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Abstract: Augmented Reality (AR) is a class of “mediated reality” that artificially modifies the human
perception by superimposing virtual objects on the real world, which is expected to supplement reality.
In visual-based augmentation, text and graphics, i.e., label, are often associated with a physical object or a
place to describe it. View management in AR is to maintain the visibility of the associated information and
plays an important role on communicating the information. Various view management techniques have
been investigated so far; however, most of them have been designed for two dimensional see-through
displays, and few have been investigated for projector-based AR called spatial AR. In this article,
we propose a view management method for spatial AR, VisLP, that places labels and linkage lines based
on the estimation of the visibility. Since the information is directly projected on objects, the nature of
optics such as reflection and refraction constrains the visibility in addition to the spatial relationship
between the information, the objects, and the user. VisLP employs machine-learning techniques to
estimate the visibility that reflects human’s subjective mental workload in reading information and
objective measures of reading correctness in various projection conditions. Four classes are defined for a
label, while the visibility of a linkage line has three classes. After 88 and 28 classification features for
label and linkage line visibility estimators are designed, respectively, subsets of features with 15 and
14 features are chosen to improve the processing speed of feature calculation up to 170%, with slight
degradation of classification performance. An online experiment with new users and objects showed
that 76.0% of the system’s judgments were matched with the users’ evaluations, while 73% of the linkage
line visibility estimations were matched.

Keywords: mediated reality; modified perception; augmented reality; spatial augmented reality;
view management; annotation; projector; machine-learning; feature selection; depth sensing

1. Introduction

Augmented Reality (AR) technology enhances the physical world with digital information to
supplement reality, which is basically realized by visual information such as texts and graphics [1].
Head-mount displays (HMD) and hand-held displays such as smart phones and tablets are popular
devices as see-through AR displays. By contrast, AR technology primarily realized by a video
projector is often called “Spatial AR” [2], which is drawing attention due to the improvement of the
performance of a projector such as display resolution, color reproduction, and brightness and its
unique characteristics. A projector can be used to superimpose virtual objects on or nearby target
physical objects directly. This allows spatial information such as pointing a particular object or place to
be presented with intended size, as well as visual characteristics of physical world can be changed by
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projected light. Furthermore, the projected information can be shared with others in a relatively large
display space. These characteristics allows applications to be proposed in various domains, which
include domestic work [3,4], assembly tasks [5–7], education [8–11], physical training [12], appearance
control for visually impaired [13], entertainment [14], etc.

In AR, a textual or graphical label is often used to annotate physical objects including persons
and places. Users obtain information by recognizing a label, in which a linkage line or a leader line
is used to associate the label with a target object. The layout of a label has an impact on the effect
of information presentation and has been studied for a long time in AR domain known as “view
management” [15–22], and even in cartography [23]. In the see-through AR, labels are presented in a
computer screen by superimposing a video-captured image; however, in spatial AR, labels are projected
on the real world directly. Projected light is mixed with the object’s color and can be interrupted by
tall objects depending on the alignment of the projector, objects, and viewpoint. Therefore, unique
issues are posed, which are not raised in the see-through AR: deformation of projected information
and occlusion of projected information from the user [21,24]. In such a case, users can only see a part
of the information or may not notice the presence of information at all. So, the user may misinterpret
the information, or it may take longer time to reach correct interpretation, which is critical in safety
critical systems that requires quick and correct comprehension such as chemistry experiment support
systems [9]. In [21], a view management system for spatial AR called Nonoverlapped Gradient Descent
(NGD) was presented, which addressed the occlusion problem by calculating non-occluded area based
on pre-registered circumscribed cuboid of tabletop objects and extending the linkage line until the
non-occluded area was found. The method allowed user’s faster and more accurate interpretation of
information compared with traditional view management method for see-through AR display [15].
However, in a dense area where the number of tabletop objects is large, the length of linkage line
tends to be long, which not only makes the time to identify a target object long, but also the processing
time. Furthermore, in the worst-case scenario, no projection area is found. Therefore, the condition
“nonoverlapped” should be relaxed.

In view management, a weighted linear combination of factors that affect visibility is often
utilized [15,20]; however, the methods of finding optimum weights have not been shown or dependent
on the application designers. In addition, existing approaches try to find suitable positions for labels
and linkage lines, in which “suitability” is not defined from the user’s perspective, rather defined
indirectly; for example, sentence “an area with small number of edges should be suitable” is indirect
definition of suitability because it is not clear how the user feels the situation and what is expected
in the user’s behavior. To address these issues, we apply a supervised machine-learning techniques
to model the visibility of an annotation using prospective user’s subjective and objective measures.
We define the machine-learning task as a classification problem of visibility. In other words, we propose
a software sensor to measure the “projectability” of annotations while reflecting legibility from the
users’ perspective. The contributions of the article are as follows:

• Supervised machine learning-based view management method for spatial AR is proposed
and implemented.

• A user friendly visibility is defined that reflects human’s subjective mental workload in reading
projected information as well as objective measures in corectness of reading.

• Visibility classification features are proposed that represent reflective characteristics of the projection
surface, the three dimensional properties of physical objects on the projection surface, and the spatial
relationship between the objects, the projector-camera systems, and the user’s viewpoint.

• Feature subset is identified that improves processing speed up to 170% with slight degradation of
classification performance.

• An online experiment with new users and objects showed that 76.0% of the system’s judgments
were matched with the users’ evaluations, while 73% of the linkage line visibility estimations
were matched.
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The reminder of the article is organized as follows. Section 2 examines related work in terms of
view management techniques. In Section 3 describes an overview of the proposed method including
definition of visibility. Specification of visibility class estimation features are presented in Section 4 in
detail, and data collection for building visibility class estimator is described in Section 5. The visibility
class estimator is evaluated in Section 6. Finally, Section 7 concludes the article.

2. Related Work

2.1. Mediation of Reality

Mann coined a term “mediated reality” as “a general framework for artificial modification
of human perception by way of devices for augmenting, deliberately diminishing, and more
generally, for otherwise altering sensory input” [25]. AR is a class of mediated reality which aims at
superimposing virtual objects on the real world and supplementing reality with artificial elements [1].
By contrast, Virtual Reality (VR) aims at replacing real world with artificial elements completely,
and users are immersed into the artificial world. Our work deals with a view management problem in
a projector-based AR, in which virtual objects are directly superimposed on physical objects in a form
of text and/or images. In this article, we particularly present a method of estimating the visibility of
information for proper label placement.

Diminished Reality (DR) is also categorized in mediated reality, which degrades visual functions
for a particular purpose (diminish), covers occluding objects with the image captured prior to being
occluded (see-through), filling the occluded region with synthesized image patches (inpaint), and
overlaps a real object with a virtual object to replace the real object with the virtual one (replace) [26].
In the projection-based AR, annotation placement (projection) in a blind area is an inherent issue [21].
The “see-through” technique seems applicable in this problem, in which the projected and occluded
annotation can be seen through the occluded objects by capturing the hidden area and projecting on
the occluded object from the second projector on the other side of the first (main) projector. However,
this requires precise capture and projection of the hidden area image from the user’s viewpoint, as well
as photometrically correct projection. Also, the occluding object itself may have special meaning in a
particular situation and thus should not be artificially invisible. Thus, we consider that the see-through
technique is not suitable for view management problem.

2.2. View Management Method

A number of view management methods have been proposed to improve the visibility of
annotations in AR and Virtual Reality (VR) environments. Highly visible information allows faster
and more accurate understanding of associated information. View management (VM) is regarded
as label layout optimization problem, in which two approaches exist: geometric-based layout and
image-based layout.

