to determine the mean and the covariance matrix at time t for the k-th GMM component. We first
separate the temporal and acceleration values in µk and ∑k as (4):

µk =
{

µt
k, µa

k
}
∑
k
=

(
∑tt

k ∑ta
k

∑at
k ∑aa

k

)
. (4)

The expected mean acceleration µ̂a
k of the k component at time index t and the associated

covariance matrix ∑̂
aa
k can be defined as (5):{

µ̂a
k = µa

k + ∑at
k (∑tt

k)
−1(t− µt

k
)

∑̂
aa
k = ∑aa

k −∑at
k (∑tt

k)
−1

∑ta
k

. (5)

Then, the µ̂a
k and ∑̂

aa
k are mixed by the probability βk of the k component at time index t to

compute the expected acceleration µa and covariance matrix ∑aa at time index t, as follows:

βk =
p(k)p(t|k)

∑K
j=1 p(j)p(t

∣∣∣j) =
πkN

(
t; µt

k, ∑tt
k
)

∑K
j=1 πjN

(
t; µt

j, ∑tt
j

) , (6)

µa = ∑K
k=1 βkµ̂a

k

aa

∑ = ∑K
k=1 β2

k
ˆ∑

aa

k , (7)

whereN is the Gaussian distribution function. Therefore, we can calculate the mean and the covariance
matrix of acceleration at every time t in the sequence T to build the GMM-GMR model, as shown
in Figure 2.

Sensors 2019, 19 FOR PEER REVIEW 6

is proposed based on the construction of a Gaussian mixture model–Gaussian mixture regression
(GMM-GMR) model. The GMM is learned for each activity as the comparison standard. During
testing, the proposed dynamic assignment method is applied via two operations, namely, data
partition and channel fitting, to fit the data and the GMM. Then, the matched data are used as the
input into the corresponding channel in the CNN model.

3.2.1. Gaussian mixture model–Gaussian mixture regression (GMM-GMR) Model

GMM-GMR [35] is used to model the distributions of different activities. This overcomes the
within-class variations when collecting sensor data for one activity. We define 𝑔 = (t, 𝑔 (t),𝑔 (t), 𝑔 (t)) , 𝑔 ∈ 𝑅 , t = 1, … , 𝑇 , where time size is T and 𝑏 = (t, 𝑏 (t), 𝑏 (t), 𝑏 (t)) , 𝑏 ∈ 𝑅 , t =1, … , T. GMM with K components are used to model 𝑔 and 𝑏 . We define 𝜇 ∈ 𝑅 and ∑ ∈ 𝑅 ×
as the mean vector and the covariance matrix, and for 𝑔 , where k = 1, …, K. We use GMR to
determine the mean and the covariance matrix at time t for the k-th GMM component. We first
separate the temporal and acceleration values in 𝜇 and ∑ as (4): 𝜇 = 𝜇 , 𝜇 ∑ = ∑ ∑∑ ∑ . (4)

The expected mean acceleration �̂� of the k component at time index t and the associated
covariance matrix ∑ can be defined as (5): �̂� = 𝜇 + ∑ (∑) (𝑡 − 𝜇)∑ = ∑ − ∑ (∑) ∑ . (5)

Then, the �̂� and ∑ are mixed by the probability 𝛽 of the k component at time index t to
compute the expected acceleration 𝜇 and covariance matrix ∑ at time index t, as follows: 𝛽 = () (|)∑ () (|) = 𝒩(; ,∑)∑ 𝒩(; ,∑), (6)

𝜇 = ∑ 𝛽 �̂� ∑ = ∑ 𝛽 ∑ , (7)

where 𝒩 is the Gaussian distribution function. Therefore, we can calculate the mean and the
covariance matrix of acceleration at every time t in the sequence T to build the GMM-GMR model, as
shown in Figure 2.

Figure 2. Left: Gaussian mixture model–Gaussian mixture regression (GMM-GMR) model of the
“climb stairs” activity in the wearable human activity recognition folder (WHARF) dataset. Red line
is acceleration value of every time point. Pink area is standard deviation of every time point. Right:
Dynamic convolutional neural network (CNN) model. k is kernel size. o is the number of the output
feature map.

3.2.2. Dynamic Assignment

Figure 2. Left: Gaussian mixture model–Gaussian mixture regression (GMM-GMR) model of the
“climb stairs” activity in the wearable human activity recognition folder (WHARF) dataset. Red line
is acceleration value of every time point. Pink area is standard deviation of every time point. Right:
Dynamic convolutional neural network (CNN) model. k is kernel size. o is the number of the output
feature map.

Sensors 2019, 19, 887 7 of 19

3.2.2. Dynamic Assignment

Once the GMM-GMR model is trained, the dynamic assignment approach is adopted to fit the
input signal to the GMM-GMR model in a segment basis. The dynamic assignment contains two steps:
data partition and channel fitting. In data partition. The GMM-GMR model is trained for each activity
class. Then, the model is partitioned into N parts which correspond to the N channels in the D-CNN.
The features are also partitioned into N parts. By channel fitting, features which are similar to the
same model part go to the same channel in the D-CNN. In channel fitting, the distance of partitioned
features and the model part can be calculated by the Mahalanobis distance. Denoting xt as the triaxial
acceleration signal at time t, the Mahalanobis distance between the signal at time t and the model part
can be defined as (8):

dt =

√
(xt − µa

t)
T(∑aa

t)
−1

(xt − µa
t), (8)

where µa
t and ∑aa

t are the mean and the covariance matrix of the model at time t. Therefore, the distance
between the partitioned features and the model part can be computed as (9):

d =
1
n ∑n

t=1 dt, (9)

where n is the size of the partitioned feature.
The N model parts correspond to N channels of the CNN. Here, channel is referred to as one path

containing convolution and pooling operations in the CNN. Then, the results of the N channels are
concatenated to build the feature map. The D-CNN’s process is depicted in Figure 2.

3.3. Sensor-Based Rehabilitation Exercise Recognition by the Multipath CNN (MP-CNN)

The proposed multipath CNN (MP-CNN) consists of two CNN models, a top CNN model and
a bottom CNN model, to improve the recognition accuracy. First, we propose a CNN model using
the Gravity and Body (GB) signals as input, called the GB-CNN. In the GB-CNN model, the gravity
path and the body path are combined for common convolution and pooling operations to capture
joint features. The outputs are used as feature input into two hidden layers. The GB-CNN model is
depicted at the top of Figure 3. And the S-CNN model is depicted at the bottom of Figure 3.

