
sensors

Article

IMLADS: Intelligent Maintenance and Lightweight
Anomaly Detection System for Internet of Things

Tao Qin 1,2,* , Bo Wang 1, Ruoya Chen 1, Zunying Qin 1,3 and Lei Wang 1

1 MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an 710049, China; nyf8848@stu.xjtu.edu.cn (B.W.);
yaer0812@stu.xjtu.edu.cn (R.C.); qzying@mail.xjtu.edu.cn (Z.Q.); wangshuaige@stu.xjtu.edu.cn (L.W.)

2 Shenzhen Research School, Xi’an Jiaotong University, Shenzhen 518057, China
3 Network Information Center, Xi’an Jiaotong University, Xi’an 710049, China
* Correspondence: qin.tao@mail.xjtu.edu.cn; Tel.: +86-29-8266-4603

Received: 19 December 2018; Accepted: 20 February 2019; Published: 24 February 2019
����������
�������

Abstract: System security monitoring has become more and more difficult with the ever-growing
complexity and dynamicity of the Internet of Things (IoT). In this paper, we develop an
Intelligent Maintenance and Lightweight Anomaly Detection System (IMLADS) for efficient security
management of the IoT. Firstly, unlike the traditional system use static agents, we employ the mobile
agent to perform data collection and analysis, which can automatically transfer to other nodes
according to the pre-set monitoring task. The mobility is handled by the mobile agent running
platform, which is irrelevant with the node or its operation system. Combined with this technology,
we can greatly reduce the number of agents running in the system while increasing the system
stability and scalability. Secondly, we design different methods for node level and system level
security monitoring. For the node level security monitoring, we develop a lightweight data collection
and analysis method which only occupy little local computing resources. For the system level security
monitoring, we proposed a parameter calculation method based on sketch, whose computational
complexity is constant and irrelevant with the system scale. Finally, we design agents to perform
suitable response policies for system maintenance and abnormal behavior control based on the
anomaly mining results. The experimental results based on the platform constructed show that
the proposed method has lower computational complexity and higher detection accuracy. For the
node level monitoring, the time complexity is reduced by 50% with high detection accuracy. For the
system level monitoring, the time complexity is about 1 s for parameter calculation in a middle scale
IoT network.

Keywords: Internet of Things; system security monitoring; intelligent maintenance; lightweight
anomaly detection; mobile agent

1. Introduction

With the increasing scale and complexity of the Internet of Things (IoT), the security monitoring
task of the IoT has become more and more difficult. Firstly, the number of nodes in the IoT system is
huge and most of them are heterogeneous [1]. They use different operation systems, have different
computing capabilities and different security management policies, which pose greatly challenges
for IoT stable running and security monitoring. In general, we can keep the system under control
by clearing the vulnerabilities through patching, and by reducing the anomaly influence based on
suitable anomaly detection and control policies. But those methods are difficult to implement in IoT.
Because the IoT today contains thousands of heterogeneous nodes, the administrators cannot clear all
the vulnerabilities by patching with their limited time and energy. Secondly, most of the traditional
abnormal detection methods occupy too much local computing resources. To solve these challenges,

Sensors 2019, 19, 958; doi:10.3390/s19040958 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4874-2567
http://www.mdpi.com/1424-8220/19/4/958?type=check_update&version=1
http://dx.doi.org/10.3390/s19040958
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 958 2 of 19

we developed an intelligent maintenance and lightweight anomaly detection system for IoT. In the
newly designed system, not only is the detection performance improved, but the time complexity is
also reduced.

Firstly, we employ mobile agents to design the monitoring system and reduce the computational
complexity. A mobile agent is a combination of artificial intelligence technology, computer network
technology and distributed technology [2]. It can automatically transfer to other nodes to perform
the pre-set security monitoring task after it finishes the status checking task of one specific node. The
mobility is handled by the mobile agent running platform. The mobile agent can transfer to any nodes
installed in the running platform. The mobility is irrelevant with the operation systems only, and
only if the nodes are installed in the mobile agent running platform. The detailed migration path is
designed by the administrator. This new computing mechanism can effectively reduce the network
load, computational complexity, and improve the system stability and scalability [3]. The mobile
agents perform data collection and analysis using the local computing resource, which is different from
the traditional static agents and can greatly reduce the amount of data transferred from the terminal
nodes to the control server. Furthermore, when the system is expanded, we only need to design a new
mobile agent to perform the new tasks. The mobile agents are independent with each other and when
one mobile agent loses its function, it does not affect other mobile agents. In this paper, we adopted
the IBM Aglet platform [4] for system design and mobile agent running.

We install the mobile agent running platform to some of the nodes in the LAB network. We
also developed mobile agents according to the principle of the running platform to perform security
monitoring. To evaluate the performance of the developed methods, we deploy one popular botnet
captured by the botnet detection system set in our LAB to one of the nodes to generate node
level abnormal behavior patterns. We simulate a DDoS attack to generate system level abnormal
behavior patterns. Those abnormal behavior patterns are employed to evaluate the performance of the
developed methods.

We divided the monitoring tasks into the node level and system level according to the data used.
For the node level security monitoring, we designed a new method to reduce the computational
complexity from two aspects: the process of data collection and the process of anomaly detection.
Firstly, we design a regular interval waiting method to reduce the data collection frequency, which
means the data collected is the representative information of a certain time window. Therefore, the
amount of data collected is reduced while the computational complexity for the subsequent algorithm
is reduced. Secondly, we adopt the Principal Components Analysis (PCA) to extract the main features
from the data collected to reduce the data dimensions. And we employ the Density-based Spatial
Clustering of Applications with Noise (DBSCAN) clustering method to roughly separate the data
collected into normal instances and possible anomalies. In general, the normal points are clustered
into clusters with lots of points, and abnormal points are clustered into clusters with less points or
isolated as outliers. As a single outlier cannot accurately determine whether the node is in abnormal
status or not, we employ the continuous sliding time window to improve the detection accuracy.

For the system level security monitoring, we employ the number of packets used for
communication between different nodes as a parameter to perform anomaly detection. We employ the
sketch to calculate the parameter. The sketch is a kind of probabilistic dimension reduction technique,
whose computational complexity is constant and suitable for parameter calculation in a large scale
network. The items of the sketch at different time points reflect the user’s behavior and the dynamic
changing trends. As the user’s behavior has a kind of inertia, they will not change sharply within
a short time period, which indicates that the selected parameter will not change sharply in a short
time period, which can be employed to perform abnormal detection. In this paper, we employ the
EWMA (Exponentially Weighted Moving-Average) method to forecast the dynamic changing trends,
and select the confident up and low bounds as thresholds to perform anomaly detection.

Finally, we design different agents to perform the response policies to control the time of the
anomalies and reduce their influence and mitigate the risks. The response strategies are classified into

Sensors 2019, 19, 958 3 of 19

different categories according to the characteristics of the anomalies detected. The first kind is the
system maintenance agents. This kind of mobile agent transfers to the specific node and performs a
patch to reduce the virus infection probability. Those agents only transfer to the specific node which
holds vulnerabilities. The second one is those which can perform Anti-Virus. They transfer to the
specific node that infected the virus. The third one is the quarantine management mobile agent,
it transfers to the special node and performs different quarantine policies to control the abnormal
behavior while does not affect the normal behavior heavily.

In conclusion, the main contribution of this paper is summarized as follows:

1. The mobile agent is cross-platform, it can transfer to any of the nodes that are installed on the
mobile agent running platform. Most importantly, this new computing mechanism can not
only reduce the number of data collection agents, but also greatly reduce the amount of data
transferred from the terminal nodes to the control server.

2. We design lightweight anomaly mining methods for the node level and system level security
monitoring. The computational complexity of node level security monitoring method is reduced
by combining several methods, and that of the system level is constant and irrelevant with the
system scale.

The rest of this paper is organized as follows: Section 2 presents a simple lecture review. Section 3
presents the introduction of the Intelligent Maintenance and Lightweight Anomaly Detection System
(IMLADS). Section 4 presents the extracted features and the anomaly mining methods designed.
Performance evaluation results are given in Section 5. Conclusion and future work then follow in
Section 6.