2.2.1. Geometric-Based Layout

The geometric-based layout was originally utilized in cartography, in which multiple labels for
points, e.g., buildings and the top of mountain, lines, e.g., rivers and roads, and areas, e.g., seas
and countries, are placed so that they should not overlap with each other and with relevant map
elements [23]. In cartography, the coordinates of map elements is given as well as that of labels and
linkage lines. So, the degree of overlap can be calculated using the coordinates information, which is
to be minimized against various label positions.

In VR/AR environments, the geometric-based approach is utilized if the geometric information
of a target object is given, in which the degree of overlap is encoded as cost funcation or penalty function.
The work by Azuma and Furmanski [15] is one of the earliest work in view management for AR in
which they consider overlap of label with other (virtual) objects, labels, and linkage lines, as well as
overlap of a linkage line with other linkage lines. They assign different costs for the types of overlap
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in the cost function. Bell et al. proposed view management techniques for VR environments, where
occlusion of labels with virtual 3D objects were resolved to relocate such overlapped labels to visible
area [16]. Makita et al. represented the degradation of visibility by the area of overlapped labels
and the length of overlapped linkage lines, and the length of linkage line itself [20]. Shibata et al.
assigned priority to objects and labels, which is used to resolve the overlap; a label with lower priority
is relocated when overlap is detected [27].

Iwai et al. proposed a label placement technique for a projection-based AR in nonplanar and
textured surfaces [11], where they capture the projection surface into a computer using RGB and
depth-cameras and simulate the legibility of text at various viewpoints around the surface to find the
best position for people at different viewpoints. At simulation, the occlusion of projected text with
the projection surface, geometric deformation caused by the projection onto nonplanar surfaces, and
the contrast lowered by the texture of the reflective properties of a projection surface were estimated.
The method shares the goal of ours; however, it demands computational resources pretty much for
real-time geometry modelling and label placement calculation. Sato and Fujinami proposed a view
management method for spatial AR [21], in which the blind area and occlusion caused by tall physical
objects were considered by calculating non-occluded area based on pre-registered circumscribed
cuboid of tabletop objects and extending the linkage line until non-occluded area found. As described
above, the geometric-based label layout method assumes that the objects’ 2D/3D models are known,
which limits the applicability in real world AR systems. VisLP method employs the image-based label
layout mentioned below.

2.2.2. Image-Based Layout

The other label-layout approach is image-base layout, in which the “suitability” of rendering
information is determined based on the analysis of the background image on which the label is
super-imposed. Various factors have been proposed to assess the suitability not only in the context
of AR, but also in an issue of general user interfaces such as desktop computer screens (monitors),
see-through displays, and video projectors. Scharff et al. showed that the text contrast and the spatial
frequency content of the background textures affects the readability of text [17]. The importance of
background textures is also identified by Gabbard et al. in the context of outdoor use of see-through
display [18], where not only the background textures, but also the changing outdoor illuminance values
and text drawing styles, e.g., the text color, the background color, had impact on text identification
performance. Relative darkness and uniformity of an area was used by Orlosky to estimate viable
regions for text rendering in see-through display environments, which was calculated against
gray-scale images [19]. A color-based viewability estimation was proposed by Tanaka, et al. [22],
where averages of RGB components, S component in HSV color space, and Y component in YCbCr
color space, were used. Leykin and Tuceryan used the contrast between the text and the background
and the background texture information derived by Gabor filters. In addition, they used the font size
and the font weight [28]. Visual saliency map [29] is often used to highlight prominent regions in an
image that attracts human [30,31]. In addition to saliency map, edge information is used to identify
unsuitable region for label rendering in [32,33].

In projection-based display systems, Siriborvornratanakul and Sugimoto proposed a method
to determine an appropriate vertical area for projection that avoids cluttered area [34]. To identify
cluttered areas, Laplacian filters are used, which means that the exact shape information of objects
are not used. Riemann et al. investigated a projective interface FreeTop to find suitable tabletop
area for projecting information [35]. FreeTop generates “projectability map” based on RGB and
depth images, as well as user-defined masks, where information about color edge and lightness are
obtained from RGB images, and information of height difference in physical objects are obtained
by depth edge from a depth-image. Cotting and Gross proposed an environment-aware display
bubble, in which a suitable projection area is identified based on the analysis of reflection properties
and its depth discontinuities [36]. They used gray-scale cameras to capture the projection surface
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appearance of structured imperceptible lights from a projector and applied Gabor filter to highlight
continuous surfaces with optimal reflection properties. Similar to [21], these works aim at avoiding
overlap of projected information. Although they can avoid overlapping information with objects, it is
impossible to avoid being hidden from the user’s eyes because the user’s viewpoint is not considered
for estimating the suitability like [11,21].

Similar to the cost function in the geometric-based label layout, the suitability should be
measured based on the factors given to the system, and the position that gives the highest suitability
measure should be used for a label or an image, and a linkage line if any. The cases with a single
factor [17,30,31,34,36] used the value as an indicator of suitability. By contrast, when more than two
factors, a linear combination of the factors with appropriate weight is often used, in which the weights
are determined empirically or in an top-down manner [19,32], the judgment of the weights depends on
the system designers [33,35], or determined in a supervised-manner [11]. A rule-based approach was
also proposed by Tanaka et al. [22], where three if-then rules are provided, and the most readable region
is determined from three candidates. The linear combination and the rules allows easy interpretation
by the system designers; however, the validity of the weights or the rules is a critical issue.

By contrast, Leykin and Tuceryan proposed a text readability estimation method based on
machine-learning [28], in which a binary classifier was designed that judges if a particular region in an
image with a particular text is readable or not. To train a classifier, six human participants provide
ground-truths by experiencing a number of combinations of the background images and the presented
texts. In this article, we take the same approach of supervised-machine learning with an extension
of projection-based information presentation. Also, our method supports multiple visibility classes,
rather than binary classes.

3. Overview of Visibility-Aware Label Placement System

3.1. VisLP Algorithm

In this section, an algorithm of VisLP is presented to clarify the task of interest. In placing a label,
the label is placed so that it should not overlap with other label, which is in common with the NGD
method [21]. The fundamental difference between NGD and VisLP is the definition of “visibility”.
In the NGD method, it is binary, which means that overlap of a projected label with physical objects is
not allowed. By contrast, in case of the VisLP, such overlap is permitted if the “value” of the message
is not significantly degraded.

Figure 1 shows a processing flow of the VisLP method, which is actually the same as NGD method
except for the evaluation of visibility in “D”. When a new object is detected in the field of projection
that overlaps with existing labels or a new label placement is requested by an underlying application,
the label placement process starts. The initial position of the label is set to be at a location in a random
direction and at the default minimum distance (A), and the candidate label positions are set around
the target object at increments of 10 degrees (B). After 36 trials, the number of candidate positions
without any overlap with labels each other (C) is determined. If there is no candidate without overlap,
the length of the linkage line is increased (E). Otherwise, the visibility of candidate position is estimated
against the candidates without any overlap, and the number of positions with acceptable visibility is
counted (D). If there is no acceptable position, the linkage line is extended (E). By contrast, the position
that is the most distant from other objects and labels is chosen as the final answer, i.e., the position of
label placement. Note that the acceptability of visibility is judged by the combination of the visibility
of both a label and a linkage line. The combination rule depends on the distance between the target
object and the label. The condition of acceptance is more relaxed as the distance gets longer, which is
to avoid failing in finding acceptable positions in the projection area.
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Figure 1. Processing flow of the VisLP algorithm.