Sensors 2019, 19 FOR PEER REVIEW 7

Once the GMM-GMR model is trained, the dynamic assignment approach is adopted to fit the
input signal to the GMM-GMR model in a segment basis. The dynamic assignment contains two
steps: data partition and channel fitting. In data partition. The GMM-GMR model is trained for each
activity class. Then, the model is partitioned into N parts which correspond to the N channels in the
D-CNN. The features are also partitioned into N parts. By channel fitting, features which are similar
to the same model part go to the same channel in the D-CNN. In channel fitting, the distance of
partitioned features and the model part can be calculated by the Mahalanobis distance. Denoting 𝑥
as the triaxial acceleration signal at time t, the Mahalanobis distance between the signal at time t and
the model part can be defined as (8): 𝑑 = (𝑥 − 𝜇) (∑) (𝑥 − 𝜇), (8)

where 𝜇 and ∑ are the mean and the covariance matrix of the model at time t. Therefore, the
distance between the partitioned features and the model part can be computed as (9): 𝑑 = ∑ 𝑑 , (9)

where n is the size of the partitioned feature.
The N model parts correspond to N channels of the CNN. Here, channel is referred to as one

path containing convolution and pooling operations in the CNN. Then, the results of the N channels
are concatenated to build the feature map. The D-CNN’s process is depicted in Figure 2.

3.3. Sensor-Based Rehabilitation Exercise Recognition by the multipath CNN (MP-CNN)

The proposed multipath CNN (MP-CNN) consists of two CNN models, a top CNN model and
a bottom CNN model, to improve the recognition accuracy. First, we propose a CNN model using
the Gravity and Body (GB) signals as input, called the GB-CNN. In the GB-CNN model, the gravity
path and the body path are combined for common convolution and pooling operations to capture
joint features. The outputs are used as feature input into two hidden layers. The GB-CNN model is
depicted at the top of Figure 3. And the S-CNN model is depicted at the bottom of Figure 3.

Figure 3. Multipath CNN model.

We combined the GB-CNN and the S-CNN models and built the MP-CNN. In the MP-CNN, the
results of the second pooling layer in the two models were combined and convolution and pooling
operations were applied again to capture the data correlation between the features of the GB-CNN
and the S-CNN. Then, the outputs were combined with the results of the second hidden layer in the
GB-CNN and the output layer in the S-CNN and were used as input into another two hidden layers.
In order to improve the performance of the MP-CNN, the D-CNN model was included. In the MP-

Figure 3. Multipath CNN model.

We combined the GB-CNN and the S-CNN models and built the MP-CNN. In the MP-CNN, the
results of the second pooling layer in the two models were combined and convolution and pooling
operations were applied again to capture the data correlation between the features of the GB-CNN

Sensors 2019, 19, 887 8 of 19

and the S-CNN. Then, the outputs were combined with the results of the second hidden layer in
the GB-CNN and the output layer in the S-CNN and were used as input into another two hidden
layers. In order to improve the performance of the MP-CNN, the D-CNN model was included. In the
MP-CNN, the gravity and body features were used as input into the D-CNN model. Finally, the feature
maps from the D-CNN were used in convolution and pooling operations to capture the correlation
between the two features. The whole MP-CNN model is depicted in Figure 4. The process of the
learning MP-CNN is summarized in Algorithm 2.

Algorithm 2: Multipath Convolutional Neural Network

1 Task 1: Learning S-CNN model
2 Input: Raw sensor signals
3 Output: State transition probabilities
4 Step 1: Quantization
5 Step 2: Symbolization
6 Step 3: LZW coding
7 Step 4: PFSA construction
8 Step 5: Obtain state transition probabilities
9 Step 6: S-CNN model training
10 End
11
12 Task 2: Learning D-CNN model
13 Input: Raw sensor signals
14 Output: Classification results
15 Step 1: Feature extraction, gravity and body features
16 Step 2: GMM-GMR model learning
17 Step 3: Data partition and channel fitting
18 Step 4: D-CNN model learning
19 End
20
21 Task 3: Learning MP-CNN
22 Input: Raw sensor signals
23 Output: Classification results
24 Step 1: Model setup (as depicted in Figure 4)
25 Step 2: Exploiting S-CNN and D-CNN as pre-train weights
26 Step 3: MP-CNN training
27 End

Sensors 2019, 19 FOR PEER REVIEW 8

CNN, the gravity and body features were used as input into the D-CNN model. Finally, the feature
maps from the D-CNN were used in convolution and pooling operations to capture the correlation
between the two features. The whole MP-CNN model is depicted in Figure 4. The process of the
learning MP-CNN is summarized in Algorithm 2.

Algorithm 2: Multipath Convolutional Neural Network
1 Task 1: Learning S-CNN model
2 Input: Raw sensor signals
3 Output: State transition probabilities
4 Step 1: Quantization
5 Step 2: Symbolization
6 Step 3: LZW coding
7 Step 4: PFSA construction
8 Step 5: Obtain state transition probabilities
9 Step 6: S-CNN model training

10 End
11
12 Task 2: Learning D-CNN model
13 Input: Raw sensor signals
14 Output: Classification results
15 Step 1: Feature extraction, gravity and body features
16 Step 2: GMM-GMR model learning
17 Step 3: Data partition and channel fitting
18 Step 4: D-CNN model learning
19 End
20
21 Task 3: Learning MP-CNN
22 Input: Raw sensor signals
23 Output: Classification results
24 Step 1: Model setup (as depicted in Figure 4)
25 Step 2: Exploiting S-CNN and D-CNN as pre-train weights
26 Step 3: MP-CNN training
27 End

Figure 4. Multipath CNN model with D-CNN.

4. Sensor-Based Rehabilitation Exercise Evaluation

Figure 4. Multipath CNN model with D-CNN.