2. Related Works

This paper mainly focuses on developing an intelligent maintenance and lightweight anomaly
detection system for IoT. The related work mainly includes the abnormal detection methods and the
intrusion detection systems, we simply summarize the related works as follows:

2.1. Anomaly Detection Methods

Abnormal detection methods build the users’ normal profiles from their historical activities and
mark the ones which deviate from the normal profiles as possible anomalies. There are many kinds of
data that can be used to build the normal behavior profiles. The authors in Ref. [5] discussed how to
use the key stroke biologic characteristics to build the profiles and perform identity authentication.
They verified that different users have different key stroke habits. The authors in Ref. [6] employed the
mouse data to perform user identification and detect abnormal behaviors. They presented a feasible
approach to extract the main behavior characteristics from the mouse data and found it is useful for
real-time and continuous identity authentication. By monitoring the characteristics of the node level
log, some special attacks such as adding backdoors or inserting Trojan horses to the system can be
detected [7,8]. The authors in Refs. [9,10] proposed an abnormal detection model using the subset of
the system calls, they verified that system calls can reflect a user’s behavior characteristics and can
be used for abnormal behavior detection. The authors in Refs. [11,12] selected five types of features,
including RAM usage, node network connections and usage of bandwidth etc., to perform anomaly
detection. The experimental results verified by their method have good performance in node level
anomaly detection. To select suitable features for abnormal detection, an intelligent algorithm with
feature selection and decision rules is proposed in Ref. [13], in which SVM is used to extract the most
important features. Although those methods have high detection accuracy, their deployment scale is
limited by the data collection mechanism.

Sensors 2019, 19, 958 4 of 19

2.2. Abnormal Detection System

The abnormal detection system is usually called the Intrusion Detection System (IDS), which is
simply classified into the HIDS (host based intrusion detection system) and NIDS (network based
intrusion system) according to the data used. James Anderson firstly proposed the concept of IDS in
1980, they mainly wanted to help the administrators review the audit trails easily by providing an
automatic tool [14]. Along with the development of network and IoT, there are many new security
issues [15], and many researchers begin to design and develop IDS suitable for large scale networks
and IoT [16,17]. But along with the development of system complexity, it is more and more difficult
to develop the real time anomaly detection system due to computational complexity. To face this
challenge, researchers employed the FPGA to accelerate the calculation and improve the detection
efficiency for online applications [18,19]. Although the intrusion detection system has been developed
for many years and there are many applications, there are still some open problems to be solved.
Firstly, the data collection and analysis methods usually occupy too much local computing resources,
which pose great challenges for real-time monitoring in a large scale IoT system. Secondly, most of the
abnormal detection methods used in the IDS are based on signature matching or machine learning, it
is very difficult for the administrator to find enough labeled data to train the model. Thus, there are
lots of false alarms, which greatly reduce their practicability in the actual network environments.

Enlightened by the related works, we develop an Intelligent Maintenance and Lightweight
Anomaly Detection System (IMLADS) for IoT system security management. In the newly designed
system, we employ the mobile agent to perform data collection and analysis, which can greatly reduce
the computational complexity. In addition, we develop lightweight anomaly detection methods to
further reduce the computational complexity.

3. Simple Introduction to IMLADS

3.1. Introduction to Mobile Agent

The mobile agent is a segment of a program or a soft sensor, which can migrate from one node to
another node autonomously in the heterogeneous network and interacts with the nodes on behalf of
the administrator to perform pre-set tasks. A mobile agent has the following characteristics [2]:

1. Autonomy: The most important characteristic of a mobile agent is that it can independently
complete the pre-set tasks on behalf of the administrator without external interference.

2. Mobility: The mobile agent is not only for a specific node, it can transfer to another node to
perform a pre-set task. The mobility is handled by the mobile agent running platform and
irrelevant with the node.

3. Adaptability: The mobile agent can change its running state according to the changes of the end
node’s environment.

4. Cross-platform: A mobile agent has cross-platform characteristics. A mobile agent running
platform provides middleware between agents and the node. A mobile agent can theoretically
run on nodes with any operation system.

3.2. Introduction to IMLADS

We designed a system named IMLADS to manage the security issues of our LAB network. The
network of our LAB can be treated as a typical IoT network. Figure 1 illustrates the architecture of the
building and the framework of IMLADS. In total there are about 40 rooms in our LAB with different
kind of end nodes, such as the sensors for temperature and PM 2.5 measurement, laptops, computers,
wireless access points and other devices related to research and daily lives. Those nodes distribute
in different rooms, the operation system used includes Windows 7, Windows 10, Windows server
2012, and Redhat Linux. They connected with each other through a network and the architecture of
the building is shown in Figure 1a. To keep our LAB network running normally and under control,

Sensors 2019, 19, 958 5 of 19

we designed a system named IMLADS and its framework is shown in Figure 1b. We firstly installed
the mobile running platform on some of the nodes, then the mobile agent can transfer to any nodes
installed on the running platform. The mobility is handled by the running platform and irrelevant to
the operation systems. We employ the mobile agents to perform data collection and analysis, after
finishing the task at one node, the mobile agent transfers to another node to perform the pre-set tasks.
The detailed migration path is designed by the administrator. This running mechanism can greatly
reduce the number of data collection and analysis agents in the monitored system. The data is collected
and analyzed using the local computing resource, which is different with the traditional centralization
system. We also designed lightweight anomaly detection methods for the node level and system level
security monitoring. According to the anomalies detected, we design suitable response policies to
reduce their influence. If one specific anomaly is reported, the corresponding response policy will be
applied automatically by the response agents in turn, keeping the network under control.

Sensors 2019, 19, x 5 of 19

node to perform the pre-set tasks. The detailed migration path is designed by the administrator.
This running mechanism can greatly reduce the number of data collection and analysis agents in the
monitored system. The data is collected and analyzed using the local computing resource, which is
different with the traditional centralization system. We also designed lightweight anomaly detection
methods for the node level and system level security monitoring. According to the anomalies
detected, we design suitable response policies to reduce their influence. If one specific anomaly is
reported, the corresponding response policy will be applied automatically by the response agents in
turn, keeping the network under control.

(a) (b)

Figure 1. Introduction to Intelligent Maintenance and Lightweight Anomaly Detection System
(IMLADS): (a) architecture of the building; (b) framework of IMLADS.

3.3. Operation Procedure of the IMLADS.

The newly developed system mainly contains four modules as shown in Figure 2. The first
module is the data collection module, it manages the data collection policy and process. The second
one is the anomaly detection module. It includes node level abnormal event detection and system
level abnormal event detection. The third one is the response module, it selects a suitable response
policy for the anomaly detected. The forth one is the performance evaluation module. It evaluates
whether the select policy can control the abnormal behavior and reduce its influence or not. Their
relationship is shown in Figure 2, where the black arrow indicates the data flow and the red arrow
indicates the feedback flow.

Data Collection
Module

Abnormal
behaviors Data storage

management

Interval
management

Time
Management

Feature
selection

Policy

Data Flow Feedback Flow

Anomaly Detection
Module

System level events

Node level events

Patching

Response Module

Anti-Virus

Traffic filter Access
control

Performance
Evaluation Module

Figure 2. Operation procedure of IMLADS.

Figure 1. Introduction to Intelligent Maintenance and Lightweight Anomaly Detection System
(IMLADS): (a) architecture of the building; (b) framework of IMLADS.

3.3. Operation Procedure of the IMLADS.

The newly developed system mainly contains four modules as shown in Figure 2. The first
module is the data collection module, it manages the data collection policy and process. The second
one is the anomaly detection module. It includes node level abnormal event detection and system
level abnormal event detection. The third one is the response module, it selects a suitable response
policy for the anomaly detected. The forth one is the performance evaluation module. It evaluates
whether the select policy can control the abnormal behavior and reduce its influence or not. Their
relationship is shown in Figure 2, where the black arrow indicates the data flow and the red arrow
indicates the feedback flow.

Sensors 2019, 19, 958 6 of 19

Sensors 2019, 19, x 5 of 19

node to perform the pre-set tasks. The detailed migration path is designed by the administrator.
This running mechanism can greatly reduce the number of data collection and analysis agents in the
monitored system. The data is collected and analyzed using the local computing resource, which is
different with the traditional centralization system. We also designed lightweight anomaly detection
methods for the node level and system level security monitoring. According to the anomalies
detected, we design suitable response policies to reduce their influence. If one specific anomaly is
reported, the corresponding response policy will be applied automatically by the response agents in
turn, keeping the network under control.

(a) (b)

Figure 1. Introduction to Intelligent Maintenance and Lightweight Anomaly Detection System
(IMLADS): (a) architecture of the building; (b) framework of IMLADS.