3.2. Problem Definition

The key component of VisLP is estimating visibility based on a supervised machine learning
technique. Figure 2 illustrates the notion of building the estimator and using it online. In the training
phase (a), we take a collective intelligence approach, where people see a wide variety of label placement
situations and evaluate the visibility. The relationship between the situations and the human’s
evaluation is learned by a supervised machine learning technique, in which relevant features are
actually extracted to represent particular situations, and the evaluation results are discrete classes.
In the running phase (b), the built visibility class estimator is used in Figure 1D. In this article,
we mainly describe building visibility class estimator, which includes the definition of visibility classes
and the design of features for estimation with their offline and online evaluation.

Figure 2. The notion of (a) building (training) an estimator and (b) running online.

3.3. Factors that Degrade Visibility

Ideal projection surface like a projection screen has white, flat, and high reflection surface.
So, the projection surface that is far from such ideal condition may degrades the visibility. In this
study, we consider eight factors of degradation as shown in Figure 3. Low contrast (a) means that
the presented information is assimilated because the color difference or color brightness difference
between the foreground information and background projection surface is small (a). Unevenness
distorts information (b). A pattern in the projection surface (c) is caused by a large difference in
the brightness of projection surface, which may divide the presented information. Occlusion (d) is
caused by the positional relationship between the person and the object. An ambiguous annotation (e)
confuses the viewer to identify the target of the label. This can also be considered as a result of blind
area projection of a linkage line.
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Figure 3. Categories of visibility degradation.

The cases of (f) absorption, (g) regular (specular) reflection, and (h) refraction and transmission
represent the effects of the optical characteristics of the projection surface. Figure 4 illustrates these
characteristics. In this figure, the incident light (1) is a light emitted from a projector onto the surface
of an object, which causes (2) diffuse reflection, (3) regular (specular) reflection on the surface of the
object. Also, the light is penetrated into the object with refraction (4), where the molecules of the object
can cause complex refraction as well as regular reflection, and (5) internal reflection may appear on
the surface again. Atoms in particular types of molecules absorb lights (6). The sum of these reflected
lights is seen from a user or captured by a camera. So, in case of projection on the surface with high
degree of absorption, the incident light is hardly seen. By contrast, when the information is projected
on a surface with high degree of specular reflection such as metal and mirror, the regular reflection
is dominant, and thus it is visible from the viewpoint located in the same direction as the reflection,
e.g., Figure 4 (ii), but invisible from (i) and (iii), for example. The transmitted lights further appear as
(7) regular transmission and (8) diffused transmission, which can be reflected on the other surface and
visible as much more complex appearance as shown in Figure 3h.

Figure 4. Basics of optics.

3.4. Visibility Classes

We represent “visibility” as a discrete class with an ordinal scale, which is assigned based
on objective and subjective measures from human evaluators. The correctness of recognizing a
text, i.e., recognition, and linking the label to an object are used as objective measures of visibility.
By contrast, the subjective measure is provided by human evaluators how they feel the load of the
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presented tasks, which is chosen from 1 to 3 based on the criteria shown in Table 1. We used this
subjective measure because we consider that the load of a task is difficult to measure by the correctness
measure only. For example, the visibility is considered to be low if it takes too much time even though
the information is correctly delivered to the person. Finally, four and three classes were specified for a
label and a linkage line, respectively. The combination rule is presented in Figure 5. The visibility class
estimator makes decision on the classes for a label and a linkage line separately, and the acceptability
of a candidate position is judged based on the combination of the visibility estimations of a label and a
linkage line as described in Section 3.1. For example, if the length of linkage line is 125 to 149 pixels and
the estimated visibility classes for a label and a linkage line are “B” and “B”, respectively, the position is
acceptable; however, in case that the length of a linkage line is less than 125 pixels, it is not acceptable.

Table 1. Criteria for subjective measures.

Score Criteria for a Label Criteria for a Linkage Line

1 I cannot understand more than half of the characters. I cannot identify the target object.
2 I can understand a couple of characters, I am not confident of the target object

or it takes some time to understand all characters. although I think I can identify it,
or it takes some time to identify the target.

3 I can understand all characters immediately. I can identify the target object immediately.

Figure 5. Definition of visibility classes for label and linkage line.

4. Designing Features for Visibility Estimation

In this section, we design features for estimating visibility class.

4.1. Basic Flow of Feature Calculation

Figure 6 summarizes the processing flow in feature calculation, which shows what kinds of
information are used (A), what kinds of various types of intermediate information are calculated
from input (B and C), and what kinds of visibility feature classes are obtained from the intermediate
information (D).
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Figure 6. Processing flow in feature calculation.

4.1.1. Input

The inputs to the feature calculation process are the RBG color of the characters in a label, raw
images obtained from a color camera and a depth sensor, the viewpoint (the position of the center
of the user’s eyes), the positions of devices (a color camera, a depth sensor, and a projector), and the
positions of existing labels and linkage lines. The position is represented in a world coordinate system
that takes the upper left corner as the origin O(0, 0, 0), in which the positions of the devices and the
viewpoint are normalized by the resolution, i.e., pixel per inch (ppi), of a projector. These types of
information are necessary to estimate visibility of projected information in a dynamic environment
where the color and the position of projected information, the types and positions of objects on a table,
the user’s position and height, and the configuration of devices are variable.

4.1.2. Projection Surface Images

Two types of raw images, i.e., color and depth images, are converted into six types of intermediate
images. Examples are shown in Figure 7. A raw color image (a) is a frame of images captured by a
color camera, while an 8 bit gray-level image (b) is transformed from the raw color image. The Canny
edge detector [37] is applied to a gray-level image to obtain an edge image (c). A depth image is
used to represent the three dimensional characteristics of the projection surface, in which raw depth
image (d) is merely a frame of depth images whose pixels represent the distance to corresponding
points of objects from the depth camera. A depth edge image (e) is obtained by applying the Canny
edge detector in the same manner as a gray-level edge image. A blind area image (f) is a binary
image, in which black and white areas represent visible and invisible areas from a user’s viewpoint,
respectively. The invisible area is computationally obtained by checking each pixel in the depth image
if it can hide a particular point on the projection surface including other objects, which is based on the
planar projection shadow method [38].

Figure 7. Intermediate images in feature calculation.
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4.1.3. Projection Area

A projection area is defined by an area where the camera actually captures a label and a linkage
line as rendered by the system. The projection area for a label is represented by a region of interest
(ROI) of h× w pixels. By contrast, the projection area for a linkage line is represented as a collection
of segments, in which a segment is a region when the projection image is divided into Nrow × Ncol
regions. Figure 8 illustrates the definitions of ROI for a label and segments for a linkage line.

Figure 8. Definition of a region of interest (ROI) and a segment in a projection surface.

It should be noted that the position of a label captured by a camera could be different from what
the system intended to present on the desk if the projection is overlapped on an object on the desk
due to the height of the object. As described in Section 3.2, the relationship between the situation and
the human’s evaluation is learned, in which “situation” is actually represented by a set of features
obtained from a particular area in a camera image. Therefore, the area for calculating the features
must reflect the area where the label is rendered in a camera image. Otherwise, the calculated features
represent the situation that the label might not be included, and thus it may train the estimator using
wrong relationship.

4.1.4. Visibility Feature Classes

The features calculated from the projection surface images (Figure 6B) within particular areas
of a label and a linkage line (C) are categorized into five classes: contrast, brightness, link ambiguity,
unevenness, and blind area. The contrast features represent the difference of colors between a label
and the projection surface, as well as that of luminosity. The pattern and the reflection on the projection
surface are characterized by the brightness features, which are obtained by the distribution of pixel
brightness. The link ambiguity features indicate the degree of ambiguity in associating a label with a
particular object based on the height of objects around the edge of the linkage line and the degree of
occlusion by the objects. The unevenness features represent the shape of the projection surface, which
are calculated in the same manner as brightness feature by regarding the depth image as a gray-level
image. Finally, the blind area feature represents how much an ROI is occluded by an object. In total,
88 features and 28 features are defined for a label and a linkage line, respectively, which are presented
in Sections 4.2 and 4.3 in more detail.
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4.2. Definition of the Features for a Label

In this section, the definitions of the features for a label are presented. Note that a complete list
of the features with their informativeness are shown in Section 6.2. Some formulas are also used to
calculate the features for a linkage line.