Sensors 2019, 19, 887 9 of 19

4. Sensor-Based Rehabilitation Exercise Evaluation

If an MP-CNN classifier can learn, it will be beneficial for rehabilitation exercise evaluation.
We aimed to evaluate four kinds of rehabilitation exercises at three levels: good, average, and bad.
The idea was to design an evaluation matrix where each entry corresponded to one level of one
exercise. By setting the largest number in one entry, the evaluation matrix could be used along with
the output layer of the deep learning model to infer the best feature of that exercise at a particular
level. For example, taking four kinds of rehabilitation exercises at three levels, our model found twelve
best features for exercises at different levels. As a result, when one is performing the exercise, the
feature can be extracted and compared with the best feature to evaluate the score of that exercise.
This can be beneficial for users who need to correct their movement during rehabilitation. To simplify
the explanation of the evaluation method, we used a simple long short-term memory (LSTM) [36]
model as the classifier in this section. In our evaluation model, we used prediction loss, condition loss,
and evaluation loss to learn the model weights. They were also the three output layers of our model.
The system architecture is depicted in Figure 5. The details of these functions will be discussed later in
this section.

Sensors 2019, 19 FOR PEER REVIEW 9

If an MP-CNN classifier can learn, it will be beneficial for rehabilitation exercise evaluation. We
aimed to evaluate four kinds of rehabilitation exercises at three levels: good, average, and bad. The
idea was to design an evaluation matrix where each entry corresponded to one level of one exercise.
By setting the largest number in one entry, the evaluation matrix could be used along with the output
layer of the deep learning model to infer the best feature of that exercise at a particular level. For
example, taking four kinds of rehabilitation exercises at three levels, our model found twelve best
features for exercises at different levels. As a result, when one is performing the exercise, the feature
can be extracted and compared with the best feature to evaluate the score of that exercise. This can
be beneficial for users who need to correct their movement during rehabilitation. To simplify the
explanation of the evaluation method, we used a simple long short-term memory (LSTM) [36] model
as the classifier in this section. In our evaluation model, we used prediction loss, condition loss, and
evaluation loss to learn the model weights. They were also the three output layers of our model. The
system architecture is depicted in Figure 5. The details of these functions will be discussed later in
this section.

Figure 5. Model architecture for rehabilitation evaluation.

4.1. Prediction Loss

We labeled the data as several categories, which contained four action classes. Each action class
had three evaluation levels: good, average, and bad. The raw action signals were resized to the same
dimension by using bi-linear interpolation. Then, a three-layer LSTM followed by three fully
connected layers and a softmax layer model was constructed to predict the category. The loss function 𝐿 is defined as (10): 𝐿 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥, 𝑦) . (10)

The standard cross entropy error is used as the loss term, where x is the input signal and y is the
ground truth label.

4.2. Condition Loss

Once the LSTM is trained, the weights of the last LSTM layer are used as a classifier in this
section. By using a classifier and a specially designed condition loss, the feature representation of
each class can be reversely learned. Such a feature is referred to as the generalize feature or best
feature for each level of each action class. We denote feature as f ∈ RN, and M is the number of action
classes and L is the number of levels. Therefore, there are a total of P = M × L classes. The dimension
of classifier C is N × P, since the output is P classes and the feature dimension is N. The matrix form
of general feature G is defined as P × N, where the general features for each class are stacked row by

Best

Feature

Figure 5. Model architecture for rehabilitation evaluation.

4.1. Prediction Loss

We labeled the data as several categories, which contained four action classes. Each action class
had three evaluation levels: good, average, and bad. The raw action signals were resized to the same
dimension by using bi-linear interpolation. Then, a three-layer LSTM followed by three fully connected
layers and a softmax layer model was constructed to predict the category. The loss function Lp is
defined as (10):

Lp = CrossEntropy(x, y). (10)

The standard cross entropy error is used as the loss term, where x is the input signal and y is the
ground truth label.

4.2. Condition Loss

Once the LSTM is trained, the weights of the last LSTM layer are used as a classifier in this section.
By using a classifier and a specially designed condition loss, the feature representation of each class
can be reversely learned. Such a feature is referred to as the generalize feature or best feature for each
level of each action class. We denote feature as f ∈ RN, and M is the number of action classes and L is
the number of levels. Therefore, there are a total of P = M × L classes. The dimension of classifier C is
N × P, since the output is P classes and the feature dimension is N. The matrix form of general feature
G is defined as P × N, where the general features for each class are stacked row by row. We define the

Sensors 2019, 19, 887 10 of 19

score matrix as S ∈ RP × P. For the signal of action class m, m = 0, . . . , M−1 and level l, l = 0, . . . , L−1,
the score matrix S can be defined as follows:

S =

{
st,t = 1, where t = m·M + l

otherwise 0
. (11)

It means for the signal of class m and level l, the entry st,t should be the largest (equals to one)
among all other entries (equals to zero) in the same row. Then, we can define the condition loss Lc as
follows:

Lc = ‖G× C− S‖2. (12)

The objective is to minimize the distance of G * C and S, where S serves as the ground truth score.
By minimizing the loss function, the signal of class m and level l should have the largest score in the
entry st,t. In one training iteration, when the training of the classifier is finished, C and S are fixed to
find G. This forces the general feature to obtain the highest score in S.

4.3. Evaluation Loss

To calculate the evaluation score, we use the output of the last layer in the LSTM and the general
feature discussed in Section 4.2 to get the cosine angle. The cosine angle is used to estimate the
similarity of two vectors. The angle is normalized to the range 0 to 1. The formula is given by (13):

score =
−1
π
× Arccos

(
f eatureLSTM × f eatureT

Gen
‖ f eatureLSTM‖ × ‖ f eatureGen‖

)
+ 1, (13)

where f eatureLSTM is the feature extracted by the last layer in the LSTM and f eatureGen is the general
feature. In one training iteration, when the training of the classifier is finished and the general features
are produced, the class of the input signal can be determined by the trained classifier. Since one
class have three levels, the extracted feature is compared with three general features within the same
class. We can obtain the maximum score from three evaluation scores for one action class at three
different levels by the operator max(.). Then, it is multiplied by a scaling scaler interval to get the
final evaluation:

Evaluation = max(score)× interval. (14)

If the interval is set to 100, the evaluation is scaled to the range 0 to 100. In order to use cross
entropy to update the model, we transform the score into a label. We manually set equal ranges for
each level. If the evaluation is inside the range, it will be marked as a label. We define the formula
as (15):

Evaluation label =

0 , subject Evaluation Score = {x|0 ≤ x < 33}
1 , subject Evaluation Score = {x|33 ≤ x < 66}
2, subject Evaluation Score = {x|66 ≤ x < 100}

. (15)

Now, we have the evaluation label. Using evaluation label and ground truth ytrue, the loss function
Le can be defined by the following:

Le = CrossEntropy(ytrue, Evaluation label). (16)

The total loss function we use to update our model is given by (17):

Ltotal = αLp + βLc + γLe, (17)

where α,β, and γ are the balancing parameters for three loss terms. Lp, Lc, Le are prediction loss,
condition loss, and evaluation loss, respectively. After the model is trained, the output of the evaluation

Sensors 2019, 19, 887 11 of 19

model is the evaluation score. The users may match the scores to the range defined by Equation (15) to
see their performance at three levels: good, average, or bad.

