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Abstract: The ability to accurately recognize fruit on trees is a critical step in robotic harvesting.
Many researchers have investigated a variety of image analysis methods based on different imaging
technologies for fruit recognition. However, challenges still occur in the implementation of this goal
due to various factors, especially variable light and proximal color background. In this study, images
with fruit were acquired with a Forward Looking Infrared (FLIR) camera based on the Multi-Spectral
Dynamic Imaging (MSX) technology. In view of its imaging mechanism, the optimal timing and
shooting angle for image acquisition were pre-analyzed to obtain the maximum contrast between
fruit and background. An effective algorithm was developed for locking potential fruit regions,
which was based on the pseudo-color and texture information from MSX images. The algorithm
was applied to 506 training and 340 evaluating images, including a variety of fruit and complex
backgrounds. Recognition precision and sensitivity of these complete fruit regions were both above
92%, and those of incomplete fruit regions were not lower than 72%. The average processing time
for each image was less than 1 s. The results indicated that the developed algorithm based on MSX
imaging was effective for fruit recognition and could be suggested as a potential method for the
automation of orchard production.
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1. Introduction

Apples are the second most valuable fruit grown in the United States after oranges [1]. Currently,
hand picking is the only commercial harvesting method for fresh market apples, which is labor
intensive and costly, accounting for more than 30% of production costs [2]. This intense seasonal labor
demand is creating a significant risk for growers not having a sufficient supply of labor to conduct
farm tasks. Harvesting, in particular, is threatened mostly by the uncertain availability of labor. The
industry needs technological innovations, which can assist growers in maintaining a competitive
position in the global marketplace. Robotic picking is one of the promising approaches to automate
fruit harvesting. The main advantages of robotic picking are its ability to facilitate selective harvesting
and its potential to reduce the dependence on the labor force. While research has been conducted on
the production of harvesting robots, the commercialization of robotic harvesting has been hindered by
technical and economic factors [3].

Accurate fruit recognition is one of the crucial steps necessary for the commercialization of
robotic harvesting. Many studies have been conducted to recognize the fruit of horticultural crops
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automatically, such as sweet peppers, cucumbers, citrus, mangos, tomatoes, and apples [3–8]. However,
challenges still remaining in the implementation of robotic harvesting in regard to fruit recognition.
This is due to various factors, especially variable light, and proximal color background. Therefore,
more attention has been focused on using different image acquisition devices and means to obtain
useful images and favorable characteristic evidence to support the determination of fruit. Some
researchers have utilized active imaging systems for fruit recognition: Liu et al. [9] developed a
two-dimensional vision sensor system using two kinds of laser beams, to detect matured fruit based on
the difference of laser reflectance on a plant, obtaining a recognition accuracy of 67%. Feng et al. [10]
used a Time-of-Flight (ToF) camera to acquire multi-source images for the recognition of overlapped
fruit, obtaining a fruit recognition rate of 83.67% to 94.22%. Nguyen et al. [11] used a Kinect sensor to
acquire depth and color information for the detection and localization of red and bicolored apples,
the processing time was below 1 s for a simultaneous detection of 20 apples. Other researchers have
sought to create light-stable environments by adding light sources and shields: Song et al. [12] used
a Xenon flashlight (with a light pulse to illuminate) to reduce the influence of ambient light on the
images and a light shield to block direct sunlight. Gongal et al. [13] used a tunnel structure with
a number of LED lights being installed inside to create a controlled, uniform lighting environment
and also added capability for nighttime data collection, which achieved an identification accuracy of
79.8%. These past studies have mainly focused on the improvement of the hardware sensors for image
acquisition, which could increase the overall cost, even though the recognition could be improved
to some degree. These efforts, from a sensor system improvement perspective, are mainly aimed to
eliminate the effect of sunlight variation. However, changes in sunlight can also help us to distinguish
objects that have different responses in terms of thermal radiation.