4.2.1. Contrast Features

Color visibility is good if the color difference and color brightness difference between two colors
are high, according to the Web Content Accessibility Guidelines 1.0 defined by W3C Web Accessibility
Initiative (WAI) [39]. The color difference is defined by Formula (1), while Formula (2) represents
the color brightness difference. Note that R, B, and G indicate the average color components in a
ROI and that the suffixes f and b represent the foreground (label) and the background (projection
surface), respectively.

CDIFF = |R f − Rb|+ |B f − Bb|+ |G f − Gb| (1)

CBDIFF = 299× |R f − Rb|+ 587× |B f − Bb|+ 114× |G f − Gb| (2)

4.2.2. Brightness Features

Two statistical features in a ROI of a gray-level image, i.e., average and variance, are defined by
Formulas (3) and (4), respectively. Note that pg(i, j) represents the intensity of gray-level image at (i, j),
and N is the number of pixels in a ROI, i.e., N = h× w. Also, the edge ratio (Formula (5)) represents
the plausibility of edge of a ROI, where Ne is the number of edge pixels in a gray-level edge image.

AVEg =
1
N

w−1

∑
i=0

h−1

∑
j=0

pg(i, j) (3)

VARg =
1
N

w−1

∑
i=0

h−1

∑
j=0

(pg(i, j)− AVEg)
2 (4)

ERg =
Ne

N
(5)

Shine and transparency of the projection surface is represented by three types of statistical values
from the histogram of a gray-level image with Lgr (=256) levels: variance, skewness, and kurtosis,
which are defined by Formulas (6), (7), and (8), respectively [40]. In addition, these three types of
features are calculated for a high frequency component image obtained by applying a 3 × 3 high-pass
filter (Formula (9)). Note that, in these formulas, µH , Hi, and δH represent an average frequency in the
histogram, the frequency in i-th bin (gray-level), and a standard deviation of frequency, respectively.
Furthermore, the suffix f takes either high or all, indicating features from high frequency image and
original image, respectively.

VARH, f =
1
N

Lgr−1

∑
i=0

(Hi − µH)
2 (6)

SKEWH, f =
1

N × δ3
H

Lgr−1

∑
i=0

(Hi − µH)
3 (7)

KURTH, f =
1

N × δ4
H

Lgr−1

∑
i=0

(Hi − µH)
4 (8)

A =

 −1 −1 −1
−1 9 −1
−1 −1 −1

 (9)
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Fractal geometry can be found in nature such as coastlines and mountains, which is characterized
by “self-similarity”. A fractal dimension (FD) is utilized to quantify the degree of self-similarity.
The larger the dimension becomes, the higher the self-similarity is. This indicates that the target is
more complex, which has been applied in texture [41] and image analysis [42], as well as image
segmentation [43] and recognition [44]. The box-counting dimension [45] is the most popular
measurement of approximate fractal dimension due to its simplicity and computer-friendly nature.
In the box-counting method, the number of cubes r pixel on a side, NF, that cover the intensity surface
of an ROI is counted, and a coefficient D in Formula (10) is estimated by the method of least squares
against the double logarithm chart. In our system an ROI of 10 pixels square and scales r of 2, 3, 5, 10,
and 18 pixels were utilized. Two types of FD are defined: FDg and FDge for gray-level and gray-level
edge images, respectively.

logNF = −Dklogr + logC (k : g or ge, C : constant) (10)

To capture such a directional nature, we introduce features calculated from co-occurrence matrix
and run-length matrix. Co-occurrence matrix proposed by Haralick et al. [46] is a matrix that represents
the probability of existence of two points with certain intensity level at specific distance and angle.
Let pθ(i, j) be an element of a co-occurrence matrix for a direction θ (= 0, 45, 90, and 135 degrees) at
(i, j). The distance between two points were set to 1, which means that only the neighboring pixels are
taken into account for the calculation. In addition to the matrices for the four direction, an accumulated
(and normalized) version of co-occurrence matrix is defined as the fifth one, i.e., θ = “sum”. Three types
of co-occurrence matrix features proposed by Haralick et al. were used: sum of squares (SS), angular
second moment (ASM), and inverse difference moment (IDM). In total, 15 features (=(4 directions
+ 1 “sum”) × 3 types) were defined as co-occurrence matrix features. Sum of squares presents the
smoothness of intensity surface consisting of neighboring pixels. As defined by Formula (11), the value
gets larger as the number of pixel pairs with large difference of intensity level becomes larger. Angular
second moment is defined by Formula (12), which represents the diversity of intensity level. The value
increases as the number of pixel pairs with particular pixel difference gets large. Inverse difference
moment represents the uniformity of the intensity distribution. As defined by Formula (13), the value
gets larger as the difference between two points is small, i.e., looks uniform. Note that, prior to
calculating the co-occurrence matrix, the level of a gray-level image is reduced by half of the original
one (Lgr) to consider the processing speed (Lco = Lgr/2 = 128).

SSg,θ =
Lco−1

∑
i=0

Lco−1

∑
j=0

(i− j)2 pθ(i, j) (11)

ASMg,θ =
Lco−1

∑
i=0

Lco−1

∑
j=0

pθ(i, j)2 (12)

IDMg,θ =
Lco−1

∑
i=0

Lco−1

∑
j=0

pθ(i, j)
1 + (i− j)2 (13)

The other feature class regarding the continuity of pixel intensity is calculated from a run-length
matrix. Run-length indicates the number of pixels with the same intensity level at a particular direction,
which is originally utilized as an image coding method. A run-length matrix rθ(i, j) is defined by
the length of runs (j-th column) for an intensity level of i at direction θ (= 0, 45, 90, and 135 degree).
Note that the column index of the matrix, i.e., j, starts with 1 according to the convention of the
run-length matrix. We utilized five types of features proposed by Galloway [47]. In the following
formulas, we decreased the intensity level of an image from Lgr to Lrl to avoid a sparse run-length
matrix as well as to reduce the computational cost of features. Lrl is specified by the larger edge of
a ROI as represented in Formula (14). In addition, the maximum length of run is constrained by the
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larger edge of a ROI. So, the run-length matrix is represented as Lrl × Lrl matrix. Tg,θ (Formula (15))
represents the total number of runs for direction θ. Short runs emphasis (SRE) represents the amount of
short runs (Formula (16)). The value decreases as short linear pattern appears. By contrast, long runs
emphasis (LRE) represents the amount of long runs (Formula (17)). Gray level non-uniformity (GLN)
represents unevenness of intensity level in a ROI (Formula (18)), while run-length non-uniformity
(RLN) indicates the variance of the run length in a run-length matrix (Formula (19)). Finally, run
percentage (RP) represents the ratio of the total number of runs to the number of pixels in an image
(Formula (20)).

Lrl = max(h, w) (14)

Tg,θ =
Lrl−1

∑
i=0

Lrl

∑
j=1

rθ(i, j) (15)

SREg,θ =
1

Tg,θ

Lrl−1

∑
i=0

Lrl

∑
j=1

rθ(i, j)
j2

(16)

LREg,θ =
1

Tg,θ

Lrl−1

∑
i=0

Lrl

∑
j=1

j2rθ(i, j) (17)

GLNg,θ =
1

Tg,θ

Lrl−1

∑
i=0

(
Lrl

∑
j=1

rθ(i, j))2 (18)

RLNg,θ =
1

Tg,θ

Lrl

∑
j=1

(
Lrl−1

∑
i=0

rθ(i, j))2 (19)

RPg,θ =
Tg,θ

L2
rl

(20)

In total, we obtain 46 features as brightness features: three statistical features from gray-level and
gray-level edge images, three features from a gray-level histogram image, two fractal dimension
features from gray-level and gray-level edge images, 15 features from co-occurrence matrices,
and 20 features from run-length matrices.