5. Results

5.1. Dataset

We used a wearable human activity recognition folder (WHARF) dataset [35] and a rehabilitation
action evaluation dataset which we collected for our experiments. WHARF contained 14 kinds of
activity signals collected by triaxial accelerometer from daily life. The sample rate of the sensor data
was 32 Hz. We used sliding window (size: 80, overlap: 50%) for preprocessing. In each class, we took
120 samples for training and the rest for testing. The number of states in each class was set to 6 for the
S-CNN’s state dictionary. The part number was 4 for the D-CNN. All neural network models used the
same parameter settings with learning rate 0.01, momentum 0.9, and weight decay 0.0005. We also
used a Skoda checkpoint dataset [37] for our classification experiments. It contained 10 distinctive
activities from a car maintenance scenario. In each class, we took 400 samples for training and the rest
for testing.

Although the WHARF dataset was suitable for action recognition, it did not provide the ground
truth of action evaluation. Since the scores of the action dataset are not common, we collected our own
dataset by asking users to wear eight sensors—five on the shoulders and back, two on the elbows, and
one on the forehead. The sensor devices transmitted action signals to the receiver. We used a DA14583
IoT (Dialog Semiconductor, Taipei, Taiwan) sensor development kit to collect our data. This sensor
product is manufactured by the Dialog Semiconductor company. It consisted of a 12-DOF wireless
sensor module with development platform. The sensor settings were 12.5 Hz Acc, 25 Hz Gyro, and
10 Hz Magneto. And the mobile app version is 3.250.12. Then, we used the signals to train our model
and evaluate the results.

In our rehabilitation action evaluation dataset, we found 49 healthy volunteers to collect the
dataset. First, we had a total of four actions and each action had three different levels (i.e., good,
average, and bad). These actions and levels were defined by the rehabilitation physicians. The dataset
contained twelve exercise classes in total. Second, each level of each action had to be performed ten
times in a row. Third, we took a guided film as a demonstration to ensure the quality of the collected
data. Volunteers were only required to follow the actions of the person in the film. In addition, we gave
clear instructions to remind the volunteers of the next movement. The four actions are depicted in
Figure 6. In the first row, the first exercise contains three actions: raise both hands and put the hands in
the back of the head with ten fingers crossed. Then, push the elbows back to the body. The second/last
exercise contains two actions: stretch both hands up with ten fingers crossed, and then bend over to the
left/right. In the second row, the first exercise contains one action: lift both shoulders up. Since each
action is performed ten times in a row, we had to separate the data one by one. Autocorrelation was
applied to find a single action. The autocorrelation is given by Equation (18):

AutoCorrelation(X, k) =
1
T ∑T

t=1
(
Xt − X

)(
Xt+k − X

)
1
T ∑T

t=1
(
Xt − X

)2 , (18)

where X is the original action signal, T is the time length of the action signal, and k is the field. We also
found all peaks of the self-correlation graph and considered them as candidates.

PKS(X) = FindPeaks(AutoCorrelation(X, k)) (19)

When there are more than ten candidates, we calculated the distance between each candidate and
removed candidates with a distance below a predefined threshold. The threshold can be determined

Sensors 2019, 19, 887 12 of 19

by calculating the average distance between candidates. Cut point x̂ is the point to split the action
signal by calculating the variance. The formulation is defined by (20):

x̂ = argmin
(x1,x2,...,x10)

Var
(

Exi∼PKS(X),xj∼PKS(X)

[
‖xi − xj‖2

])
(20)

The original action signals are depicted in Figure 7a. There are ten peaks in this graph. Figure 7b
shows the signals after data preprocessing to find ten segments.Sensors 2019, 19 FOR PEER REVIEW 12

Figure 6. Four types of rehabilitation exercises.

Figure 7. (a) Original signals. (b) Signals after partitioning.

5.2. Experimental Results of the MP-CNN

To evaluate the performance of the proposed MP-CNN, two types of MP-CNN were used. In
the following experiments, MP-CNN-1 indicates that the GB-CNN is used in the top part of the MP-
CNN, whereas the S-CNN is used in the bottom part. MP-CNN-2 indicates that the GB-CNN with
the D-CNN are used in the top part of the MP-CNN, whereas the S-CNN is used in the bottom part.
In the MP-CNN, the middle path captures the correlation between the top and bottom models.
Different numbers of convolution and pooling layers are evaluated in the middle path in the MP-
CNN model. The MP-CNN-1(1,2,3) means that there are three convolution operations and pooling
layers in the middle path corresponding to the results from the top and bottom models. It is depicted
in Figure 8. The MP-CNN-1(2,3) applies convolution and pooling twice in the middle path. The MP-
CNN-1(3) and MP-CNN-2(3) do convolution and pooling once in the middle path, shown in Figures
3 and 4, respectively. The MP-CNN-1(0) and MP-CNN-2(0) do not use the middle path. The results
of the classification accuracy are presented in Table 1.

To evaluate the performance of the model combination, we compared a single CNN model to a
combined model, including MP-CNN-1 (composed of a GB-CNN and an S-CNN) and MP-CNN-2
(composed of a D-CNN and an S-CNN). The single CNN model included a GB-CNN (top of Figure
3), an S-CNN (bottom of Figure 3), or a D-CNN (top of Figure 4). According to the results in Table 2,
combining two CNN models can increase the accuracy.

Figure 6. Four types of rehabilitation exercises.

Sensors 2019, 19 FOR PEER REVIEW 12

Figure 6. Four types of rehabilitation exercises.

Figure 7. (a) Original signals. (b) Signals after partitioning.