With the development of visual sensor technology, an increasing number of object characteristics
can be recognized using sensors. Besides using color, shape, and texture, the surface temperature
variation of different objects under different conditions has also become a very important feature
for object recognition. Thermal radiation is defined as the phenomenon of radiant electromagnetic
waves due to the temperature of an object. All objects with a temperature above absolute zero can
emit thermal radiation, and the higher the surface temperature, the more radiant the energy. Thermal
imaging utilizes electromagnetic radiation emitted from an object and produces a pseudo image of
the thermal distribution of the object [14]. In the pseudo images, different objects show in different
colors, which could be potentially used for object identification in agricultural production. Recently,
a number of applications utilizing thermal imaging have been reported. Raza et al. [15] combined
thermal and visible light image data with depth information to remotely detect plants infected with
the tomato powdery mildew fungus. Zhu et al. [16] used infrared thermal imaging technology to
detect the temperature information of tomato and wheat during the incubation period following the
introduction of inoculum. Satone et al. [17] assessed the surface of apples and subsurface defects
with thermal images. García-Tejero et al. [18] and Wiriya-Alongkorn et al. [19] utilized thermal
imaging to detect plant water stress, which could be an interesting tool for improving irrigation
scheduling [18,19]. The studies above analyzed the difference of the plants with stress issues, rather
than healthy (well-managed) plants. Some other studies have reported on the identification of different
objects in an image using surface temperatures. For example, a few studies have worked on the
recognition of citrus fruit from the tree canopy, including the appropriate time for acquiring fruit
images, and integration of color image with image registration [20–22]. The image registration is an
indispensable process, and the accuracy of image registration is one of the factors affecting recognition
results. An innovative MSX technology, unlike traditional thermal superposition techniques, integrates
infrared images with visible light images and highlights the texture characteristics of objects in infrared
images without additional registration. The imaging results using this technology not only increase
the evidence to support the fruit region, but also save the time in regard to image processing.

In this paper, MSX images were analyzed in different shooting situations to determine the best
acquiring conditions (such as the optimal timing and angle range for acquiring images), helping to
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detecting the fruit regions in the image. An algorithm for recognizing apples on the tree canopy
was developed. Regarding to pseudo-color characteristics of fruit region and noise characteristics in
non-fruit region, a series of image pre-processing steps were carried out, including image segmentation
based on color information, image denoising using morphological theory and small area removal
strategies, labeling the effective regions, and restoration of color details. Following this, texture features
of these effective regions were extracted and filtered to form the feature vector. A linear separable
support vector machine was utilized to distinguish fruit regions from non-fruit regions. Finally, the
three proposed measurement parameters, including precision, sensitivity, and relative error, were
utilized to assess the effect of fruit recognition. The outcome from this study will be expected to
provide guideline information for automated orchard production.

2. Materials and Methods

2.1. Imaging Acquisition System

A low-cost thermal camera (FLIR C3, FLIR Systems Inc., Wilsonville, OR, USA) was used to
acquire images for fruit recognition (Figure 1). The camera had an operational temperature range
from −10 ◦C to 150 ◦C with a spectral range from 7.5 µm to 14.0 µm an accuracy of ±2 ◦C of readings
and a field of view of 41◦ × 31◦. It can simultaneously capture three kinds of registration images, i.e.,
visible image, thermal image, and MSX image. These images were imported from a software (FLIR
Tools+, FLIR Systems Inc., Wilsonville, OR, USA) and saved as JPG files with a spatial resolution of
400 × 300 pixels for computational efficiency. A total of 846 images were used in this study. Among
them, 506 MSX images were chosen randomly as the training dataset, and the rest of 340 MSX images
were used for evaluating the recognition effect. Image analysis was conducted with a computer
(Dell G5 15, Dell Inc., Round Rock, TX, USA) with a CPU (Intel i7-8750H, Intel Inc., Santa Clara, CA,
USA) running at 2.21GHz, 16GB of RAM. The image processing toolbox in MATLAB (Ver. R2018a,
Mathworks Inc., Natick, MA, USA) was used to process images by running the developed algorithm.
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Figure 1. Illustration the imaging system placed in different scenes to acquire images: (a) Crimson
Crisp apple trees; (b) Gold Rush apple trees.