4.2.3. Unevenness Features

In the calculation of unevenness features, variance (VARd) and edge ratio (ERd) are obtained
by applying the depth image to Formulas (4) and (5), instead of gray-level image. Similarly, fractal
dimensions for the depth-image and depth-edge image surfaces are calculated as FDd and FDde,
respectively. Furthermore, features derived from co-occurrence matrix and run-length matrix are
calculated by Formulas (11) to (20), which are denoted SSd,θ , ASMd,θ , IDMd,θ , Td,θ , SREd,θ , LREd,θ ,
GLNd,θ , RLNd,θ , and RPd,θ . In total, 39 features are defined as unevenness features.

4.2.4. Blind Area Feature

The blind area feature is defined as a ratio of the number of pixels in a blind area image (Nb) to
the number of pixels in a ROI (Formula (21)).

BR =
Nb
N

(21)

4.3. Definition of Features for a Linkage Line

The features for the area of a linkage line are calculated by the following three steps, and Figure 9
illustrates the notion of the sequence and the sequence features.
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Step 1: Calculation of segment features
Step 2: Making a sequence of segment features
Step 3: Calculation of the linkage line features from the sequence data

Figure 9. Definition of the features for a linkage line.

In Step 1, 14 features are calculated for each segment, which is referred as segment features.
A segment can be regarded as a ROI. So, the segment features are calculated in the same manner as the
features for a label. Here, two color features (CDIFF and CBDIFF), nine brightness features (AVEg,
VARg, ERg, VARH,all|high, SKEWH,all|high, KURTH,all|high), and the blind area feature (BR) represented
by Formulas (1)–(8) and (21), are used as segment features from gray-level and gray-level edge images.
In addition, two unevenness features from the depth-image are used: average (AVEd) and edge ratio
(ERd) calculated by Formulas (3) and (5), respectively.

The next step (Step 2) is to make a sequence of segment features calculated in Step 1. A segment
represents sorted n-segments based on the distance between the center of a label and that of a segment.
Figure 9b shows an example of a sequence generated from the example of Figure 9a. As shown in (b),
a sequence is represented by an array with n-elements, in which the first element is the closest segment
to the label, while the last element is the one closest to the target object.

In Step 3, statistical features such as average, variance, skewness, and kurtosis are calculated for
each sequence. For example, an average of the sequence data of CDIFF represents an average color
difference in the segments of a linkage line. Furthermore, not only features for an entire sequence, but
also for a particular portion close to the both ends are calculated because the features that relate to the
visibility of the ends are important to avoid ambiguous linkage (Figure 3h). In general, the averages
of segments features are used; however, higher order statistical features such as variance, skewness,
and/or kurtosis are used to highlight the difference in the visibility resulting in the distribution of
particular types of segment features, which includes the variance, skewness, and kurtosis of the
average height (AVEd) sequence and the variance of the average intensity of gray-level image (AVEg).
The naming convention of the linkage line features is represented below:

{FSeg}portion,stat
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In the above, portion represents the portion of segment in a segment for calculation, which takes
all, Lp, or Tp for the entire sequence, the p% segments closer to the label, and the p% segments closer
to the target object, respectively. By contrast, stat takes ave, var, skew, or kurt for average, variance,
skewness, and kurtosis, respectively. For example, the variance of the entire average height sequence is
represented as {AVEd}all,var. A complete list of the features for a linkage line is presented in Section 6.2
with their informativeness.

5. Dataset for Training and Testing Visibility Estimator

In this section, we describe the data collection for building visibility estimator and data
augmentation for balanced dataset.

5.1. Data Collection

Figure 10 illustrates how data collection is proceeded and how datasets for training and testing
are generated. The data collection is carried out by a pair of persons: an evaluator and an experimenter,
in which 15 visually healthy persons in their 20’s participated. Object configurations for four types
of tabletop work were tested: a chemistry experiment, a cooking, a paperwork, and other tabletops
(Figure 11).

A task of data collection is projecting information in a specific configuration of tabletop objects by
the experimenter, followed by answering vocally by the evaluator what is presented and recording it
by the experimenter. The projected information consists of a label with five capital alpha-numerical
letters and its linkage line, in which the randomized elements are (1) the sequence of characters,
(2) the position of the projection, (3) the linked object, and (4) the colors of the label and linkage line.
Here, the colors are chosen from red, green, blue, yellow, and white. The presentation of information,
i.e., the position of a label and the color of both the label and the linkage line is randomly selected
every task. A set of tasks consist of 100 tasks, and the positions of objects on the projection surface are
changed every set. For each tabletop work condition, an evaluator experienced two sets of tasks. Note
that the experimenter puts the objects according to the system’s random choice of their positions for
the first set in each task, while an evaluator arranged by him/herself in the second set.

Figure 10. Data collection system.
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Figure 11. Four types of tabletop objects configurations.

The recorded information includes images from a color camera and a depth camera that consist of
the projection surface. These images are stored for each task, which means that features of various
projection conditions were calculated from eight images in total. Also, the three dimensional position
of the estimator’s head is measured in advance so that it could be represent their viewpoints. In total,
800 pairs of estimation features of projection surface and their corresponding visibility are collected for
each evaluator, and thus 12,000 pairs from 120 tabletop objects configuration are used.

Throughout a task, both objective and subjective measures of visibility are gathered as described
in Section 3.4. The correctness of recognizing a text and linking the label to an object are used as
objective measures of visibility. Note that fiducial makers with numbers are used not only to identify
the position of objects, but also to let the evaluators tell the printed number as what they consider
linked to a particular label. By contrast, the subjective measure is provided by the evaluators how they
feels the load of the presented tasks based on the criteria shown in Table 1.

Hardware configuration is as follows: a Logicool HD Pro Webcam C920 is used as an RGB
camera, while Microsoft Kinect v2 is utilized as a depth-sensor. A video projector is EPSON EB1725.
A Windows 10 PC (CPU: Intel Core i7-6700, Memory: 8 GB) runs data collection system. The dimension
of the projection surface is 71 cm × 51 cm. The net RGB camera resolution is 960 × 720 pixels (34.3 ppi)
and the net depth-camera resolution is 286 × 216 pixels (10.2 ppi). The system is also used for online
user experiment described in Section 6.3.

5.2. Data Augmentation for Balanced Dataset

We found that the number of instances calculated from ROIs within blind areas and on uneven
areas is small based on analysis of the distribution of the blind area ratio (BR), the variance of depth
values (VARd), and the depth edge ratio (ERd). Therefore, we synthesized ROIs based on an original
ROI with the values of more than 0.04, 0.24, and 0.04 of BR, VARd, and ERd, respectively, in which an
original ROI was slid into a random direction by 5% of its width or 100% of its height.

As described above, 12,000 pairs of projection patterns and associated evaluations by human
evaluators were collected; however, the number of instances in each class is imbalanced as shown
in Table 2, in which 3.1 times and 16.9 times between the largest and smallest ones in the label and
the linkage line, respectively. The instances in each class of the label were either over-sampled or
under-sampled so that the numbers could be 2500, while the number for the linkage line is set to be 600.
We utilized Syntactic Minority Over-sampling Technique (SMOTE) and SpreadSubsample filters in
WEKA machine learning toolkit [48], respectively.

Table 2. The numbers of instances in each class.