5.2. Experimental Results of the MP-CNN

To evaluate the performance of the proposed MP-CNN, two types of MP-CNN were used. In
the following experiments, MP-CNN-1 indicates that the GB-CNN is used in the top part of the MP-
CNN, whereas the S-CNN is used in the bottom part. MP-CNN-2 indicates that the GB-CNN with
the D-CNN are used in the top part of the MP-CNN, whereas the S-CNN is used in the bottom part.
In the MP-CNN, the middle path captures the correlation between the top and bottom models.
Different numbers of convolution and pooling layers are evaluated in the middle path in the MP-
CNN model. The MP-CNN-1(1,2,3) means that there are three convolution operations and pooling
layers in the middle path corresponding to the results from the top and bottom models. It is depicted
in Figure 8. The MP-CNN-1(2,3) applies convolution and pooling twice in the middle path. The MP-
CNN-1(3) and MP-CNN-2(3) do convolution and pooling once in the middle path, shown in Figures
3 and 4, respectively. The MP-CNN-1(0) and MP-CNN-2(0) do not use the middle path. The results
of the classification accuracy are presented in Table 1.

To evaluate the performance of the model combination, we compared a single CNN model to a
combined model, including MP-CNN-1 (composed of a GB-CNN and an S-CNN) and MP-CNN-2
(composed of a D-CNN and an S-CNN). The single CNN model included a GB-CNN (top of Figure
3), an S-CNN (bottom of Figure 3), or a D-CNN (top of Figure 4). According to the results in Table 2,
combining two CNN models can increase the accuracy.

Figure 7. (a) Original signals. (b) Signals after partitioning.

5.2. Experimental Results of the MP-CNN

To evaluate the performance of the proposed MP-CNN, two types of MP-CNN were used. In the
following experiments, MP-CNN-1 indicates that the GB-CNN is used in the top part of the MP-CNN,
whereas the S-CNN is used in the bottom part. MP-CNN-2 indicates that the GB-CNN with the
D-CNN are used in the top part of the MP-CNN, whereas the S-CNN is used in the bottom part. In
the MP-CNN, the middle path captures the correlation between the top and bottom models. Different
numbers of convolution and pooling layers are evaluated in the middle path in the MP-CNN model.
The MP-CNN-1(1,2,3) means that there are three convolution operations and pooling layers in the
middle path corresponding to the results from the top and bottom models. It is depicted in Figure 8.
The MP-CNN-1(2,3) applies convolution and pooling twice in the middle path. The MP-CNN-1(3)
and MP-CNN-2(3) do convolution and pooling once in the middle path, shown in Figures 3 and 4,

Sensors 2019, 19, 887 13 of 19

respectively. The MP-CNN-1(0) and MP-CNN-2(0) do not use the middle path. The results of the
classification accuracy are presented in Table 1.

To evaluate the performance of the model combination, we compared a single CNN model to
a combined model, including MP-CNN-1 (composed of a GB-CNN and an S-CNN) and MP-CNN-2
(composed of a D-CNN and an S-CNN). The single CNN model included a GB-CNN (top of Figure 3),
an S-CNN (bottom of Figure 3), or a D-CNN (top of Figure 4). According to the results in Table 2,
combining two CNN models can increase the accuracy.Sensors 2019, 19 FOR PEER REVIEW 13

Figure 8. MP-CNN-1(1,2,3) model.

Table 1. Accuracy of different numbers of middle layers in the MP-CNN.

MP-CNN-1(1,2,3) MP-CNN-1(2,3) MP-CNN-1(3)
77.87% 77.09% 78.52%

MP-CNN-1(0) MP-CNN-2(0) MP-CNN-2(3)
73.74% 75.55% 79.43%

Table 2. Accuracy of the single and combined CNN model.

GB-CNN S-CNN D-CNN
73.88% 69.64% 75.26%

MP-CNN-1 MP-CNN-2
78.52% 79.43%

We also compared the MP-CNN to other learning methods, including SVM, K-nearest neighbor
(KNN), neural network (NN), GMM [35], signal image (SI) [38], and activity image (AI) [38]. The
three-axis signals were concatenated into a single vector as input to train the SVM and used for KNN
and NN. The NN had two hidden layers, which contained 1024 and 512 nodes, respectively. From
[38], we used the three-axis signals of gravity, body, and raw signals to build a signal image (SI) and
apply discrete Fourier transform (DFT) on SI to get an activity image (AI). Then, we used SI and AI
as input data for the CNN model in [35]. According to the results in Tables 3 and 4, MP-CNN-2
achieves the highest accuracy.

Table 3. Classification accuracy of the WHARF dataset using different methods.

Method Accuracy Method Accuracy
SVM 50.27% SI [38] 66.51%
KNN 55.78% AI [38] 71.45%
NN 57.71% MP-CNN-1 78.52%

GMM 66.31% MP-CNN-2 79.43%

Table 4. Classification accuracy of the Skoda dataset using different methods. We show our result in
bold.

KNN SVM NN
87.67% 43.7% 74.99%
SC [39] PCNN [40] AI [38]
84.5% 88.19% 84.33%

HMM-CNN [41] MP-CNN-1 MP-CNN-2

Figure 8. MP-CNN-1(1,2,3) model.

Table 1. Accuracy of different numbers of middle layers in the MP-CNN.

MP-CNN-1(1,2,3) MP-CNN-1(2,3) MP-CNN-1(3)

77.87% 77.09% 78.52%

MP-CNN-1(0) MP-CNN-2(0) MP-CNN-2(3)

73.74% 75.55% 79.43%

Table 2. Accuracy of the single and combined CNN model.

GB-CNN S-CNN D-CNN

73.88% 69.64% 75.26%

MP-CNN-1 MP-CNN-2

78.52% 79.43%

We also compared the MP-CNN to other learning methods, including SVM, K-nearest neighbor
(KNN), neural network (NN), GMM [35], signal image (SI) [38], and activity image (AI) [38].
The three-axis signals were concatenated into a single vector as input to train the SVM and used
for KNN and NN. The NN had two hidden layers, which contained 1024 and 512 nodes, respectively.
From [38], we used the three-axis signals of gravity, body, and raw signals to build a signal image (SI)
and apply discrete Fourier transform (DFT) on SI to get an activity image (AI). Then, we used SI and
AI as input data for the CNN model in [35]. According to the results in Tables 3 and 4, MP-CNN-2
achieves the highest accuracy.

Sensors 2019, 19, 887 14 of 19

Table 3. Classification accuracy of the WHARF dataset using different methods.

