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Abstract: Human injuries and casualties at entertaining, religious, or political crowd events often
occur due to the lack of proper crowd safety management. For instance, for a large scale moving
crowd, a minor accident can create a panic for the people to start stampede. Although many smart
video surveillance tools, inspired by the recent advanced artificial intelligence (AI) technology and
machine learning (ML) algorithms, enable object detection and identification, it is still challenging to
predict the crowd mobility in real-time for preventing potential disasters. In this paper, we propose
an intelligent crowd engineering platform using mobility characterization and analytics named
ICE-MoCha. ICE-MoCha is to assist safety management for mobile crowd events by predicting
and thus helping to prevent potential disasters through real-time radio frequency (RF) data
characterization and analysis. The existing video surveillance based approaches lack scalability
thus have limitations in its capability for wide open areas of crowd events. Via effectively integrating
RF signal analysis, our approach can enhance safety management for mobile crowd. We particularly
tackle the problems of identification, speed, and direction detection for the mobile group, among
various crowd mobility characteristics. We then apply those group semantics to track the crowd
status and predict any potential accidents and disasters. Taking the advantages of power-efficiency,
cost-effectiveness, and ubiquitous availability, we specifically use and analyze a Bluetooth low energy
(BLE) signal. We have conducted experiments of ICE-MoCha in a real crowd event as well as
controlled indoor and outdoor lab environments. The results show the feasibility of ICE-MoCha
detecting the mobile crowd characteristics in real-time, indicating it can effectively help the crowd
management tasks to avoid potential crowd movement related incidents.

Keywords: crowd safety management; Bluetooth low energy (BLE); Internet of Things (IoT);
RSSI; mobility

1. Introduction

Due to the unprecedented scale and speed of urbanization, cities are facing the daunting task of
accommodating the urban dynamics. The concept of smart cities attracts city planners and researchers
as it facilitates many smart community services by combining cyber-physical systems and social entities
through the wireless, mobile, and intelligent information and communication technologies (ICT).
One of the critical service requirements of future cities is the safety management for citizens and
communities [1]. Specifically, the safety management during the densely populated events such as
religious, entertainment (such as sport and music), and political gatherings becomes more significant
as it happens more frequently and in large scales in modern cities. Unlike static crowd events where
a crowd is formed in a specific location, or when a crowd is moving from a location to another
(i.e., unidirectional), it requires more space (i.e., less density). If crowd mobility exhibits multiple
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non-unidirectional patterns, it would require even more space to be safe and is much harder to manage
or control [2,3] them. Risks of human casualties at mobile crowd events are more likely to occur
because small incidents at the crowd are enough to cause panic to the attendees to start hustling,
collapsing, trampling, and stampeding each other. Any inappropriate crowd management often results
in disastrous repercussions such as injuries and casualties [4]. Figure 1 shows many recent cases of
crowd disasters that cause human losses around the world. The community stakeholders need to
provide their best efforts to maintain the crowds properly.

Figure 1. Crowd caused disasters around the global [5].

The recent smart video surveillance inspired by the advanced artificial intelligence (AI)
technologies and machine learning (ML) algorithms enables a broad spectrum of promising safety
applications, including object detection and identification, behavior recognition and tracking,
and anomalous event detection [6,7]. However, video surveillance alone cannot identify and predict
particular crowd status. It cannot scale and lacks the capacity for providing an appropriate mobile
crowd safety management in real-time. For example, in Mecca, Saudi Arabia, during Hajj season,
groups of pilgrims were taking the opposite road direction to get to their destination faster. When the
crowd flow got clogged from the crowd flow from the opposite direction, it resulted in more than 2000
casualties. Although there were 5000 video surveillance points installed all around Mecca to monitor
the Hajj season [1], the accident was not able to be prevented in time. The image layer in Figure 2
shows a very high-density crowd that is located on a bridge. However, it does not reveal the group
identity and location within the crowd and their moving direction and speed.

Figure 2. Intelligent crowd engineering architecture.

In this paper, we propose an intelligent crowd engineering platform using mobility
characterization and analytics (ICE-MoCha). ICE-MoCha enhances safety management for a mobile
crowd events by predicting and preventing potential disasters through real-time radio frequency (RF)
data characterization and analytics. The motivation is to improve the safety management method for
the mobile crowd by filling up the scalability and capability gaps of the existing video surveillance
via tightly integrating RF signal analytics (Figure 2). It implements a wireless-based, efficient and a
scalable crowd/group tracking technology. Specifically, we exploit a tracking bracelet and monitoring
infrastructure as well as a couple of abnormality scenarios and prediction algorithms. ICE-MoCha uses
a Bluetooth low energy (BLE) [8] communication in this project as it is power-efficient, cost-effective,
and ubiquitous [9]. Among the many crowd mobility characteristics, by using passive BLE scanners,
we measure the number of beacons, the radio strength signals received (RSSI) value, and its variation
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pattern. Integrating the received beacon values, ICE-MoCha can identify the crowd density, the object
group location, and the flow direction and speed. ICE-MoCha applies them to group semantics to track
the crowd status and predict any potential accidents and disasters. For example, participant’s data
such as names, ID numbers, group ID, destination locations, contacts, and necessary health information
can be registered into the tracking bracelet. In case of an emergency, the data could be used to facilitate
help by the public safety personnel. By using proposed algorithms, it can predict a few potential
problems in the mobile crowd scenarios. It also detects speed among the moving groups as well as
identify a possible collision by measuring the flow density. The proposed monitoring approach is
explicitly designed for densely crowded environments. We have conducted various practical mobile
crowd tests in both indoor and outdoor environments under different crowd conditions from low to
high-density. The results show that by integrating the BLE data metrics, the system can identify the
crowd density, the object group location, and the flow direction and speed in real-time.