Type Label Linkage Line

Class A B C D A B C

Number of samples (Original) 5712 2349 1868 2071 8816 2663 521
Number of samples (Balanced) 2500 2500 2500 2500 600 600 600

6. Evaluation

In this section, the visibility estimator is evaluated.
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6.1. Difference in Various Models of Classifiers

An offline experiment is conducted to understand the basic classification performance of the
visibility classifier.

6.1.1. Methodology

Popular classifier models were compared in both label and linkage line visibility estimation, which
includes RandomForests (RF), Support Vector Machines (SVM), Nearest Neighbor (NN), and Naïve
Bayes (NB). The WEKA machine learning toolkit was used in this experiment. The number of trees in
RF for classifiers of both label and linkage line was set to 100 by taking into account the classification
performance and processing speed. In training SVM, we used Sequential Minimal Optimization (SMO)
with the major hyper-parameters of Gaussian Radial Basis Function Network (RBFNetwork) as a kernel
function and 1.0 as a gamma value. Regarding the complexity parameters (C), 100.0 and 10.0 were
used for a label visibility estimator and a linkage line estimator, respectively. Both the gamma valuee
and the complexy parameters were chosen using a grid search. We performed 10 fold cross-validation
to see average performance of the classifiers.

6.1.2. Result

Table 3 summarizes the F-measures of various classifier models for label visibility classification.
F-measure (22) is a harmonic mean between recall (23) and precision (24), where the suffix i indicates
the visibility classes (i ∈ {A, B, C, (D)}), and Ncorrect, Ntested, and Njudged represent the number of
instances correctly classified as class i, the total number of instances in class i, and the number of
instances judged as class i, respectively. The F-measures in Table 3 are the average F-measures over all
classes. As shown in the table, RandomForest (RF) is the best classification model in the four models,
and its breakdown is shown as a confusion matrix in Table 4.

Fi =
2

1/recalli + 1/precisioni
(22)

recalli =
Ncorrecti

Ntestedi

(23)

precisioni =
Ncorrecti

Njudgedi

(24)

Table 3. F-measures for label visibility classification.

RF SVM NN NB

0.919 0.912 0.911 0.530

Table 4. Confusion matrix of label visibility classification with RandomForest (RF).

Classified as
Recall

A B C D

Original

A 2360 19 116 5 0.944
B 46 2258 95 101 0.903
C 133 134 2211 22 0.884
D 20 99 22 2359 0.944

Precision 0.922 0.900 0.905 0.949 F: 0.919

The performance of linkage line classification per classes are carried out on four levels of segment
resolution (Table 5). As described in Section 4.3, a segment is one of areas obtained by diving the
projection surface into Nrow × Ncol areas. When the number of segments in a projection surface
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increases, each segment represents more local features. The table shows that RandomForest performed
best in the four models against all levels of segment resolution; especially, RandomForest with features
calculated from 36 × 48 segments was the best (F-measure is 0.789). Therefore, in the later experiments,
we use this configuration. The breakdown is shown in Table 6.

Table 5. F-measures for linkage line visibility classification.

Segment Resolution (Nrow × Ncol) RF SVM NN NB

72 × 96 0.782 0.742 0.705 0.539
36 × 48 0.789 0.732 0.721 0.559
24 × 32 0.774 0.702 0.700 0.547
18 × 24 0.745 0.721 0.708 0.553

Table 6. Confusion matrix of linkage line visibility classification with RF.

Classified as
Recall

A B C

Original
A 485 57 58 0.808
B 76 453 71 0.755
C 58 60 482 0.803

Precision 0.784 0.795 0.789 F: 0.789

6.2. Feature Subset Evaluation

In Section 4, 88 and 28 feature were specified as those characterize the visibility of a label and a
linkage line, respectively. To improve the online processing speed and avoid over-fitting of the trained
classifiers, feature selection (attribute selection) was conducted.

6.2.1. Methodology

We took a wrapper approach, in which a particular classifier, i.e., RandomForest with 100 trees,
was used to evaluate the effectiveness of a subset of features based on its classification accuracy. Greedy
forward search method was used to find the best subset of features by adding the most effective feature
one-by-one. The subset that does not increase the accuracy anymore is finally regarded as the best
one. In addition to identifying feature subsets, we calculated information gain (IG) as an indicator
of informativeness of each feature, where the gain of information provided by a particular feature
is calculated by subtracting a conditional entropy with that feature from the entropy under random
guess [49]. So, the more informative feature has the higher IG. Furthermore, the elapsed time for
a series of view management was measured, in which the elapsed time of feature calculation was
compared before and after the feature selection.

6.2.2. Results and Discussion

A total of 15 features was selected as the best subset for classifying label visibility with
RandomForest classifier. Table 7 shows a complete list of features for a label with the type, indication of
selected feature (a check mark Xmeans that it was selected), and IG. The table implies that the degree
of blind area (BR) of a certain ROI is the most informative in the classification. The table also shows
that IDM tends to be informative both in the gray-level image and the depth-image. As described in
Sections 4.2.2 and 4.2.3, IDMg and IDMd represent the uniformity of gray-scale appearance and the
unevenness of the surface in a ROI, respectively. Other gray-level non-uniformity feature (GLNg) and
unevenness feature (ASMd) that represents the diversity of the projection surface were also informative.
The informativeness of these features implies that not only visually uniform but also physically even is
important for effective (visible) presentation.
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Regarding the linkage line, 14 features were selected as the best subset, and Table 8 shows a
complete list of the linkage line features with an indicator of selection. In the table, BRT features
are three most informative features, which indicates the visibility of the linkage line on the target
object side is important. The features {AVEd} also have high information gain, which we consider a
particular value indicating zero-height, i.e., on the table, tends to be high visibility. Although the IG of
CBDIFF is 0.000 bit, it was chosen as an element of best subset. To examine its value, we removed it
from the feature subset. The resultant F-measure was 0.728, which was smaller than the original subset
by 0.033. So, we concluded that it contributes to classification performance as a whole although it is
not effective as a single feature.

In both a label and a linkage line, the histogram features VARH , SKEWH , and KURTH were
generally little informative, especially, high frequency range with a suffix of high, as well as contrast
features CDIFF and CBDIFF. The histogram features for all frequency components, i.e., original image,
are intended to represent the shine of the projection surface, while the high frequency components are
for transparency. The contrast features were designed to represent the contrast between the projection
surface and the projected information. We consider that the low informativeness of these features does
not directly indicate that these features are useless. As described in Section 6.3, the cases where the
system over-estimated the label visibility class are low contrast and projected information transmitted
through transparent material. So, the formulas for these features have rooms for improvement.

Table 7. List of the features for a Label (a check mark Xindicates that the feature was selected).