Method Accuracy Method Accuracy

SVM 50.27% SI [38] 66.51%
KNN 55.78% AI [38] 71.45%
NN 57.71% MP-CNN-1 78.52%

GMM 66.31% MP-CNN-2 79.43%

Table 4. Classification accuracy of the Skoda dataset using different methods. We show our result
in bold.

KNN SVM NN

87.67% 43.7% 74.99%

SC [39] PCNN [40] AI [38]

84.5% 88.19% 84.33%

HMM-CNN [41] MP-CNN-1 MP-CNN-2

89.38% 94.09% 94.69%

5.3. Action Evaluation Results

Our model architecture was based on LSTM. We also used other deep learning architectures for
comparison. As shown in Table 5, ConvLSTM is the combination of CNN and LSTM. One can find
more details in [42]. VGG [43] and ResNet [28] were the best models on ImageNet in 2014 and 2015.
When VGG and ResNet are used as classifiers, the input signals are considered as 1-D vectors and 1-D
convolutions are applied.

Table 5. Accuracy (acc.) of our rehabilitation action dataset.

Architecture Training acc. Testing acc.

ConvLSTM [42] 99.64% 89.62%
VGG16 [43] 99.81% 90.13%

ResNet50 [28] 99.79% 90.25%
Proposed 100.00% 90.63%

We also tried different units of LSTM, and found that 224 units achieved the best accuracy.
Therefore, we set the dimensions of three LSTM layers as 224, 224, and 196. The results are presented
in Table 6. In order to determine the proportion of training and testing, we conducted different
experiments. In Table 7, subject_8 means that we selected eight people as training and others as testing.
In our experiments, the selection of 36 people (contains 576 actions) as training and 13 people (contains
208 actions) as testing achieved the highest accuracy.

Table 8 presents the results for precision, recall, and F1-Measure. Figure 9 shows the distribution
of predicted evaluation scores for all levels for one action. The yellow line is a bad level, the red line is
an average level, and the blue line is a good level. The purple line is the total of the three levels.

Table 6. Accuracy of different dimension (dim.) reductions of long short-term memory (LSTM).

Feature Dim. Epoch Training acc. Testing acc.

DIM_96 800 97.50% 84.65%
DIM_128 600 98.50% 86.85%
DIM_150 500 99.17% 87.69%
DIM_196 600 99.33% 88.64%
DIM_224 700 99.67% 98.73%

Sensors 2019, 19, 887 15 of 19

Table 7. Accuracy of different numbers of training and testing.

Dataset Training acc. Testing acc.

Subject_8 98.50% 86.65%
Subject_19 98.60% 90.23%
Subject_36 99.67% 90.63%

Table 8. Accuracy of precision, recall, and F1-Measure.

Action Precision Recall F1-Measure Support

0 0.87 0.95 0.91 65
1 0.88 0.85 0.86 71
2 0.90 0.93 0.92 76
3 0.91 0.94 0.92 65
4 0.94 0.92 0.93 65
5 0.92 0.92 0.92 66
6 0.86 0.92 0.89 62
7 0.91 0.92 0.92 76
8 0.91 0.82 0.86 61
9 0.90 0.81 0.85 68
10 0.91 0.88 0.89 56
11 0.84 0.88 0.86 59

Average 0.90 0.90 0.90 790

Sensors 2019, 19 FOR PEER REVIEW 15

11 0.84 0.88 0.86 59
Average 0.90 0.90 0.90 790

Figure 9. Score distribution of all actions for all levels.

6. Discussion

6.1. Discussion about the MP-CNN Results

Considering different numbers of layers in the middle path, we note that MP-CNN-1(3) and MP-
CNN-2(3) had a higher classification accuracy (Table 1), which means that capturing the correlation
of the output of the last pooling layer is sufficient. In addition, it also indicates that the classification
accuracy is further improved when the D-CNN model is included in the framework. We can see that
the MP-CNN achieves the highest accuracy when combining the D-CNN and the S-CNN (Table 2).
As shown in Tables 3 and 4, we can see that our model obtains the best classification accuracy on
both the WHARF and the Skoda datasets.

6.2. Discussion about the Action Evaluation Results

Examining the experimental results for our action evaluation dataset, we note that the proposed
model achieved a test accuracy of 90.63% (Table 5). It means that our action evaluation system can
achieve a better performance than others. We also tried different dimension reductions of LSTM and
different numbers of training and testing data. Our results show that more dimension reductions of
LSTM and more training subjects can achieve a better performance. We also considered the accuracy
of precision, recall and F1-Measure of our system. Action 9 had the worst F1-measure score (0.85 in
Table 8). Finally, we showed the score distribution of all actions for all levels. Using the proposed
evaluation architecture, the good and the bad levels are very separable. We note that, in all four
actions, the highest score is 86.5059 and the worst score is 9.2606, which means that no matter how
poorly you perform the rehabilitation, you will obtain 9 points. If the physical therapist performs the
standard rehabilitation action, 86 points is obtained instead of 100 points. Overall, the scores of the
three levels are reasonably distributed. Users can correct their actions based on these scores, and the
model has the potential for practical applications.

7. Conclusions

Figure 9. Score distribution of all actions for all levels.

6. Discussion

6.1. Discussion about the MP-CNN Results

Considering different numbers of layers in the middle path, we note that MP-CNN-1(3) and
MP-CNN-2(3) had a higher classification accuracy (Table 1), which means that capturing the correlation
of the output of the last pooling layer is sufficient. In addition, it also indicates that the classification
accuracy is further improved when the D-CNN model is included in the framework. We can see that
the MP-CNN achieves the highest accuracy when combining the D-CNN and the S-CNN (Table 2).
As shown in Tables 3 and 4, we can see that our model obtains the best classification accuracy on both
the WHARF and the Skoda datasets.

Sensors 2019, 19, 887 16 of 19

6.2. Discussion about the Action Evaluation Results

Examining the experimental results for our action evaluation dataset, we note that the proposed
model achieved a test accuracy of 90.63% (Table 5). It means that our action evaluation system can
achieve a better performance than others. We also tried different dimension reductions of LSTM and
different numbers of training and testing data. Our results show that more dimension reductions of
LSTM and more training subjects can achieve a better performance. We also considered the accuracy
of precision, recall and F1-Measure of our system. Action 9 had the worst F1-measure score (0.85 in
Table 8). Finally, we showed the score distribution of all actions for all levels. Using the proposed
evaluation architecture, the good and the bad levels are very separable. We note that, in all four actions,
the highest score is 86.5059 and the worst score is 9.2606, which means that no matter how poorly you
perform the rehabilitation, you will obtain 9 points. If the physical therapist performs the standard
rehabilitation action, 86 points is obtained instead of 100 points. Overall, the scores of the three levels
are reasonably distributed. Users can correct their actions based on these scores, and the model has the
potential for practical applications.