3.3. Operation Procedure of the IMLADS.

The newly developed system mainly contains four modules as shown in Figure 2. The first
module is the data collection module, it manages the data collection policy and process. The second
one is the anomaly detection module. It includes node level abnormal event detection and system
level abnormal event detection. The third one is the response module, it selects a suitable response
policy for the anomaly detected. The forth one is the performance evaluation module. It evaluates
whether the select policy can control the abnormal behavior and reduce its influence or not. Their
relationship is shown in Figure 2, where the black arrow indicates the data flow and the red arrow
indicates the feedback flow.

Data Collection
Module

Abnormal
behaviors Data storage

management

Interval
management

Time
Management

Feature
selection

Policy

Data Flow Feedback Flow

Anomaly Detection
Module

System level events

Node level events

Patching

Response Module

Anti-Virus

Traffic filter Access
control

Performance
Evaluation Module

Figure 2. Operation procedure of IMLADS. Figure 2. Operation procedure of IMLADS.

3.4. Advantages of IMLADS

According to the characteristics of mobile agents, the designed IMLADS has the following
advantages:

1. Reduce network load. Mobile agents can package the administrator’s requests and dispatch them
to the destination nodes, and then they perform the designed task using the local computing
resource. There is no raw data transferred among the nodes. The mobile agent only reports
the anomaly detection results to the control server. If there is no anomaly detected, the mobile
agents do not report and transfer to another node selected from the migration path to perform
the pre-set task. As the end nodes are working in normal status most of the time, there are only
several alarm records transferred from the node to the control server, thus we can greatly reduce
the amount of data transferred.

2. Overcome network delay. Real-time or online anomaly detection is very important for network
control and delay is unacceptable. The mobile agents transfer to the node directly to perform the
tasks designed by the administrators, which is different than the traditional methods, where the
node sends its data to the control server and waits for the analysis results. The mobile agent can
greatly reduce network latency.

3. Asynchronous and automatic execution. In a heterogeneous network, the nodes contact with
each other through the network. But the network service is not stable enough, especially for the
wireless nodes, which rely on expensive and fragile network connections. The mobile agents can
overcome those shortcomings. They embed the code of a specific monitoring task and once the
mobile agents are dispatched, they can operate asynchronously, automatically and independently.

4. Heterogeneity. The mobility is handled by the mobile running platform and irrelevant with the
operation systems. The designed system using mobile agents is suitable for performing security
monitoring tasks in the heterogeneous IoT network.

5. Robustness and fault-tolerance. Every running mobile agent can transfer to the other end node
automatically and independently. If one of the mobile agents loses its efficiency, it will not affect
other mobile agents. Thus, the system designed is more robust than that adopting static agents.

Sensors 2019, 19, 958 7 of 19

4. Feature Calculation and Analysis for Security Monitoring

In this section, we introduce the features selected to perform node level and system level security
monitoring. We also present the designed lightweight data analysis methods for the node level and
system level anomaly mining.

4.1. Node Level Feature Selection and Collection

4.1.1. Node Level Selected Features

The appropriate feature is important for the efficiency abnormal detection. In this paper, we
choose features including CPU usage, disk read and write, memory usage etc. which are shown in
Table 1. These eight features are selected based on the analysis and measurement results of abnormal
patterns [20]. For example, an external intrusion always leads to significant changes in disk read
and write, CPU or memory usages, and the virus always generate many illegal processes, or more
opened ports.

Table 1. Node-layer Features.

No. Features Simply Descriptions

1 CPU usage CPU resources occupied by running programs
2 Memory usage The memory occupied by processes
3 Disk read The bytes disk read from memory
4 Disk write The byte written into disk
5 Received packets The data byte transferred from remote server to the local node
6 Sent packets The data byte transferred from local node to the remote server
7 Process The list of running processes in the current time window
8 Port The list of open ports in the current time window

4.1.2. Collection Method Based on Regular Interval Waiting

During the data collection, agents occupy too much local computing resource due to its frequent
queries, resulting in a decline of the local system’s performance. In this paper, we design a data
collection method based on a regular interval waiting mechanism to reduce their influence on the
system performance. The detailed process is listed as follows:

Step 1: Set waiting time interval ∆t and the collection window deadline t0.
Step 2: Obtain the current system time t1, IP address, MAC and other features (such as CPU, memory

usage, disk read and write, packet flow, process and port).
Step 3: Store the data obtained in Step 2 for further analysis.
Step 4: If t1 > t0, then stop the collection process, otherwise increase the time interval ∆t, then turn to

Step 2. In this way, we can reduce the data collection frequency.

4.2. Node Level Anomaly Mining

We focus on developing a lightweight anomaly detection method which occupies the local
computing resource as little as possible. Here we combined several technologies to reduce the
computation complexity of node level data analysis.

4.2.1. Data Dimension Reduction Analysis

A high dimension of the collected data causes difficulties for the subsequent clustering algorithm,
so we adopt the PCA method to extract the main features and reduce the data dimension [21]. PCA is
often used to reduce the data dimension while maintaining the main data characteristics. The detailed
steps of PCA are listed as follows:

Sensors 2019, 19, 958 8 of 19

Step 1: Data standardization. Construct the n-dimensional random vectors x = (x1, x2, x3, . . . , xn),
where xi represents the data collected from the i-th node. The data is standardized using Equation (1):

Zij =
xij − xj

sj
, i = 1, 2, . . . , n; j = 1, 2, . . . , p (1)

where xij represents the j-th feature of the i-th node, xj represents the average value of j-th feature, sj

represents the variance of the j-th feature. The xj and sj can be obtained using the following equations:

xj =
∑n

i=1 xij

n
(2)

sj
2 =

∑n
i=1
(
xij − xj

)2

n− 1
(3)

Step 2: Calculate the correlation coefficient matrix R of the standardized matrix Z.

R =
[
rij
]

p×p =
ZTZ
n− 1

(4)

where rij represents the value of the i-th row and the j-th column of the correlation coefficient matrix R,
ZT represents the transpose matrix of standardized matrix Z obtained in Step 1.

Step 3: Calculate the eigenvalue using |R− λI| = 0. Where R represents the correlation coefficient

matrix obtained in Step 2, I represents the unit matrix. We select
∑m

j=1 λj

∑
p
j=1 λj

> 0.7 as the threshold to select

m. Then the eigenvector bi can be obtained using Rb = λib, i = 1, 2, . . . , m.
Step 4: Obtain the principal components using Equation (5).

Uij = Zi
Tbj, i = 1, 2, . . . , n; j = 1, 2, . . . , m (5)

where bj represents the value of the j-th eigenvector, Uij represents the i-th node’s data projection on
the j-th principal component.

4.2.2. Abnormal Candidates Detection using the DBSCAN method

After dimensionality reduction, we employ the DBSCAN method to classify the data into different
clusters. DBSCAN is a density-based cluster algorithm: given a set of points, it classifies the points
which are close to each other into one cluster [22]. In this paper, we use the DBSCAN method to
cluster the data into different clusters, the points in the same cluster are close with each other, and they
represent similar behavior patterns. As the nodes running under normal status have similar behavior
patterns and the anomalies always change the patterns, the normal behavior patterns are classified
into one cluster and the abnormal behaviors are classified into another cluster. Thus, the clustering
results can be used for abnormal detection. The detailed process of the DBSCAN algorithm is listed in
Algorithm 1.