2.2. Experimental Environments

The experiment was conducted at research orchards located in Penn State Fruit Research and
Extension Center, Biglerville, Pennsylvania, USA. Two apple varieties were tested, i.e., ‘Crimson Crisp’
and ‘Gold Rush’. These trees were planted in a tall spindle structure, and were supported by a trellis
system of wires and poles. Images were acquired from August to October, the distance between camera
and tree canopy was 1 to 1.5 m. The number of fruit in each image ranged from 2 to 10. To test the
thermal radiation of different parts on fruit tree responses to sunlight variation, some partially cloudy
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days with a wind breeze were chosen for our experiment. The thermal camera was placed at the bright
side of the apple trees in the morning. We began to acquire images from 9 am, the temperature of the
atmosphere was above 20 ◦C wind speed was around 3 mph, and average duration of cloud cover was
3 min. In all images, fruit regions with more than 60% occluded areas by branches and leaves were
non-target fruit, and other fruit (including inter-fruiting occlusion) were defined as target fruit.

2.3. Fruit Tree Image Characteristics Analysis

2.3.1. Image Characteristics of Different Apple Varieties

Different varieties of apples may show different colors through different stages of growth. Some
fruit are easy to identify precisely from the image, while others are more difficult because they are
masked with the similar color of the background or are occluded. Red apples (such as Crimson Crisp
apple) provide a strong contrast to the background, and color could be used as an important feature to
identify the fruit. While, for yellow apples (such as Gold Rush apple), especially in the early stages,
the color is closer to green, the color would not be a sufficient characteristic to enable recognition of
the fruit. Figure 2a,d shows RGB (Red, Green, Blue) images from different varieties of apple trees.
However, thermal imaging is independent to the surface color, instead, it senses objects by detecting
their emitted thermal radiation. In order to highlight the response of each part, the ‘Arctic’ was selected
from color palettes to record the information. Figure 2b,e are the thermal images for the two selected
varieties. In most of these thermal images, fruit regions appear in orange and show a large difference
with other regions. We can also see that some background (such as the lower left corner of Figure 2e)
shows a similar color to the fruit, which will interfere with the detection of the fruit by using color
information alone. However, MSX images include detailed information as well as thermal radiation
information, as shown in Figure 2c,f, the surface of fruit is smooth and the background is rough. The
additional texture information will enhance recognition confidence of the fruit region.
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Figure 2. Illustration of images acquired by FLIR C3 camera (FLIR Systems Inc., Wilsonville, USA)
in two different scenes: (a) RGB (Red, Green, Blue) image from part of a Crimson Crisp apple tree;
(b) Thermal image for the targeted part of a Crimson Crisp apple tree; (c) MSX image for this part of a
Crimson Crisp apple tree; (d) RGB image from part of a Gold Rush apple tree; (e) Thermal image for
this part of a Gold Rush apple tree; (f) multi-spectral dynamic imaging (MSX) image for this part of a
Gold Rush apple tree.
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2.3.2. Image Characteristics with Different Camera Shot Angles

About 50% of the solar radiation energy is in the visible spectrum (wavelength of 0.4 to 0.76 µm),
some in the infrared part (>0.76 µm) and the ultraviolet part (<0.4 µm). The thermal camera picks up
the infrared spectrum. When the camera shooting angle (defined as the angle between ground level
and the camera during image acquisition) is too high, solar radiation in the background will interfere
with the display of fruit surface radiation in thermal images. A preliminary test was conducted by
rotating the pan-tilt of the camera tripod counterclockwise with a step of 2 degrees to change the
shooting angles. Some of MSX images shot from different angles are shown in Figure 3. The fruit
begins to be identified in color, in contrast to the leaves and twigs surrounding them at the shooting
angle of −12◦. The color contrast is increasing until the shot angle is close to −16◦. Therefore, the
shooting angle of −16◦ was used in the following experiment to acquire images.
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2.4. Fruit Recognition Algorithm

A fruit recognition algorithm was developed in this study to be used with the MSX images. The
proposed algorithm mainly consists of image pre-processing, texture features extraction, and object
classification as shown in Figure 4.
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2.4.1. Pre-Processing

Pre-processing for these acquired images was conducted to preserve only the region of interest
(such as orange representing a possible fruit region) by removing other color regions such as leaves,
branches, or trunks, we could reduce the overall fruit recognition processing time. The pre-processing
of MSX images consists of grayscale image processing by taking a single component in RGB space,
binary processing through OTSU algorithm [23], morphological open operation, and small area
removal method for de-noising, and restoring part of pseudo-color details.