Name Type Sel. IG [bit] Name Type Sel. IG [bit] Name Type Sel. IG [bit]

BR BA X 0.737 LREd,45 UE 0.312 VARg BR 0.184
IDMd,all UE 0.469 LREd,0 UE 0.307 ASMg,0 BR 0.184
IDMd,135 UE 0.451 RLNd,90 UE 0.304 ASMg,135 BR 0.183
IDMg,all BR X 0.448 LREd,90 UE 0.302 ASMg,45 BR 0.176
IDMg,45 BR 0.447 RPd,135 UE 0.300 ERg BR X 0.164
IDMg,135 BR 0.446 GLNd,45 UE 0.298 SREg,0 BR 0.147
IDMg,90 BR X 0.439 RPg,0 BR 0.285 LREg,90 BR 0.142
IDMd,45 UE X 0.438 GLNg,0 BR 0.283 LREg,0 BR 0.141
IDMd,0 UE X 0.438 RLNg,0 BR 0.278 LREg,45 BR 0.140
IDMg,0 BR X 0.435 SREd,90 UE 0.277 SREg,90 BR 0.139
ASMg,all BR 0.435 SREd,0 UE 0.273 LREg,135 BR 0.136
ERg UE 0.410 RPd,45 UE 0.269 AVEg BR 0.135
IDMd,90 UE X 0.408 RLNd,135 UE 0.264 SREg,135 BR X 0.127
VARd UE 0.402 RLNg,90 BR 0.259 SREg,45 BR 0.125
ASMd,135 UE 0.392 SREd,45 UE 0.255 SKEWH,all BR 0.123
GLNg,135 BR 0.392 RLNd,45 UE 0.253 KURTH,all BR 0.107
GLNg,45 BR 0.390 FDd UE 0.248 KURTH,high BR 0.105
ASMd,45 UE 0.378 SREd,135 UE 0.247 SKEWH,high BR 0.103
ASMd,0 UE 0.376 RLNg,135 BR X 0.239 FDe BR 0.079
RLNd,90 UE 0.375 RPd,90 UE X 0.237 SSg,135 BR X 0.053
GLNg,90 BR 0.371 RLNg,45 BR 0.233 SSg,all BR 0.052
ASMd,90 UE 0.360 SREd,90 UE X 0.233 SSg,0 BR 0.052
RPd,0 UE 0.359 SSd,135 UE 0.221 SSg,45 BR 0.049
FDde UE X 0.347 SSd,45 UE 0.219 SSg,90 BR 0.048
FDge BR X 0.344 SSd,0 UE 0.216 VARH,all BR 0.047
LREd,0 UE 0.342 SSd,all UE 0.216 VARH,high BR 0.046
RPg,45 BR 0.333 SSd,90 UE 0.209 CBDIFF CN 0.013
GLNd,135 UE 0.331 RPg,90 BR 0.197 CDIFF CN 0.009
RPg,135 BR 0.326 ASMd,90 UE 0.187
LREd,135 UE 0.317 ASMd,all UE 0.184
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Table 8. List of the features for a linkage line (a check mark Xindicates that the feature was selected).

Name Type Sel. IG [bit] Name Type Sel. IG [bit]

{BR}T10,ave BA X 0.224 {AVEd}all,kurt UE 0.074
{BR}T20,ave BA X 0.220 {BR}L10,ave BA X 0.068
{BR}T30,ave BA X 0.205 {VARH,high}all,ave BR 0.067
{BR}all,ave BA X 0.136 {BR}L30,ave BA 0.060
{AVEd}T10,ave UE X 0.127 {SKEWH,high}all,ave BR 0.057
{ERd}all,ave UE 0.125 {AVEd}L20,ave UE X 0.050
{AVEd}T30,ave UE X 0.124 {KURTH,high}all,ave BR 0.047
{AVEd}T20,ave UE 0.120 {AVEg}all,ave BR X 0.043
{AVEd}all,var UE X 0.096 {AVEd}L10,ave UE X 0.040
{VARH,all}all,ave BR 0.091 {ERg}all,ave BR 0.037
{SKEWH,all}all,ave BR 0.083 {AVEd}L30,ave UE 0.036
{KURTH,all}all,ave BR X 0.082 {AVEg}all,var BR X 0.014
{AVEd}all,skew UE 0.081 {CBDIFF}all,ave CN X 0.000
{BR}L20,ave BA 0.077 {CDIFF}all,ave CN 0.000

Tables 9 and 10 show the confusion matrices for a label and a linkage line visibility classifiers
in the configurations of selected features, respectively. From these tables, we can confirm that the
classification performance of a label was decreased from 0.919 to 0.913 and that of a linkage line
was decreased from 0.789 to 0.761. Although selected features decreased classification performance,
i.e., F-measure, we consider that the negative impact on the user’s task performance is limited, rather
the decreased number of features contributes to processing speed.

Table 11 summarizes the processing speed of calculating features before and after the feature
selection, which suggests that the processing speed was improved by 173% (=78.8/45.5 × 100) through
the feature selection. Note that the area of ROI depends on the size of information to be presented,
and that the number of segments to be considered in calculating the features for a linkage line also
varies by the length of the line. In VisLP algorithm, candidates of label placement are tested around a
target object every 10 degrees, and the linkage line is extended if no suitable label position is found.
The classification by RandomForest classifier took 0.003 ms. So, every check of candidate positions
takes about 46 ms. Another time consuming processing in a view management is making projection
surface images (Figure 6B), which took 100 ms in total; however, this calculation is performed only
once for each opportunity of view management. Therefore, the bottleneck of the system is feature
calculation, and the feature selection contributed in reducing the entire processing time. However,
the processing time for feature calculation should be reduced for real-time label placement.

Table 9. Confusion matrix of label visibility classification with selected 15 features.

Classified as
Recall

A B C D

Original

A 2353 22 121 4 0.941
B 23 2267 119 91 0.907
C 130 169 2183 18 0.873
D 14 124 32 2330 0.932

Precision 0.934 0.878 0.889 0.954 F-measure: 0.913
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Table 10. Confusion Matrix of Linkage Line Visibility Classification with Selected 14 Features.

Classified as
Recall

A B C

Original
A 461 78 61 0.768
B 84 457 59 0.762
C 76 72 452 0.771

Precision 0.742 0.753 0.790 F: 0.761

Table 11. Comparison of processing speed of feature calculation before and after feature selection
(assuming that the physical area of a region of interest (ROI) and the length of the linkage line are
10 cm × 2 cm and 10 cm, respectively).

Label (ms) Linkage Line (ms) Total (ms)

Before Selection 78 0.8 78.8
After Selection 45 0.5 45.5

6.3. Online Experiment with Users

In this section, an online evaluation of visibility classifiers is carried out, which works as a “test”
phase in the machine learning context.

6.3.1. Methodology

The experiment was carried out basically in the same manner as data collection described in
Section 5.1 except for the physical objects on the desk and the participants. We used 15 objects that
were not used in the data collection (Figure 12), and 10 visually healthy persons in their 20’s who did
not participate in the data collection were recruited. Therefore, the trained classifiers knew neither the
objects nor the participants, which allows us to understand a practical performance.

A task consists of a pair of presentations of information and evaluation of visibility based on
the criteria shown in Table 1. Over-estimation occurs when the level of visibility obtained from the
participant is lower than the one estimated by the system. In such a case, the participant was asked
the reason for his/her judgment. Each participant performed 10 tasks. At each task, the experimenter
randomly changed the presentation of information; however, the layout of the physical objects were
randomly changed once per participant. Note that the visibility classifiers for a label and a linkage
line were trained with the dataset collected in Section 5.1 for an implementation of RandomForests
(RandomTree) in the OpenCV 3.0 (C++) platform. In addition, the participant’s viewpoint, i.e., 3D
coordinates in the system coordinates, was registered with the system in advance.

Figure 12. Physical objects used in the online experiment.
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6.3.2. Results and Discussion

The confusion matrices of the visibility classification of a label and a linkage line are shown in
Tables 12 and 13, respectively. Note that the number of instances in each class is not normalized to
understand an actual classification performance. So, the performance metrics, i.e., recall, precision,
and F-measure, cannot be compared with the ones presented in Sections 6.1 and 6.2.

Table 12. Confusion matrix of label visibility classification in offline experiment.

Classified as
Recall

A B C D

Original

A 36 6 0 0 0.864
B 8 14 0 1 0.609
C 3 1 1 1 0.167
D 1 3 0 23 0.852

Precision 0.760 0.583 1.000 0.920 F: 0.643

Table 13. Confusion matrix of linkage line visibility classification in online experiment.