Sensors 2019, 19, 958 9 of 19

Algorithm 1. DBSCAN Clustering Process

1. Begin
2. Input:
3. U = {p1,p2, . . . pn}, MinPoints,
4. Output:
5. C1,C2, . . . Ck//clusters descended by number of elements
6. M = {m1,m2, . . . mn}//set of noises
7. k = 0, l = 0
8. for (i = 1; i<= n; i ++)
9. if ∑ 1{q∈Ω|dist(q,pi)<ε} ≥ MinPoints
10. k = k + 1
11. else
12. if ∑ 1{q∈Ω|dist(q,pi)<ε} ≥ MinPoints
13. l = l+1
14. mk = pi
15. end

We assume Ci represents the cluster obtained by the DBSCAN method, and mj represents the
outliers. We sort C1, C2, . . . Cl and m1, m2, . . . mn in descending order according to the number of
data in the specific cluster, that is, each outlier is also regarded as a single cluster. Thus, all the clusters
satisfy Equation (6):

|C1| ≥ |C2| ≥. . . ≥ |Ck| ≥ |{m1}| ≥ |{m2}| ≥. . . ≥ |{mn}| (6)

Based on the actual network management experience, most points represent normal behavior
patterns and are classified into one clusters. Thus the number of points in normal clusters and that
of abnormal clusters are obviously different to each other. The clusters that represent the normal
behavior patterns are much bigger than those of the abnormal behaviors. Therefore, we can conclude
that Equation (7), where α represents the ratio of the normal points to the total points, and β represents
the points in abnormal cluster, is much less than the points in the normal cluster. We can classify the
clusters into different categories and obtain the abnormal point candidates using Equation (7).

|C1|+|C2|+...+|Cl|
∑|Ci|+∑|{m1}|

≥ α

|Cl|
|Cl+1|

≥ β

(7)

4.2.3. Detection Accuracy Improvement Based on Continuous Sliding Time Window

Beside the virus or attack which can change the node’s profiles, normal operations can also cause
sudden changes to the running parameters. Thus a single outlier cannot accurately determine whether
the node is in an abnormal status or not, so we cannot simply use the DBSCAN algorithm and regard
the outliers as abnormal behavior points. When the node is infected by a virus or under attack, there
will be persistent anomaly behavior patterns that last more than one time point. Thus we present an
anomaly detection accuracy improvement algorithm based on a continuous sliding time window, as
shown in Figure 3, where Ti represents the time point.

Sensors 2019, 19, 958 10 of 19

Sensors 2019, 19, x 9 of 19

behavior patterns are much bigger than those of the abnormal behaviors. Therefore, we can
conclude that Equation (7), where α represents the ratio of the normal points to the total points, and β represents the points in abnormal cluster, is much less than the points in the normal cluster. We
can classify the clusters into different categories and obtain the abnormal point candidates using
Equation (7).

⎩⎪⎨
⎪⎧|C | + |C | + ⋯ + |C |∑|C | + ∑| m | ≥ α

|C ||C | ≥ β (7)

4.2.3. Detection Accuracy Improvement Based on Continuous Sliding Time Window

Beside the virus or attack which can change the node’s profiles, normal operations can also
cause sudden changes to the running parameters. Thus a single outlier cannot accurately determine
whether the node is in an abnormal status or not, so we cannot simply use the DBSCAN algorithm
and regard the outliers as abnormal behavior points. When the node is infected by a virus or under
attack, there will be persistent anomaly behavior patterns that last more than one time point. Thus
we present an anomaly detection accuracy improvement algorithm based on a continuous sliding
time window, as shown in Figure 3, where T represents the time point.

...Ti-1 Ti Ti+1 Tj-1 Tj Tj+1

Time window

Figure 3. Detection Based on Sliding Time Window.

Within the time window △ t = t − t + 1, we use Equation (8) to judge whether an abnormal
event is detected. Where ω represents the number of abnormal points in △ t time window. If ω
exceeds a certain threshold θ, we regard that there is an anomaly detected, then A is set to 1,
otherwise A is set to 0. The threshold θ can be selected according to the experimental results.
This method based on a continuous sliding time window can avoid the influence caused by a single
abnormal point.

⎩⎪⎨
⎪⎧ω = 1△A = 1, ω t ≥ θ0, ω t < 𝜃 (8)

4.3. System-Level Feature Calculation and Anomaly Mining

4.3.1. System Level Features

The traffic packet is the basic information carrier for communication among different nodes, we
employ the statistical characteristics of the traffic packets to perform the system level security
monitoring, which has been widely used in the network based intrusion detection system [23,24].
The features that can be used include the number of packets, number of bytes or number of flows in
a specific time window. The basic assumption of this kind of method is that the user’s normal
behavior is stable and will not change sharply in a short time period, but when the abnormal
behavior appeared, those statistical features will change sharply. We can employ this kind of sharp
change to perform abnormal detection.

Figure 3. Detection Based on Sliding Time Window.

Within the time window ∆t = tj − ti + 1, we use Equation (8) to judge whether an abnormal event
is detected. Where ω represents the number of abnormal points in ∆t time window. If ω exceeds a
certain threshold θ, we regard that there is an anomaly detected, then A(t) is set to 1, otherwise A(t) is
set to 0. The threshold θ can be selected according to the experimental results. This method based on a
continuous sliding time window can avoid the influence caused by a single abnormal point.

ω =
t

∑
t−∆t

1{DBSCAN(ti)=−1}

A(t) =

{
1, ω(t) ≥ θ
0, ω(t) < θ

(8)

4.3. System-Level Feature Calculation and Anomaly Mining

4.3.1. System Level Features

The traffic packet is the basic information carrier for communication among different nodes,
we employ the statistical characteristics of the traffic packets to perform the system level security
monitoring, which has been widely used in the network based intrusion detection system [23,24]. The
features that can be used include the number of packets, number of bytes or number of flows in a
specific time window. The basic assumption of this kind of method is that the user’s normal behavior
is stable and will not change sharply in a short time period, but when the abnormal behavior appeared,
those statistical features will change sharply. We can employ this kind of sharp change to perform
abnormal detection.

In this paper, we employ the total number of packets of a specific node in a specific time window
as the feature to perform abnormal behavior detection. We employ the IP address to identify different
nodes and do not consider the dynamic host configuration protocol (DHCP)situation.

4.3.2. Method for Efficiency System Level Feature Calculation

To perform an efficiency system level feature calculation, we employ the sketch to calculate
the total number of packets in a specific time window. The sketch method has been widely used
for network measurements in the past several years, such as find heavy hitters, heavy changes and
estimating flow size distributions. It can also be used for network security monitoring combined with
other related methods [25–28].

In this paper, we employ sketch to calculate the defined feature for real-time and lightweight
monitoring. The sketch is denoted as B = (B1, . . . , BH), where Bi (1 ≤ i ≤ H) is the hash functions and
H is the number of different hash functions. Bi[j] (0 ≤ j ≤ v) associate with a hash function hi: {0, 1, . . . ,
n − 1}→{0, 1, . . . , mi − 1}, where n is the size of the space of IP address and mi is the length of hash
functions. The update process of sketch is shown in Figure 4. Initially, the bits in each Bi (1 ≤ i ≤ H)
are all set to zero. When a packet pi = (si, di) arrives, each Bi is updated by setting the bit in its column
hk(si) according to Equation (9).

T[i][hk(si)] = T[i][hk(si)] + 1, 1 ≤ i ≤ H (9)

Sensors 2019, 19, 958 11 of 19

Sensors 2019, 19, x 10 of 19

In this paper, we employ the total number of packets of a specific node in a specific time
window as the feature to perform abnormal behavior detection. We employ the IP address to
identify different nodes and do not consider the dynamic host configuration protocol
(DHCP)situation.

4.3.2. Method for Efficiency System Level Feature Calculation

To perform an efficiency system level feature calculation, we employ the sketch to calculate the
total number of packets in a specific time window. The sketch method has been widely used for
network measurements in the past several years, such as find heavy hitters, heavy changes and
estimating flow size distributions. It can also be used for network security monitoring combined
with other related methods [25–28].

In this paper, we employ sketch to calculate the defined feature for real-time and lightweight
monitoring. The sketch is denoted as B = (B1, …, BH), where Bi (1 ≤ i ≤ H) is the hash functions and H is
the number of different hash functions. Bi[j] (0 ≤j ≤ v) associate with a hash function hi:{0, 1, …, n −
1}→{0, 1, …, mi − 1}, where n is the size of the space of IP address and mi is the length of hash
functions. The update process of sketch is shown in Figure 4. Initially, the bits in each Bi (1≤i≤H) are
all set to zero. When a packet pi = (si, di) arrives, each Bi is updated by setting the bit in its column hk(si)
according to Equation (9).

[][()] [][()] 1k i k iT i h s T i h s= + , 1 i H≤ ≤ (9)

In the sketch, each item of the hash table is corresponding to one specific IP address. The value
of the item is the statistical feature of the specific IP address. By analyzing the dynamic changing
trends of the value at different time windows, we can achieve the goal of behavior dynamics
measurement and system security monitoring.

B 1

(s i , d i)

……

h H (s i)h 1 (s i)

1

v1

…

+1

B 2

1

v2

…

+1
B 3

1

v3

…

+1

v
B H

1

…

+1

Figure 4. Sketch update procedure.