More specifically, the value of each pixel in an MSX image is not directly reflected to that of the
appeared color. Instead, these pixel values are used as the entry address of a table item in a color
look-up table, to find the intensity values of R, G, and B used to display an image. Compared with
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a black-and-white grayscale image, the pseudo-color image enhances the image effect and enriches
the image information. Considering that most of fruit are distributed in the orange region of an MSX
image, which is close to the red component (one component in an RGB color space), the brightness
value of a single red component is extracted by the component method, and the grayscale processing
of MSX image is carried out.

In order to further highlight the difference between a target and background value, the grayscale
image is binarized by OTSU algorithm (which is an image processing algorithm named after Nobuyuki
Otsu). The noise in the binary image is analyzed, including some small objects with random
distribution and different sizes. By using a morphological open operation, the disk-shaped structural
elements are selected for filtering. Following this, the small area removal method is used for secondary
filtering, with the main purpose being to remove unwanted objects with a slightly larger area. In this
study, every connected region was labelled and the area was counted, the value of one tenth of the
maximum connected area in the binary image was chosen as the threshold, and connection area larger
than that was saved. Finally, the original pseudo-color information was given to the region with zero
value to restore the details of the image, which can be used to further eliminate interference from the
non-fruiting regions for post-processing.

2.4.2. Texture Feature Extraction

After pre-processing, whole fruit, partial fruit, and non-fruit objects are possibly preserved in
the pre-processed images. In order to retain only the fruit region (even when it is incomplete), some
important features need to be extracted. Texture is an inherent property of the surface of an object, it is
a kind of visual feature which does not depend on color or brightness, but reflects the homogeneity
of an image. Therefore, texture has been used as an important characteristic for recognizing objects
or regions of interest in an image. Haralick et al. [24] proposed 14 characteristic parameters for
analyzing a gray-level co-occurrence matrix (GLCM). However, not all of these features are relevant,
and there is a lot of redundancy in the computation. Bo et al. [25] analyzed the relationship between
the parameters of GLCM and created a simplified choice of parameters in regard to texture calculation,
three uncorrelated parameters, such as contrast, entropy, and correlation, were proved to be the best
characteristics for recognition.

In addition to the target objects, there are still a large number of constant areas (all pixels in these
areas are 0) in an image. If such data is used to calculate texture feature parameters, it will weaken
the texture characteristics of the object. In order to better and faster represent the texture variation in
a connected region, a cell array C(i, j) was created for different connected regions in different image
(i stands for image sequence number, j stands for connected region number in an image). The data
for each connected region was stored sequentially in the size of the minimum bounding rectangle in
each cell of the cell array. That is, each cell in the cell array contained a connected object data, whose
constant areas were as small as possible.

In the processing of texture feature extraction, the calculated step was two, and the angles of
0◦, 45◦, 90◦, 135◦ for texture feature directions were used to generate the GLCM and to calculate
the eigenvalues. The texture feature is sensitive to the direction, but different directions have little
influence on it. Therefore, when quantifying the texture model, the average value of the eigenvalues
obtained from the four directions can be used as the eigenvalues of the parameters in the model.

2.4.3. Objects Classification

The concept of object classification is to construct a classification model based on existing data.
The model can map some data in a database to a given category, which can be applied to data
prediction. The support vector machine (SVM) is an effective method for classification, which derives
from statistical learning and uses a supervised learning model for training. The learning strategy of
SVM is to maximize the spacing, which can be formalized into a problem for solving convex quadratic
programming [26]. After pre-processing, n features are extracted, q connected regions are selected as
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training samples, n × q feature parameters are obtained, and according to their categories, the class tag
−1 or 1 of connected regions are assigned as input of two classes SVM predictive model, and then SVM
classifier is obtained. By observing the characteristics, the extracted texture parameters are linearly
separable and can be classified based on the decision classification function (as Equation (1)).

f (xi) = sign(ω∗·xi + b∗) =

{
−1 f ruit region
+1 non f ruit region

(1)

where xi is the feature vector for the ith connected region, ω∗ is the optimized weight vector, and b∗ is
the optimized bias value.