7. Conclusions

A multipath convolutional neural network (MP-CNN) and an action evaluation method are
proposed in this paper. An MP-CNN consists of a D-CNN and as S-CNN model. A D-CNN can assign
similar signal segments to the same CNN channel. Therefore, it can better deal with the problem of
data noises, data alignment, and other data variations. An S-CNN uses a modified LZW algorithm to
extract the hidden state transition probabilities of raw data as discriminate features. Demonstrated by
the experiments, the results of classification accuracy have shown that an MP-CNN is very effective for
activity recognition using sensor data. Compared to recent machine learning-based methods, they are
either required to train strong ensemble classifiers or powerful hand-crafted feature representations to
achieve a high recognition accuracy. Deep learning-based action recognition discovers representative
features and trains the classifier within an end-to-end model. In the future, we will extend our
framework to complex activities and signals containing multiple activities. Moreover, we will design
a model which can help users perform standard rehabilitation actions without a physical therapist.
Our model provides an evaluation score that allows users to correct their actions based on that score.
We propose a method to predict a score by using a classifier and a general feature. The experimental
results also prove that the score obtained will be in the correct interval. In our future work, we will
collect more data that contain more actions, and each action will contain more modes. Our research
work will focus on unsupervised or action recognition as a new direction.

Author Contributions: Conceptualization, Z.-A.Z., Y.-C.L. and C.-H.Y.; Methodology, Z.-A.Z. and C.-K.C.;
Software, Z.-A.Z., Y.-C.L. and C.-H.Y.; Validation, Z.-A.Z. and C.-H.Y.; Formal Analysis, Z.-A.Z.; Investigation,
Z.-A.Z.; Resources, Y.-C.L. and C.-K.C.; Data Curation, Z.-A.Z. and C.-K.C.; Writing-Original Draft Preparation,
Y.-C.L., C.-H.Y. and C.-K.C.; Writing-Review & Editing, Z.-A.Z. and C.-K.C.; Visualization, Z.-A.Z. and C.-K.C.;
Supervision, C.-K.C.; Project Administration, C.-K.C.; Funding Acquisition, C.-K.C.

Funding: This work was supported by the Advanced Institute of Manufacturing with High-tech Innovations
(AIM-HI) and Center for Innovative Research on Aging Society (CIRAS) from The Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)
in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Veeraraghavan, A.; Roy-Chowdhury, A.; Chellappa, R. Role of shape and kinematics in human movement
analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington,
DC, USA, 27 June–2 July 2004.

2. Bobick, A.; Davis, J. The recognition of human movement using temporal templates. IEEE Trans. Pattern
Anal. Mach. Intell. 2001, 23, 257–267. [CrossRef]

http://dx.doi.org/10.1109/34.910878

Sensors 2019, 19, 887 17 of 19

3. Blank, M.; Gorelick, L.; Shechtman, E.; Irani, M.; Basri, R. Actions as space-time shapes. In Proceedings of
the International Conference on Computer Vision, Beijing, China, 17–20 October 2005.

4. Chennuru, S.; Chen, P.-W.; Zhu, J.; Zhang, J. Mobile life. In International Conference on Mobile Computing,
Applications, and Services; Springer: Berlin, Heidelberg, 2010; pp. 263–281.

5. Wu, P.; Zhu, J.; Zhang, J.Y. Mobisens: A versatile mobile sensing platform for real-world applications.
Mob. Netw. Appl. 2013, 18, 60–80. [CrossRef]

6. Wu, P.; Peng, H.-K.; Zhu, J.; Zhang, Y. Senscare. In International Conference on Mobile Computing, Applications,
and Services; Springer: Berlin, Heidelberg, 2011; pp. 1–19.

7. Forster, K.; Roggen, D.; Troster, G. Unsupervised classifir self-calibration through repeated context occurences:
Is there robustness against sensor displacement to gain? In Proceedings of the International Symposium on
Wearable Computers (ISWC ’09), Linz, Austria, 4–7 September 2009; pp. 77–84.

8. Parkka, J.; Ermes, M.; Korpipaa, P.; Mantyjarvi, J.; Peltola, J.; Korhonen, I. Activity classi_cation using realistic
data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 119–128. [CrossRef] [PubMed]

9. Kao, T.P.; Lin, C.W.; Wang, J.S. Development of a portable activity detector for daily activity recognition.
In Proceedings of the IEEE International Symposium on Industrial Electronics, Seoul, Korea, 5–8 July
2009; pp. 115–120.

10. Ermes, M.; Parkka, J.; Cluitmans, L. Advancing from offline to online activity recognition with wearable
sensors. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4451–4454.

11. Krause, A.; Siewiorek, D.; Smailagic, A.; Farringdon, J. Unsupervised, dynamic identification of physiological
and activity context in wearable computing. In Proceedings of the Seventh IEEE International Symposium
on Wearable Computers, White Plains, NY, USA, 21–23 October 2003; pp. 88–97.

12. Huynh, T.; Schiele, B. Analyzing features for activity recognition. In Proceedings of the Joint Conference
on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies,
Grenoble, France, 12–14 October 2005.

13. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst.
Their Appl. 1998, 13, 18–28. [CrossRef]

14. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE
1989, 77, 257–286. [CrossRef]

15. Reyes-Ortiz, J.-L.; Oneto, L.; Ghio, A.; Sama, A.; Anguita, D.; Parra, X. Human activity recognition on
smartphones with awareness of basic activities and postural transitions. In International Conference on
Artificial Neural Networks; Springer: Cham, Switzerland, 2014; pp. 177–184.

16. Nguyen-Dinh, L.-V.; Roggen, D.; Calatroni, A.; Troster, G. Improving online gesture recognition with
template matching methods in accelerometer data. In Proceedings of the 12th International Conference on
Intelligent Systems Design and Applications (ISDA), Kochi, India, 27–29 November 2012; pp. 831–836.

17. Nguyen-Dinh, L.-V.; Calatroni, A.; Troster, G. Robust online gesture recognition with crowdsourced
annotation. J. Mach. Learn. Res. 2014, 15, 3187–3220.