After calculating the appropriate system level parameters, we need to use the appropriate
method to detect whether there are running anomalies. Research shows that the Exponentially
Weighted Moving Average (EWMA) control charts show excellent predictive performance under
various conditions [29], which can accurately predict and estimate the dynamic changing trends of
specific statistical characteristics. We can also use the EWMA control charts to select the up and low
bounds to perform anomaly detection. The abnormal behavior will generate a sudden change of
statistical characteristic, and the obtained statistical features will exceed the interval determined by
the up and low bounds. We employ this mechanism to perform abnormal behavior detection.

4.3.3. Simple introduction to EWMA

For a statistical series X(n), EWMA control charts is shown in Equation(10): 𝐸𝑥 = 𝜆𝑥 + 1 − 𝜆 𝐸𝑥 (10)

where λ is the forgetting factor, iEx is the forecasting value of ix , the bigger λ is, the more
effect of the recent actual value on the forecasting value. We can denote the forecast error of the

Figure 4. Sketch update procedure.

In the sketch, each item of the hash table is corresponding to one specific IP address. The value of
the item is the statistical feature of the specific IP address. By analyzing the dynamic changing trends
of the value at different time windows, we can achieve the goal of behavior dynamics measurement
and system security monitoring.

After calculating the appropriate system level parameters, we need to use the appropriate
method to detect whether there are running anomalies. Research shows that the Exponentially
Weighted Moving Average (EWMA) control charts show excellent predictive performance under
various conditions [29], which can accurately predict and estimate the dynamic changing trends of
specific statistical characteristics. We can also use the EWMA control charts to select the up and low
bounds to perform anomaly detection. The abnormal behavior will generate a sudden change of
statistical characteristic, and the obtained statistical features will exceed the interval determined by the
up and low bounds. We employ this mechanism to perform abnormal behavior detection.

4.3.3. Simple introduction to EWMA

For a statistical series X(n), EWMA control charts is shown in Equation (10):

Exi = λxi−1 + (1− λ)Exi−1 (10)

where λ is the forgetting factor, Exi is the forecasting value of xi, the bigger λ is, the more effect of
the recent actual value on the forecasting value. We can denote the forecast error of the model by
ei = xi−1 − Exi−1, based on the forecast error, we can calculate the up and low confidence bounds use
Equation (11):

LCLx(i) = Exi−1 − Lσe(i− 1)
UCLx(i) = Exi−1 + Lσe(i− 1)

σ2
e (i) = λ1e(i)2 + (1− λ1)σ

2
e (i− 1)

(11)

where 0 < λ1 < 1, it denotes that we can use the EWMA methods to obtain a more stable forecast
error. We can select L = 1.96 in Equation (11) to obtain a 97% confident interval, which means about
97% of the actual value should be in the confidence interval. If the observed value is out of the interval,
we claim that they are caused by anomalies.

5. Experiments and Performance Evaluations

5.1. Performance Evaluation for Node Level Abnormal Detection Method

In our LAB network, we select 10 nodes as examples and collect their data to verify the efficiency
of the developed methods. We also deployed one popular botnet captured by the botnet monitoring
system set in our LAB to generate the abnormal behavior patterns [30]. We randomly collected 20
datasets during the system running, each set contained more than 1000 elements, the normal data
accounted for 98%, and the rest were abnormal elements.

Sensors 2019, 19, 958 12 of 19

5.1.1. Dimension Reduction Efficiency Analysis

We employed the PCA algorithm to the data collected and obtained the correlation coefficient
matrix and its eigenvalues shown as follows:

E = [5.622 1.020 0.244 0.101 0.013 0.000]

Based on the eigenvalues obtained, we can obtain the coefficient matrix, which is shown as follows:

EigenMatrix =

0.000 −0.000 −0.007 −0.145 0.020 −0.989 −0.004
0.000 −0.001 0.854 0.303 −0.041 −0.053 0.417
−0.000 0.001 −0.465 0.691 −0.365 −0.107 0.401
0.000 −0.020 −0.008 −0.591 −0.705 0.071 0.386
0.000 −0.811 −0.137 −0.134 0.366 0.026 0.414
0.707 0.414 −0.133 −0.146 0.342 0.027 0.415
−0.707 0.414 −0.133 −0.146 0.342 0.027 0.415

The contribution rates of the each eigenvalue are shown in the Table 2. From the table, we can see

that the contribution rates of the first two largest eigenvalues are up to 94.9%, thus we can reduce the
data dimension to 2 while the main features of the dataset are still preserved.

Table 2. The Contribution rates of The Eigenvalues.

Eigenvalues Contribution Rates Cumulative Contribution Rates

5.622 80.3% 80.3%
1.020 14.6% 94.9%
0.244 3.5% 98.4%
0.101 1.4% 99.8%
0.013 0.2% 100%
0.000 0.0 100%

We set the MinPoints equals to 6 for DBSCAN, the Eps is estimated from the MinPoints (the
minimum value of the average distance between the core object and MinPoints nearest neighbors).
The experimental results of DBSCAN are shown in Table 3, which indicates that we can still get the
consistent cluster results if the original dataset is reduced to an appropriate dimension.

Table 3. The efficiency of Principal Components Analysis (PCA) Method.

Data Type # of Clusters # of ABNORMAL
Points

Percentage of
Difference

Original data 2 11 0.0%
Three dimension 2 11 0.0%
Two dimension 2 11 0.0%
One dimension 2 1 1%

Figure 5 displays the relationship between computational complexity and data dimension. The
red line and the black line represent the clustering execution time of the original seven dimensional
data and two dimension data in different datasets. It shows that the method is more efficient after
dimensionality reduction. When the dataset contains 1000 elements, the efficiency is improved by
128.8%. Combined with the information in Tables 2 and 3, and Figure 5, we can conclude that
the two-dimensions could effectively reduce the computational complexity of the clustering while
preserving the features of the original dataset.

Sensors 2019, 19, 958 13 of 19

Sensors 2019, 19, x 12 of 19

Table 3. The efficiency of Principal Components Analysis (PCA) Method.

Data Type # of Clusters # of ABNORMAL Points Percentage of Difference
Original data 2 11 0.0%

Three dimension 2 11 0.0%
Two dimension 2 11 0.0%
One dimension 2 1 1%

Figure 5 displays the relationship between computational complexity and data dimension. The
red line and the black line represent the clustering execution time of the original seven dimensional
data and two dimension data in different datasets. It shows that the method is more efficient after
dimensionality reduction. When the dataset contains 1000 elements, the efficiency is improved by
128.8%. Combined with the information in Tables 2 and 3, and Figure 5, we can conclude that the
two-dimensions could effectively reduce the computational complexity of the clustering while
preserving the features of the original dataset.

500 1000 1500 2000 2500 3000
0

5

10

15

20

Ti
m

e
(m

s)

Number of records in the dataset

 7 dimension
 2 dimension

Figure 5.The Relationship between Complexity and Data Dimension.

5.1.2. Abnormal Candidates Detection Use DBSCAN

We implement the cluster method to the data after dimensionality reduction. Figure 6 shows
the comparison of clustering results between the normal dataset and mixed dataset. The normal
dataset is formed by the normal behavior pattern records and the mixed dataset contains some of
the abnormal behavior patterns generated by botnet. As the figure shows, the normal state has two
kinds of patterns: (1) Silent pattern: there is no user use the system. (2) Normal behavior pattern: the
system under normal operations. When the virus infects the node, the clustering results will be
changed. The abnormal points gather in small clusters, or isolate as outliers. From the results we can
find that the β has little impact on detection results, so we set β to be the number of points in the
smallest cluster/(the maximum of the abnormal points in normal dataset + the number of most
possible abnormal points), which is the most appropriate value for β. After calculation, we set β to
be 5. However, α is more important for the detection accuracy. Based on multi-experimental results,
we select α as the ratio of the total elements in the first two largest clusters to the total number of
elements in the original dataset. We set α equal to 0.95 based on the definition and calculation.

Figure 5. The Relationship between Complexity and Data Dimension.