2.5. Measurable Parameters

To assess the accuracy of the proposed image processing algorithm, a few measurable parameters
were defined. The true fruit regions in MSX images segmented by a manual method were compared
with the fruit regions segmented by the proposed method. There were two types of regions inside the
manual segmentation region, namely the correct segmentation region Sic and the leakage segmentation
region Sil , and another two types of regions outside the manual segmentation region, namely the
correct segmentation region Soc and the over-segmentation region Soo. Three ratios were used to
assess the accuracy of recognition using the above four defined regions, Equations (2)–(4) are the
corresponding formulas.

RP =
Sic

Sic + Soo
(2)

RS =
Sic

Sic + Sil
(3)

RE =
Soo + Sil
Sic + Sil

(4)

RP is the recognition precision, and represents the proportion of the true fruit regions in the
detected fruit regions; RS is the recognition sensitivity, defined as the ratio of the detected true fruit
regions to the artificially detected fruit regions; and RE is the recognition relative error, which is
calculated as the ratio of the detected false fruit regions to the artificially detected fruit regions. These
parameters are helpful to judge the centroid position and size of the fruit regions, which is critical
information for positioning the manipulator for robotic picking.

3. Results and Discussion

3.1. Image Effects Using Different Light Stimulation

Theoretically, each part exposed on the fruit tree receives roughly the same amount of radiation in
the atmosphere. While the surface temperature may different for different objects due to their natural
specifications, for example, fruit contains more water than branches and leaves, and water absorbs
and releases heat more slowly. Therefore, when the same amount of light energy is changed, each part
of a fruit tree will have different surface temperature and different thermal response. Figure 5 shows a
series of thermal response images over time for a targeted section of a fruit tree during a period of
shade. The surface temperature of each object was imported from FLIR Tools+. Figure 6 shows the
surface temperature of the three types of objects within the image over time corresponding to Figure 5.
The rapid release of heat energy caused the leaf temperature to change quickly and obviously, while
the influence was slight for the fruit. The change in surface temperature for leaf and fruit generated
a big difference between the two objects. When the surface temperature difference between the two
exceeded 6 ◦C, a large contrast appeared in the image (Figure 5b–d). In the image, there was a patch
of soil in the background at the lower right corner. The surface temperature of soil only had slight
change over the image acquisition period, and it was close to the surface temperature of fruit.
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(e) 9:17:42; (f) 9:18:51; (g) 9:19:21; (h) 9:19:45.
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Figure 6. The surface temperature change in the fruit, leaf, and soil corresponding to the acquired
images in Figure 5.

3.2. Recognition Results on Different Images

The following subsections describe the performance of the proposed fruit recognition algorithm.

3.2.1. Image Pre-Processing Results

Figure 7 shows the pre-processing results of fruit images under different scenes. The acquired
fruit images were not affected by the color of the fruit after grayscale treatment (Figure 7a,e). When
the camera shot angle and time were in the above conditions, the background had little influence on
fruit recognition. Morphological theory and the minimum area denoising method can eliminate most
of the interference which affects the recognition results (Figure 7c,g). By restoring the details of the
retained regions (Figure 7d,h), it is possible to further remove objects that do not differ in terms of
surface thermal radiation. The texture features are obviously different, such as the seventh labelled
region (Figure 7h).