Classified as
Recall

A B C

Original
A 50 22 0 0.694
B 2 21 2 0.840
C 0 2 2 0.667

Precision 0.961 0.477 0.500 F: 0.662

Formula (25) defines “estimation gap” as the difference between the participant’s evaluation (Vp)
and the system’s estimation (Vs). Here, we assume that the visibility classes (Figure 5) represent the
level of visibility at a regular interval with values of 4, 3, 2, and 1 for classes “A”, “B”, “C”, and “D”,
respectively. Therefore, the gap with a negative value such that Vp is “B” and Vs is “A” is regarded
as over-estimation with a gap value of “−1”. By contrast, under-estimation is a situation where the
gap has a positive value. The zero gap is an ideal case in which the participant’s evaluation and the
system’s estimation are identical.

Gap = Vp −Vs , where Vp, Vs ∈ {A, B, C, D} (25)

Figure 13 shows the relative frequency distributions for the label and the linkage line presentation
calculated from Tables 12 and 13 using Formula (25). As shown in the figure, 76% of the presentations of
labels and 73% of linkage line presentations were matched with the participants’ evaluations. Figure 14
shows examples of situations where the participants’ evaluations and the system’s judgments were
identical, i.e., zero-gaps. In (a), the projected text is deformed and partially hidden due to an overlap
with the packing tape, which we consider was successfully represented in the features and judged
as “D”. One end of the linkage line is also overlapped with the packing tape; however, it was not so
large that degraded the entire visibility. So, we consider that it was judged as “B”. In (b), the label is
clearly seen, and thus it should be judged as “A”; however, the linkage line is ambiguous because both
a packing tape and an orange are on the same line, which we consider that it should be judged as “C”.
Therefore, the features that represent a situation where an end of a linkage line is hidden in a blind
area worked effectively.
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Figure 13. The distribution of gaps between the participant’s evaluation and the system’s estimation.

Figure 14. Examples of resultant projection that matches the participants’ evaluations with the system’s
decisions, e.g., zero-gaps. The pictures were taken from the participants’ viewpoints.

By contrast, 24% of label placement and 27% of linkage line placement were classified incorrectly.
In terms of a label, over-estimation is more likely to happen than under-estimation. Over-estimation is
a situation where the participants’ evaluation is worse than the system’s judgment. In other words,
the participant did not feel so comfortable as the system expected. Thus, it is more critical than the
case of under-estimation. Table 14 summarizes the reasons for lower evaluations of the participants
than the system’s estimations. Regarding the label, the most frequent reasons for the gap value of “−1”
were the deformation of presented label due to the unevenness of the projection surface, followed by
difficulty in reading caused by low contrast.

Table 14. The reasons provided by the participants when the system over-estimated. The numbers in
the brackets indicate the number of answers.

Gap Label Linkage line

−1 Unevenness (4), Low contrast (2), Ambiguous annotation target (1), Unevenness (1)
Transmission and refraction (2), Transmission and refraction (1)
Absorption and pattern (1)

−2 Blind area (4), Unevenness (1),
Transmission and refraction (1)

−3 Transmission and refraction (1) –

Transmission and refraction is the most common reason in all gaps. The situation happened
when projected light overlapped with glass objects or the label was projected behind glass objects.
As described in Section 3.3, incident light can be transmitted through an object and seen through
from a user, in which a glass is a typical case. However, refraction inside the glass as well as at the
boundary between the air and the glass can generate complex light paths. Figure 15 shows examples
of projection on and behind glass objects. The projected information can be clearly seen in one case (a),
but, in the other case (b), it is hard to see through. Also in (c), the label is projected behind a glass object,
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i.e., in the blind area, and its visibility is affected in the same manner. We consider that the reason
for failing in estimating such situations as low visibility (“C” or “D”) comes from the characteristics
of depth-sensing. We used Microsoft Kinect V2 as a depth sensor, which employs the Time-of-Flight
(ToF) method for depth-sensing and requires proper reflection of Infra-red light. However, the emitted
infra-red light is also affected by transmission and refraction. So, the depth information of glass objects
cannot be handled correctly. In addition to the technical issue, we did not use such glasses with
deformed and somehow translucent surface as shown in Figure 15b,c when we collect data for training
classifiers, rather a beaker and conical flask as shown in Figure 11a were used. Therefore, the classifiers
were not trained with data collected under such a tough environment. Actually, two of four cases of
“being hidden in the blind area” as a reason in the gap value of “−2” were caused by the situation of
Figure 15c.

As for the linkage line, under-estimation is a major erroneous classification, which means that the
association was more correct and easy for participants than the system expected. This is not so bad as
the case of over-estimation. There were three cases of over-estimation. The reasons provided by the
participants was shown in Table 14, where ambiguous annotation target, difficulty in associating the
label with the target due to unevenness of the projection surface, and transmission and refraction of
the projected line were the reasons for lower evaluations than the system’s judgments.

Figure 15. Examples of projection on and behind glass objects.

7. Conclusions

In this article, we proposed a view management method for spatial augmented reality based
on machine-learning. The motivation of the work is to find the position of an annotation (label and
associated linkage line) while taking into account its visibility affected by the reflective characteristics of
the projection surface, the three dimensional properties of physical objects on the projection surface, and
the spatial relationship between the objects, the projector-camera systems, and the user. A weighted
linear combination of factors that affect visibility is often utilized in view management; however,
the methods of finding optimum weights have not been shown or dependent on the application
designers. Also, existing approaches try to find suitable positions for labels and linkage lines, in which
“suitability” is not truly defined from the user’s point of view, i.e., it is not clear how the user
feels the situation and what is expected in the user’s behavior. To address the issues, a supervised
machine-learning technique was applied to model the visibility of information with human’s subjective
and objective measures.

We defines the machine-learning task as a classification problem with four classes for a label
visibility estimation and three classes for a linkage line. We collected data from 15 visually healthy
persons, which consists of 12,000 instances from 120 tabletop object configurations in four different
work situations. For the two classifiers, we defined 88 and 28 features, respectively, and feature
selection specified 15 and 14 best feature subset. The F-measures for the classification of a label and
a linkage line are 0.913 and 0.761, respectively. We confirmed the processing speed improvement
of 173% with degradation of classification performance of 0.7% and 3.5%, respectively. Considering
the benefit of speed improvement, the performance degradation is acceptable. The judgment of one
candidate position takes about 46 ms, which may become an issue if the system is in a cluttered
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dynamic environment and is required a quick response to the change. By contrast, if a good condition
where no tall objects exists and reflective characteristics of the surface are ideal, the current processing
speed may be enough.

In an online-evaluation, we tested against 10 new persons with 15 new objects to show the
robustness of the classifiers against unknown users and objects. The results showed that 76.0% of the
system’s judgments were matched with the participants’ evaluation for a label visibility estimation,
while that of a linkage line was 73.0%. Over-estimation, in which the system’s judgments were better
than human evaluations and more critical than under-estimation, was observed in 16.0% of label
visibility estimations.

One of future work is the improvement of over-estimation. We need to investigate a method
that measures the shape of glass objects precisely, as well as collecting data from objects with more
heterogeneous appearances and materials. However, to obtain large amount of data from human
participants, we need to consider the efficiency. In the presented work, each participant comes to the
lab, reads the presented text, and rates its subjective visibility of a label and a linkage line 800 times,
which is very burdensome. We consider the number of participants can be increased and the time to
take the data collection can be shortened if an online survey method is investigated for crowd-sourcing.
To realize this, visibility estimation that does not depend on the resolution and the display size of
online participants terminals, which is another future work. Furthermore, the viewpoint estimation
should be automated, which is currently registered manually, and the participants in the data collection
were asked to be stable during the experiment. To address this issue, an automatic gaze estimation
functionality should be incorporated into the system.
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