5.1.2. Abnormal Candidates Detection Use DBSCAN

We implement the cluster method to the data after dimensionality reduction. Figure 6 shows
the comparison of clustering results between the normal dataset and mixed dataset. The normal
dataset is formed by the normal behavior pattern records and the mixed dataset contains some of the
abnormal behavior patterns generated by botnet. As the figure shows, the normal state has two kinds
of patterns: (1) Silent pattern: there is no user use the system. (2) Normal behavior pattern: the system
under normal operations. When the virus infects the node, the clustering results will be changed. The
abnormal points gather in small clusters, or isolate as outliers. From the results we can find that the β
has little impact on detection results, so we set β to be the number of points in the smallest cluster/(the
maximum of the abnormal points in normal dataset + the number of most possible abnormal points),
which is the most appropriate value for β. After calculation, we set β to be 5. However, α is more
important for the detection accuracy. Based on multi-experimental results, we select α as the ratio of
the total elements in the first two largest clusters to the total number of elements in the original dataset.
We set α equal to 0.95 based on the definition and calculation.
Sensors 2019, 19, x 13 of 19

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8

10
Normal Cluter 1
Normal Cluter 2
Normal Cluter 3
Abnormal points

Abnormal StatesNormal States

Normal Cluter 1
Normal Cluter 2
Normal Cluter 3
Abnormal points

D
im

en
si

on
 2

Dimension 1

Di
m

en
sio

n
2

Dimension 1

Figure 6. The clustering results of different types of data.

In order to ensure real-time detection, the sliding window size is set to 10, so the range of ω in
equation 9 is 0 ≤ ω ≤ 10. We can obtain different experimental results with a different threshold θ,
and the analysis results are shown in Table 4. We use the detection rate, false positive rate and false
negative rate, which are widely used in the anomaly detection areas, to select suitable thresholds,
their definitions are given in Equations(12)–(14).

TNDetection Rat

e =
TP + TN

 (12)

FNFalse Positive Rate =
TP + TN

 (13)

FPFalse Negative Rate=
FP + TP

 (14)

where True Negatives (TN) denote the number of the normal events that are correctly classified as
normal events. False Positives (FP) denote the number of normal events that are wrongly classified
as anomalies, and False Negative (FN) represents the number of anomalies that are wrongly
classified as normal events.

With the increase of threshold θ, the false positive rate decreases, but the false negative rate
increases sharply. In practical experience, we firstly prefer to reduce the false positive rate.
According to the results in table 4, we can see that when the threshold is between [3, 4], the false
positive rate is reduced while the detection rate is up to 95%, so we select the threshold θ equal to 3.

Table 4. Results of different threshold.

Threshold Detection Rate False Positive Rate False Negative Rate
1 98.5% 3.2% 1.5%
2 97.2% 1.0% 2.8%
3 95.5% 0.7% 4.5%
4 94.1% 0.0% 5.9%
5 91.4% 0.0% 8.6%
6 86.5% 0.0% 13.5%
7 77.9% 0.0% 22.1%
8 62.1% 0.0% 37.9%
9 39.8% 0.0% 60.2%

10 14.6% 0.0% 85.4%

Figure 6. The clustering results of different types of data.

In order to ensure real-time detection, the sliding window size is set to 10, so the range ofω in
Equation (9) is 0 ≤ ω ≤ 10. We can obtain different experimental results with a different threshold θ,
and the analysis results are shown in Table 4. We use the detection rate, false positive rate and false

Sensors 2019, 19, 958 14 of 19

negative rate, which are widely used in the anomaly detection areas, to select suitable thresholds, their
definitions are given in Equations (12)–(14).

Detection Rate =
TN

TP + TN
(12)

False Positive Rate =
FN

TP + TN
(13)

False Negative Rate =
FP

FP + TP
(14)

where True Negatives (TN) denote the number of the normal events that are correctly classified as
normal events. False Positives (FP) denote the number of normal events that are wrongly classified as
anomalies, and False Negative (FN) represents the number of anomalies that are wrongly classified as
normal events.

Table 4. Results of different threshold.

Threshold Detection Rate False Positive Rate False Negative Rate

1 98.5% 3.2% 1.5%
2 97.2% 1.0% 2.8%
3 95.5% 0.7% 4.5%
4 94.1% 0.0% 5.9%
5 91.4% 0.0% 8.6%
6 86.5% 0.0% 13.5%
7 77.9% 0.0% 22.1%
8 62.1% 0.0% 37.9%
9 39.8% 0.0% 60.2%
10 14.6% 0.0% 85.4%

With the increase of threshold θ, the false positive rate decreases, but the false negative rate
increases sharply. In practical experience, we firstly prefer to reduce the false positive rate. According
to the results in Table 4, we can see that when the threshold is between [3, 4], the false positive rate is
reduced while the detection rate is up to 95%, so we select the threshold θ equal to 3.

We employ the methods based on signature matching and the methods only use clustering to
evaluate the performance of our methods. We select the anti-virus software as an example to represent
the methods based on signature matching. In this paper we select the Avast, a commonly and widely
used anti-virus software, to evaluate our methods [31]. We deploy the botnet selected from the
botnet monitoring system set in our LAB to one of the nodes. We run the botnet in different time
periods to generate the abnormal behavior patterns. In total we collected 20 datasets contained in
the abnormal behavior patterns and employed them to evaluate our method. The evaluation results
are shown in Table 5. From Table 5 we can get that Avast’s performance is disappointed, because
it cannot detect unknown anomaly events. It needs to update its signature library frequently to
detect newly appeared anomalies. But the botnet used in this paper is captured based on its behavior
characteristics. Its signature is not in Avast’s signature library. Thus, Avast cannot detect the botnet
and has poor performance. The evaluation results show that our method outperforms the methods
based on signature matching.

Table 5. The comparison between IMLADS and Avast.

Algorithm Detection Rate

IMLADS 95.5%
Avast 0.0%

Sensors 2019, 19, 958 15 of 19

In addition, we also compared the false positive rate and false negative rate with the method only
using DBSCAN. The results are shown in Table 6. They show that the IMLADS has better performance
compared with the method only using DBSCAN, the false positive rate has a great reduction.

Table 6. The comparison between IMLADS and DBSCAN.

Algorithm False Positive Rate False Negative Rate

IMLADS 4.5% 0.7%
DBSCAN 3.1% 42.9%

5.2. Performance Evaluation for Network Level Abnormal Detection Method

5.2.1. Performance Evaluation of EWMA Method

In sketch, each item of a specific hash function can be tread as the statistical features of each IP
address, if there are new packets for a specific node, we need to update its corresponding value of the
specific hash function. With time dynamic changing, we obtain the feature dynamic changing trends
of the specific IP address by analyzing the specific item values at different time points. Firstly, we
select four IP addresses to analyze their feature dynamic changing trends, and the results are shown
in Figure 7. In the figure, the item (1, 354) means the item 354 of the first hash function. The P-value
means the forecast values of the statistical features, the A-value means the actual of the statistical
features, and the U-bound means the up bound of the confident interval. The X-axis is the time points
and the interval is one minute, the Y-axis is the value of the statistical features. From the results we can
find that the user’s behavior is dynamic changing and different IP addresses have different dynamic
changing trends. The EWMA methods can well forecast the dynamic changing trends.Sensors 2019, 19, x 15 of 19

Figure 7. Results of different end nodes.

To verify the efficiency of the proposed methods, we injected some abnormal traffic patterns
(we simulate the behavior patterns of the DDoS attack with different strength, in this way we can
generate the traffic patterns include different abnormal behavior proportions) into the raw traffic
captured at different time points. Here we totally injected the abnormal traffic packets at three
different time points and the source IP addresses are 125.39.156.* (the last segments is anonymized),
the detailed injection time points are the 14th, 31st, and 50th monitoring time points. Firstly, we
analyzed the total number of traffic packets of the total end nodes, and the analysis results are
shown in Figure 8, where the L-value means the low bound of the confident interval. From the
analysis results we can find that there are no abnormal changing trends in the total number of
packets, which means there are too many normal traffic packets, and when there are some small
number of abnormal traffic packets, we cannot find them through analyzing the features of all the
nodes.

Figure 8. Feature changing trends of all the nodes.

To detect those slight anomalies, we must analyze the dynamic changing trends of specific
nodes, or each item of the hash function. After analysis, we can find there are some abnormalities at
the mentioned three time points in (1, 968), (2, 606), (3, 626) and (4, 613), where the first number
means different hash functions and the second means the detailed items. The analysis results are

Figure 7. Results of different end nodes.

To verify the efficiency of the proposed methods, we injected some abnormal traffic patterns (we
simulate the behavior patterns of the DDoS attack with different strength, in this way we can generate
the traffic patterns include different abnormal behavior proportions) into the raw traffic captured at
different time points. Here we totally injected the abnormal traffic packets at three different time points
and the source IP addresses are 125.39.156.* (the last segments is anonymized), the detailed injection
time points are the 14th, 31st, and 50th monitoring time points. Firstly, we analyzed the total number
of traffic packets of the total end nodes, and the analysis results are shown in Figure 8, where the
L-value means the low bound of the confident interval. From the analysis results we can find that
there are no abnormal changing trends in the total number of packets, which means there are too many

Sensors 2019, 19, 958 16 of 19

normal traffic packets, and when there are some small number of abnormal traffic packets, we cannot
find them through analyzing the features of all the nodes.