The contrast, entropy and correlation of the nine labelled regions were calculated, the results are
shown in Figure 8. In the figure, all the connected regions are fruit regions except the seventh region,
which is a non-fruit region. Because the contrast value significantly increased while the entropy value
decreased in the non-fruit region, this changing pattern was very different for the two values in the
fruit region. Therefore, the contrast and entropy can be used as a set of separable indicators for two
classes of objects. Among them, the contrast can reflect the depth of a texture groove, and the larger
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the contrast, the deeper the groove. Compared with the smooth surface of fruit, the groove effect of
soil was more obvious. Therefore, the entropy represents the uniformity or randomness of content
distribution, and the higher value, the more heterogeneous the distribution in the image. Because each
labelled region has a portion of darkness, the region of the soil appears to be more homogeneous than
the region of the fruit. Therefore, contrast and entropy were chosen as the texture features to be used
in object classification.
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Figure 7. Illustration of different steps of images pre-processing in two examples showed in Figure 3:
(a) Figure 3c grayscale processing; (b) Figure 3c binary processing; (c) Figure 3c denoising; (d) Figure 3c
restoring and region labeling; (e) Figure 3f grayscale processing; (f) Figure 3f binary processing;
(g) Figure 3f denoising; (h) Figure 3f restoring and region labeling.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 13 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. Illustration of different steps of images pre-processing in two examples showed 
in Figure 3: (a) Figure 3c grayscale processing; (b) Figure 3c binary processing; (c) Figure 3c 
denoising; (d) Figure 3c restoring and region labeling; (e) Figure 3f grayscale processing;  
(f) Figure 3f binary processing; (g) Figure 3f denoising; (h) Figure 3f restoring and region 
labeling. 

The contrast, entropy and correlation of the nine labelled regions were calculated, the results are 
shown in Figure 8. In the figure, all the connected regions are fruit regions except the seventh region, 
which is a non-fruit region. Because the contrast value significantly increased while the entropy value 
decreased in the non-fruit region, this changing pattern was very different for the two values in the 
fruit region. Therefore, the contrast and entropy can be used as a set of separable indicators for two 
classes of objects. Among them, the contrast can reflect the depth of a texture groove, and the larger 
the contrast, the deeper the groove. Compared with the smooth surface of fruit, the groove effect of 
soil was more obvious. Therefore, the entropy represents the uniformity or randomness of content 
distribution, and the higher value, the more heterogeneous the distribution in the image. Because 
each labelled region has a portion of darkness, the region of the soil appears to be more homogeneous 
than the region of the fruit. Therefore, contrast and entropy were chosen as the texture features to be 
used in object classification. 

 
Figure 8. Three texture feature data graphs of nine labelled regions in two images. 

3.2.2. Assessment of Recognition Results 

In Figure 9, the orange areas are the fruit regions obtained using the proposed algorithm, which 
were compared with the white lines represented the contours of the fruit by a manual method. 
Among all regions, fruit regions 3, 6, 7, and 8 achieved the ideal recognition effect, although these 

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9

Te
xt

ur
e 

pa
ra

m
et

er
 v

al
ue

Connected regions

contrast correlation entropy

Figure 8. Three texture feature data graphs of nine labelled regions in two images.

3.2.2. Assessment of Recognition Results

In Figure 9, the orange areas are the fruit regions obtained using the proposed algorithm, which
were compared with the white lines represented the contours of the fruit by a manual method. Among
all regions, fruit regions 3, 6, 7, and 8 achieved the ideal recognition effect, although these fruit
contours were slightly smaller than the actual size. The main reason was that the fruit were mostly
exposed to the outside of the tree canopy, the edge temperature was slightly lower than the front
of the fruit due to the deviation from direct sunlight. Regions 1, 2, and 4 were seriously covered by
branches and leaves, and there were significant differences in fruit surface temperature. Partial regions
were misidentified as non-fruit regions because of the lower temperature. Region 5 contained two
partially overlapped apples, the front fruit was ideally recognized, but the rear fruit was only partially



Sensors 2019, 19, 949 10 of 13

recognized. Following this, Equations (2)–(4) were applied to each image to calculate three measurable
parameters. Table 1 shows the fruit regions count, recognition precision, sensitivity and relative error
for 340 MSX images. The fruit regions included the complete fruit regions (such as region 3 and region
7 in Figure 9) and the incomplete fruit regions. Incomplete fruit regions included the fruit overlapping
(like region 5 in Figure 9) and foliage shading (like region 1, 2, 4, 6, and 8 in Figure 9). As can be seen
form the Table 1, the average recognition sensitivity and accuracy of the complete fruit regions were
95.74% and 92.69%, and these of the incomplete fruit regions were 87.50% and 72.96%, separately.
These show that the whole method was more sensitive and effective for fruit region recognition. Even
though the average relative error in the incomplete fruit regions was a little large, the success rate of
the recognition method using the low-cost imaging acquisition system is very encouraging.
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Table 1. The results of measurable parameters calculation.