18. Hartmann, B.; Link, N. Gesture recognition with inertial sensors and optimized DTW prototypes.
In Proceedings of the IEEE International Conference on Systems Man and Cybernetics (SMC), Istanbul,
Turkey, 10–13 October 2010; pp. 2102–2109.

19. Kern, N.; Schiele, B.; Junker, H.; Lukowicz, P.; Troster, G. Wearable Sensing to Annotate Meeting Recordings.
Pers. Ubiquitous Comput. 2003, 7, 263–274. [CrossRef]

20. Lukowicz, P.; Ward, J.A.; Junker, H.; Starner, T. Recognizing Workshop Activity Using Body Worn
Microphones and Accelerometers. In Pervasive Computing; Springer: Berlin/Heidelberg, Germany,
2004; pp. 18–23.

21. Lee, S.W.; Mase, K. Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 2002,
1, 24–32.

22. Li, N.; Dai, Y.; Wang, R.; Shao, Y. Study on Action Recognition Based on Kinect and Its Application in
Rehabilitation Training. In Proceedings of the IEEE Fifth International Conference on Big Data and Cloud
Computing, Dalian, China, 26–28 August 2015.

23. Leightley, D.; Darby, J.; Li, B.; McPhee, J.S.; Yap, M.H. Human Activity Recognition for Physical Rehabilitation.
In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK,
13–16 October 2013.

http://dx.doi.org/10.1007/s11036-012-0422-y
http://dx.doi.org/10.1109/TITB.2005.856863
http://www.ncbi.nlm.nih.gov/pubmed/16445257
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1007/s00779-003-0242-y

Sensors 2019, 19, 887 18 of 19

24. Venkataraman, V.; Turaga, P.; Lehrer, N.; Baran, M.; Rikakis, T.; Wolf, S.L. Attractor-Shape for Dynamical
Analysis of Human Movement: Applications in Stroke Rehabilitation and Action Recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28
June 2013.

25. Ha, S.; Yun, J.-M.; Choi, S. Multi-modal convolutional neural networks for activity recognition. In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China, 9–12 October
2015; pp. 3017–3022.

26. Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on
multichannel time series for human activity recognition. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, 25–31 July 2015; pp. 25–31.

27. Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable
activity recognition. Sensors 2016, 16, 115. [CrossRef] [PubMed]

28. Palumbo, F.; Gallicchio, C.; Pucci, R.; Micheli, A. Human activity recognition using multisensory data fusion
based on reservoir computing. J. Ambient Intell. Smart Environ. 2016, 8, 87–107. [CrossRef]

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
Adv. Neural Inf. Proc. Syst. 2012, 25, 1106–1114. [CrossRef]

30. Sermanet, P.; Kavukcuoglu, K.; Chintala, S.; LeCun, Y. Pedestrian detection with unsupervised multi-stage
feature learning. arXiv, 2013; arXiv:1212.0142.

31. You, C.-H.; Chiang, C.-K. Dynamic convolutional neural network for activity recognition. In Proceedings of
the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA),
Jeju, Korea, 13–16 December 2016.

32. Wilson, J.; Najjar, N.; Hare, J.; Gupta, S. Human activity recognition using lzw-coded probabilistic finite state
automata. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 26–30 May 2015; pp. 3018–3023.

33. Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time
human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf.
Technol. Biomed. 2006, 10, 156–167. [CrossRef] [PubMed]

34. Krassnig, G.; Tantinger, D.; Hofmann, C.; Wittenberg, T.; Struck, M. User-friendly system for recognition of
activities with an accelerometer. In Proceedings of the 4th International Conference on Pervasive Computing
Technologies for Healthcare, Munich, Germany, 22–25 March 2010; pp. 1–8.

35. Bruno, B.; Mastrogiovanni, F.; Sgorbissa, A.; Vernazza, T.; Zaccaria, R. Analysis of human behavior
recognition algorithms based on acceleration data. In Proceedings of the IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; p. 1602.

36. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

37. Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity Recognition
from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection. In Wireless Sensor Networks;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–33.

38. Jiang, W.; Yin, Z. Human activity recognition using wearable sensors by deep convolutional neural networks.
In Proceedings of the 23rd ACM International Conference on Multimedia (MM ’15), Brisbane, Australia,
26–30 October 2015; pp. 1307–1310.

39. Vollmer, C.; Gross, H.-M.; Eggert, J.P. Learning Features for Activity Recognition with Shift-Invariant Sparse
Coding; Springer: Berlin/Heidelberg, Germany, 2013; pp. 367–374.

40. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional neural
networks for human activity recognition using mobile sensors. In Proceedings of the 6th International
Conference on Mobile Computing, Applications and Services (MobiCASE), Austin, TX, USA, 6–7 November
2014; pp. 197–205.

41. Alsheikh, M.A.; Selim, A.; Niyato, D.; Doyle, L.; Lin, S.; Tan, H.P. Deep activity recognition models with
triaxial accelerometers. arXiv, 2016; arXiv:1511.04664.

http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.3233/AIS-160372
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TITB.2005.856864
http://www.ncbi.nlm.nih.gov/pubmed/16445260
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Sensors 2019, 19, 887 19 of 19

42. Xingjian, S.H.I.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network:
A Machine Learning Approach for Precipitation Nowcasting. In Advances in Neural Information Processing
Systems; Curran Associates: New York, NY, USA, 2015; pp. 802–810.

43. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv,
2014; arXiv:1409.1556.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Sensor-Based Rehabilitation Exercise Recognition
	State Transition Probability CNN (S-CNN)
	Quantization
	Flowchart of the Lempel-Ziv-Welch (LZW) Coding
	PFSA Construction
	S-CNN Model

	Dynamic CNN (D-CNN)
	Gaussian mixture model–Gaussian mixture regression (GMM-GMR) Model
	Dynamic Assignment

	Sensor-Based Rehabilitation Exercise Recognition by the Multipath CNN (MP-CNN)

	Sensor-Based Rehabilitation Exercise Evaluation
	Prediction Loss
	Condition Loss
	Evaluation Loss

	Results
	Dataset
	Experimental Results of the MP-CNN
	Action Evaluation Results

	Discussion
	Discussion about the MP-CNN Results
	Discussion about the Action Evaluation Results

	Conclusions
	References