Sensors 2019, 19, x 15 of 19

Figure 7. Results of different end nodes.

To verify the efficiency of the proposed methods, we injected some abnormal traffic patterns
(we simulate the behavior patterns of the DDoS attack with different strength, in this way we can
generate the traffic patterns include different abnormal behavior proportions) into the raw traffic
captured at different time points. Here we totally injected the abnormal traffic packets at three
different time points and the source IP addresses are 125.39.156.* (the last segments is anonymized),
the detailed injection time points are the 14th, 31st, and 50th monitoring time points. Firstly, we
analyzed the total number of traffic packets of the total end nodes, and the analysis results are
shown in Figure 8, where the L-value means the low bound of the confident interval. From the
analysis results we can find that there are no abnormal changing trends in the total number of
packets, which means there are too many normal traffic packets, and when there are some small
number of abnormal traffic packets, we cannot find them through analyzing the features of all the
nodes.

Figure 8. Feature changing trends of all the nodes.

To detect those slight anomalies, we must analyze the dynamic changing trends of specific
nodes, or each item of the hash function. After analysis, we can find there are some abnormalities at
the mentioned three time points in (1, 968), (2, 606), (3, 626) and (4, 613), where the first number
means different hash functions and the second means the detailed items. The analysis results are

Figure 8. Feature changing trends of all the nodes.

To detect those slight anomalies, we must analyze the dynamic changing trends of specific nodes,
or each item of the hash function. After analysis, we can find there are some abnormalities at the
mentioned three time points in (1, 968), (2, 606), (3, 626) and (4, 613), where the first number means
different hash functions and the second means the detailed items. The analysis results are shown in
Figure 9. As the figure shows, the proposed methods can detect the slight abnormal behaviors. We can
also analyze the characteristics of the hash function and obtain the corresponding IP addresses which
caused the anomalies for abnormal control.

Sensors 2019, 19, x 16 of 19

shown in Figure 9. As the figure shows, the proposed methods can detect the slight abnormal
behaviors. We can also analyze the characteristics of the hash function and obtain the corresponding
IP addresses which caused the anomalies for abnormal control.

Figure 9. Changing trends of abnormal items.

5.2.2. Method Sensitivity Analysis

As mentioned above, our methods can be used to detect the anomalies that only cause slight
abnormal changes in the traffic patterns. We analyze the sensitivity of the proposed methods, which
is defined as the number of abnormal IP addresses detected by the algorithm/the total number of
abnormal IP addresses. The sensitivity is bigger and the partition of the abnormal IP addresses is
bigger, which indicates that the corresponding method only can detect the anomalies after their
wider propagation. If the proposed method can achieve a better performance with a small
sensitivity, it can find the abnormal behaviors at their early ages. We can control the abnormal
behaviors and reduce their influence on the system’s normal running. The detailed analysis results
are shown in Table 7. As the table shows, the developed methods can achieve a detection accuracy
up to 91.5% with 0.5% sensitivity. Therefore, the proposed method is very effective for
low-sensitivity abnormal detection, and can detect the abnormal behaviors at their early age, which
is very important for system security management.

Table 7. Detection results of the different Sensitivities.

No. Sensitivity Level Efficiency
1 0.1% 76.8%
2 0.3% 88.2%
3 0.5% 91.5%
4 1.0% 93.8%
5 3.0% 94.8%
6 5.0% 94.9%

5.3. Response Policy Design

To control the anomalies efficiently, we divided the anomalies into different categories based
on their characteristics, and then we design different agents to perform the response and control
policies for different kinds of abnormal behavior.

Firstly, for the system intelligent maintenance, we design a mobile agent that is responsible for
vulnerability patching. This mobile agent transfers among different end nodes. When it finds a

Figure 9. Changing trends of abnormal items.

5.2.2. Method Sensitivity Analysis

As mentioned above, our methods can be used to detect the anomalies that only cause slight
abnormal changes in the traffic patterns. We analyze the sensitivity of the proposed methods, which
is defined as the number of abnormal IP addresses detected by the algorithm/the total number of
abnormal IP addresses. The sensitivity is bigger and the partition of the abnormal IP addresses is
bigger, which indicates that the corresponding method only can detect the anomalies after their wider

Sensors 2019, 19, 958 17 of 19

propagation. If the proposed method can achieve a better performance with a small sensitivity, it
can find the abnormal behaviors at their early ages. We can control the abnormal behaviors and
reduce their influence on the system’s normal running. The detailed analysis results are shown in
Table 7. As the table shows, the developed methods can achieve a detection accuracy up to 91.5%
with 0.5% sensitivity. Therefore, the proposed method is very effective for low-sensitivity abnormal
detection, and can detect the abnormal behaviors at their early age, which is very important for system
security management.

Table 7. Detection results of the different Sensitivities.

No. Sensitivity Level Efficiency

1 0.1% 76.8%
2 0.3% 88.2%
3 0.5% 91.5%
4 1.0% 93.8%
5 3.0% 94.8%
6 5.0% 94.9%

5.3. Response Policy Design

To control the anomalies efficiently, we divided the anomalies into different categories based on
their characteristics, and then we design different agents to perform the response and control policies
for different kinds of abnormal behavior.

Firstly, for the system intelligent maintenance, we design a mobile agent that is responsible for
vulnerability patching. This mobile agent transfers among different end nodes. When it finds a specific
end node has a vulnerability, it connects to the server to query the patches and perform patching to
reduce the system threats. The second mobile agents are Anti-Virus agents. They transfer to specific
nodes that are infected with a virus and remove the virus from the node.

For the anomaly detected, we employ the dynamic quarantine method to remove the threats
under the principle of “assume guilty before proven innocent” [32]. We control the abnormal behavior
of the nodes by a soft dynamic quarantine method: the quarantine on a node is released after a fixed
quarantine time window, such as 120 s. After that, this node can be quarantined again if it is classified
into anomalies again. In order to not interfere with the normal activities too heavily, the quarantine
on a node is released automatically after a selected time window, even if it has not been inspected by
security mangers.

Finally, for some important end nodes in the monitored system, if they are classified as anomalies,
we perform firm quarantine directly and inform the administrator to check their running status
immediately. In this way, we can keep the important parts of the system in normal status.

6. Conclusions

This paper proposed an IMLADS for security monitoring of IoT. We employ mobile agents
to design the monitoring system, which can greatly reduce the computational complexity and
improve system stability and scalability. We also design lightweight anomaly detection methods
that can perform anomaly mining with limited local computing resources. For the node level security
monitoring, we employ PCA to reduce the data dimensionality, and then employ the clustering and
sliding time window model to mine the anomalies. For system level security monitoring, we employ
the sketch method to calculate the statistical features quickly. The complexity of the method using
sketch is constant and irrelevant with the system scale. We employ the EWMA method to perform
dynamic changing trends analysis and the experimental results verify that the developed methods
can detect slight anomalies. We also design different agents to perform response policies for different
kind of anomalies. The response agents designed cannot only perform system maintenance, but also

Sensors 2019, 19, 958 18 of 19

control the abnormal behavior efficiently. The experimental results based on the platform constructed
verify the efficiency and accuracy of the developed methods.

Author Contributions: The individual contributions of authors are as follows. T.Q. initiated the research and
designed the experiments, B.W. performed the experiments. The experimental results analysis and performance
discussion were performed by T.Q., B.W., R.C. and L.W., The paper was written by T.Q. and revised by Z.Q.

Funding: The research presented in this paper is supported in part by the National Natural Science Foundation of
China (61772411, 61672026, 61602370), SZSTI under Project JCYJ20170816100819428, Natural Science Foundation
of Shaanxi Province (2016JM6040) and Fundamental Research Funds for the central university.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, S.; Xu, L.D.; Zhao, S. The Internet of Things: A Survey; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 2015.

2. Mihailescu, P. MAE: A Mobile Agent Environment for Resource Limited Devices. Available online: https:
//www.monash.edu/library/researchers/repository (accessed on 1 October 2017).