Parameters Complete Fruit Regions Incomplete Fruit Regions

No. of regions 759 1012
Average recognition precision 95.74% 87.50%

Average sensitivity 92.69% 72.96%
Average relative error 8.68% 37.04%

3.3. Time Efficiency Analysis

To increase overall harvesting productivity, the time devoted to automatic recognition of fruit
would be short. Table 2 lists the average execution times for the different processing steps for fruit
recognition. The most time consumption task was the image pre-process, which took more than 90%
of the overall time. Overall, the average process time for an image was less than 1 s in an entire picking
cycle. The results show that the proposed algorithm is suitable for integration in a harvesting robot.

Table 2. The average execution times for the different processing steps.

Step Processing Time (ms)

Image Pre-processing 725.63
Texture features extraction 13.32

Objects classification 1.09
total 740.04

3.4. Discussion

From the results above, the proposed algorithm for detecting the fruit with MSX images had fairly
high accuracy, accounting for 95.74% for the complete fruit region and 87.50% for the incomplete fruit
region Overall, the accuracy of fruit recognition in images was about 91.62%, which is comparable with



Sensors 2019, 19, 949 11 of 13

some previous studies introduced earlier [9–13]. Specifically, the fruit detection in this study is mainly
for robotic harvesting of fruit, and our method could provide accurate fruit region for harvesting with
spatial information. Therefore, compared to the precision and recall of fruit number recognition in
some previous studies, the precision and sensitivity of the specific fruit region is more practical for
fruit harvesting.

Typically, during robotic harvesting, fruit images are acquired and processed prior to the robotic
arm executing [11]. In this study, the algorithm took about 740 ms to process an image, which is about
120 ms for recognizing one fruit region with the average number of six pieces of fruit in an image. The
movement of the robotic arm to reach a fruit in a harvesting cycle normally takes much longer than
120 ms, and the speed we achieved for fruit detection could be sufficient for the harvesting process. As
we can see, the pre-processing step takes up a large proportion of the total time in our algorithm, and
it could be potentially improved by using a multi-thread acceleration method in the future.

In addition, MSX images are sensitive to both surface texture and thermal radiation of objects.
Therefore, more features are needed to increase the evidence to support the fruit region. However,
different parts of a fruit tree that appear in MSX images also depends on some shot conditions. Among
them, shot angle and shot timing are the main considerations. The effect of solar radiation on the
image can be effectively suppressed by shooting fruit trees from an overhead camera. Through the
temporary process of the sun being covered by cloud, the fruit, branches, and leaves can appear with a
larger color contrast in the image. Therefore, knowing that the best time to shoot is not limited to a
certain time period, as long as the surface temperature difference of each part reaches a certain amount
by covering, a better image effect can be achieved.

4. Conclusions

This paper analyzed fruit recognition performance using a novel kind of image (MSX image).
When the camera shooting angle was close to −16◦ the maximum contrast between target and
background was obtained in an MSX image. Due to the difference of capability to absorb and release
heat, changing sunlight on a fruit affected the surface temperature more slowly than neighboring
leaves. It indicated that fruit and leaf can be identified easily when the temperature difference between
them was higher than 6 ◦C. Therefore, it is possible to adjust direct light intensity by covering the
targeted tree canopy. Determination of covering duration, covering material, and covering area will be
our researched next.

An effective algorithm was developed to detect fruit in the MSX images. The red component
of input images was chosen as it highlighted the characteristic of the target. Morphological theory
and small area removal strategy effectively removed non-target regions in binary images; the texture
characteristics were extracted to enhance the support judgment of the target regions; and the final
results were obtained by the linear separable SVM. During the processing period, most fruit regions
can be detected, and the feature vectors used in the post-processing are few, so it is faster to use a
simple classification model.

The average processing time for the entire algorithm is 740.04 ms, the recognition precision and
sensitivity of complete fruit regions were above 92%, and those of incomplete fruit regions were not
lower than 72%. In order to improve the recognition of the incomplete region, multi-view image fusion
can be considered. In addition, the picking strategy can be designed to start from the outermost layer
of fruit, layer-by-layer recognition and picking, which can also effectively reduce the possibility of
overlapped fruit.
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