3. Zulkarnain, Z.A.; Hanapi, Z.M.; Subramaniam, S. A Spawn Mobile Agent Itinerary Planning Approach for
Energy-Efficient Data Gathering in Wireless Sensor Networks. Sensors 2017, 17, 1280. [CrossRef]

4. IBM Aglets Software Development Kit—Home Page. Available online: http://web.media.mit.edu/
~{}stefanm/ibm/AgletsHomePage/index_new4.html (accessed on 1 October 2015).

5. Obaidat, S.; Venkata, P.; Saritha, V. Advances in Key Stroke Dynamics-Based Security Schemes. In
Biometric-Based Physical and Cybersecurity Systems; Springer: Cham, Switzerland, 2019; pp. 165–187.

6. Cai, Z.; Shen, C.; Guan, X. Mitigating behavioral variability for mouse dynamics: A
dimensionality-reduction-based approach. IEEE Trans. Hum. Mach. Syst. 2014, 44, 244–255. [CrossRef]

7. Liu, Z.; Qin, T.; Guan, X.; Jiang, H.; Wang, C. An Integrated Method for Anomaly Detection from Massive
System Logs. IEEE Access 2018, 6, 30602–30611. [CrossRef]

8. Wang, Z.; Zhu, Y. A centralized HIDS framework for private cloud. In Proceedings of the 2017 18th
IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), Kanazawa, Japan, 26–28 June 2017; pp. 115–120.

9. Maske, S.A.; Parvat, T.J. Advanced anomaly intrusion detection technique for host based system using
system call patterns. In Proceedings of the International Conference on Inventive Computation Technologies,
Coimbatore, India, 26–27 August 2016.

10. Anandapriya, M.; Lakshmanan, B. Anomaly based host intrusion detection system using semantic based
system call patterns. In Proceedings of the 2015 IEEE 9th International Conference on Intelligent Systems
and Control (ISCO), Coimbatore, India, 9–10 January 2015; pp. 1–4.

11. Marteau, P.F. Sequence Covering for Efficient Host-Based Intrusion Detection. IEEE Trans. Inf. Forensics Secur.
2019, 14, 994–1006. [CrossRef]

12. Gao, C.; Li, Z. Discovering host anomalies in multi-source information. In Proceedings of the International
Conference on Multimedia Information Networking and Security (MINES’09), Wuhan, China, 18–20
November 2009; Volume 2, pp. 358–361.

13. Lin, S.W.; Ying, K.C.; Lee, C.Y. An intelligent algorithm with feature selection and decision rules applied to
anomaly intrusion detection. Appl. Soft Comput. 2012, 12, 3285–3290. [CrossRef]

14. Anderson, J.P. Computer Security Threat Monitoring and Surveillance; Technical Report; James, P., Ed.; Anderson
Company: Saint Paul, MN, USA, 1980.

15. Li, S.; Tryfonas, T.; Li, H. The Internet of Things: A security point of view. Internet Res. 2016, 26, 337–359.
[CrossRef]

16. Elhadj, B.; Thomas, W.; Walaa, H. A Critical Review of Practices and Challenges in Intrusion Detection
Systems for IoT: Towards Universal and Resilient Systems. IEEE Commun. Surv. Tutor. 2018, 20, 3496–3509.

17. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of
Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [CrossRef]

18. Viegas, E.; Santin, A.O.; Franca, A. Towards an energy-efficient anomaly-based intrusion detection engine
for embedded systems. IEEE Trans. Comput. 2017, 66, 163–177. [CrossRef]

https://www.monash.edu/library/researchers/repository
https://www.monash.edu/library/researchers/repository
http://dx.doi.org/10.3390/s17061280
http://web.media.mit.edu/~{}stefanm/ibm/AgletsHomePage/index_new4.html
http://web.media.mit.edu/~{}stefanm/ibm/AgletsHomePage/index_new4.html
http://dx.doi.org/10.1109/THMS.2014.2302371
http://dx.doi.org/10.1109/ACCESS.2018.2843336
http://dx.doi.org/10.1109/TIFS.2018.2868614
http://dx.doi.org/10.1016/j.asoc.2012.05.004
http://dx.doi.org/10.1108/IntR-07-2014-0173
http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.1109/TC.2016.2560839

Sensors 2019, 19, 958 19 of 19

19. De França, A.L.; Jasinski, R.P.; Pedroni, V.A.; Santin, A.O. Moving network protection from software to
hardware: An energy efficiency analysis. In Proceedings of the 2014 IEEE Computer Society Annual
Symposium on VLSI, Tampa, FL, USA, 9–11 July 2014; pp. 456–461.

20. Qiao, H.; Peng, J.; Feng, C.; Rozenblit, J.W. Behavior Analysis-Based Learning Framework for Host Level
Intrusion Detection. In Proceedings of the IEEE International Conference & Workshops on the Engineering
of Computer-Based Systems, Tucson, AZ, USA, 26–29 March 2007; IEEE Computer Society: Washington, DC,
USA, 2007.

21. Jolliffe, I. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 1986; Volume 87, pp. 41–64.
22. Ester, M.; Kriegel, H.P.; Xu, X. A density-based algorithm for discovering clusters a density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings of the International Conference
on Knowledge Discovery & Data Mining, Portland, OR, USA, 2–4 August 1996.

23. Giorgi, G.; Narduzzi, C. Detection of anomalous behaviors in networks from traffic measurements. IEEE
Trans. Instrum. Meas. 2008, 57, 2782–2791. [CrossRef]

24. Garg, A.; Maheshwari, P. PHAD: Packet header anomaly detection. In Proceedings of the International
Conference on Intelligent Systems & Control, Coimbatore, India, 7–8 January 2016.

25. Schweller, R.; Li, Z.; Chen, Y. Reversible sketches: Enabling monitoring and analysis over high-speed data
streams. IEEE/ACM Trans. Netw. 2007, 15, 1059–1072. [CrossRef]

26. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its
applications. In Latin American Symposium on Theoretical Informatic; Springer: Berlin/Heidelberg, Germany,
2004; pp. 29–38.

27. Huang, Q.; Lee, P. LD-Sketch: A distributed sketching design for accurate and scalable anomaly detection in
network data streams. In Proceedings of the 2014 IEEE INFOCOM, Toronto, ON, Canada, 27 April–2 May
2014.

28. Callegari, C.; Giordano, S.; Pagano, M. On the combined use of sketches and CUSUM for Anomaly
Detection. In Proceedings of the 2015 International Conference on Computing and Network Communications,
Trivandrum, India, 16–19 December 2015.

29. Bakdi, A.; Kouadri, A.; Bensmail, A. Fault detection and diagnosis in a cement rotary kiln using PCA with
EWMA-based adaptive threshold monitoring scheme. Control Eng. Pract. 2017, 66, 64–75. [CrossRef]

30. XJTU, Botnet Detection System. Available online: http://botwarden.xjtu.edu.cn (accessed on 1 October
2016).

31. Avast. Available online: https://www.avast.com/index.2016.10 (accessed on 1 October 2016).
32. Zou, C.C.; Gong, W.; Towsley, D. Worm propagation modeling and analysis under dynamic quarantine

defense. In Proceedings of the 2003 ACM Workshop on Rapid Malcode, Washington, DC, USA, 27 October
2003; pp. 51–60.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIM.2008.926046
http://dx.doi.org/10.1109/TNET.2007.896150
http://dx.doi.org/10.1016/j.conengprac.2017.06.003
http://botwarden.xjtu.edu.cn
https://www.avast.com/index. 2016.10
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Anomaly Detection Methods
	Abnormal Detection System

	Simple Introduction to IMLADS
	Introduction to Mobile Agent
	Introduction to IMLADS
	Operation Procedure of the IMLADS.
	Advantages of IMLADS

	Feature Calculation and Analysis for Security Monitoring
	Node Level Feature Selection and Collection
	Node Level Selected Features
	Collection Method Based on Regular Interval Waiting

	Node Level Anomaly Mining
	Data Dimension Reduction Analysis
	Abnormal Candidates Detection using the DBSCAN method
	Detection Accuracy Improvement Based on Continuous Sliding Time Window

	System-Level Feature Calculation and Anomaly Mining
	System Level Features
	Method for Efficiency System Level Feature Calculation
	Simple introduction to EWMA

	Experiments and Performance Evaluations
	Performance Evaluation for Node Level Abnormal Detection Method
	Dimension Reduction Efficiency Analysis
	Abnormal Candidates Detection Use DBSCAN

	Performance Evaluation for Network Level Abnormal Detection Method
	Performance Evaluation of EWMA Method
	Method Sensitivity Analysis

	Response Policy Design

	Conclusions
	References