The paper structured in the following. First, we overview some recent existing works. Second,
we are explaining ICE-MoCha design including the approach’s design and scenarios. Next, we explain
the methodologies of our experiments. Then, we review and evaluate the results. Lastly, we conclud
our paper with final comments.

2. Related Work

Crowd monitoring and tracking topics are attracting the attention of researchers due to its
importance for urbanizing cities. There have been several recent crowd management studies that
address the issue of tracking the massive crowd using video cameras or wireless technologies.
In this section, we review the most related works in both video surveillance and radio frequency
RF-based tracking.

Video surveillance is one of the most common and traditional ways for safety and security
monitoring. Several papers addressed the issue of crowd density risks and proposed videos
surveillance to estimate the density or monitor the crowd [6,10]. However, video surveillance requires
manual data analysis; it cannot respond in real-time. In addition, it is not accurate to track and estimate
the high-density crowd using cameras because obstacles such as wall, tree and the human body
can block the camera’s vision from capturing objects [11]. Head detection using cameras is another
approach because the human head is the most visible part of the human body at a crowd from the
camera’s tower. Shami et al. [12] proposed an algorithm that detects atpeople’s heads in a crowd for
counting the density using convolutional neural network (CNN). However, the accuracy of capturing
the human heads can be affected in case if some pedestrians have umbrellas or small persons blocked
by large persons from the camera’s view. Bek et al. [4] proposed an approach to measure the crowd
density flow for congestion risk assessment. The study used a single camera tracking example without
taking into consideration that large crowds require more than one camera, so in case of multiple
cameras, they may have different measurements in tracking the moving crowd for risk assessment [13].
Alahi et al. [13] proposed unsupervised technique learning to match multiple camera single-view in
tracking pedestrians by estimating the distance between pair cameras. Matching the view of multiple
cameras to track pedestrians is a great effort. However, their work did not take into account object
navigating. For example, in the case of out-view objects during moving from one camera’s angle to
another or in the case of obstacles blocking a camera’s view of an object. Therefore, due to the accuracy
and capability limitation of the video surveillance approaches, it cannot manage crowd events alone.

RF-based tracking, such as Wi-Fi, is another method of crowd managing which has many papers
proposing solutions for crowd density estimation and tracking [14–16]. The authors in [14] used
coordinated indoor Wi-Fi routers to collect data between TX and RX and used an SVM model to
train the data to count the number of people in a room. The study in [15] attempts to localize people
at TT festival in Assen, Netherlands and improved accuracy by de-noising the collected Wi-Fi data.
Both studies focus on limited crowd characteristics. Nunes et al. [16] analyzed MAC addresses and
associated SSIDs to study the dynamism of tourists, but it is for a static posterior analysis rather
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than a real-time crowd management. Li et al. [17] proposed a framework to capture probe packets
sent by smart-phones and use it to monitor crowd density in the indoors. Also, they used RSSI to
indicate the closest sensor to smart-phones to collect data to reduce packet duplication. Our work is
different where we have focused on tracking crowd mobility indoor and outdoor environments using
multiple metrics such as RSSI, beacon count, and time-stamp. Also, our work uses bracelets instead
of smart-phones due to data privacy issues. Patil et al. [18] suggested Wi-Fi to track the number of
people at a massive event. They capture probe packets of attendees’ smart-phone Wi-Fi to estimate the
size of crowd. Their work is focused on estimating the number of attendees, while our work focuses
on tracking crowd mobility at the events. Unlike the above, we use BLE instead of Wi-Fi due to its low
power consumption, low cost, availability, flexibility in size, and wearable-friendly. RFID has been
one of the most common wireless technologies to identify and track objects with an active RFID tag.
Yamin et al. [19] used GPS equipped RFID tags connected to a centralized database to track pilgrims.
This method also applies to Al-Hashedi et al. who proposed using RFID connected to a data center to
track pilgrims during Hajj [20] and Mitchell et al., who also mentioned the possibilities of using RFID
along with smart-phones to track the pilgrims during Hajj [21]. In our work, we are using BLE instead
of RFID because the RFID system cannot support any communication based intelligent monitoring
approaches [22]. GPS is a satellite-based system that has been used for navigating and tracking objects
in outdoor environments. Blanke et al. [23] suggested using GPS for tracking crowd in large scale
areas, but GPS has limitation coverage for indoor environments event, in which it does not support
our study in this paper. BLE is low power wireless technology that has been used to connect smart
devices. There are a couple of papers used BLE in their proposed solutions. Basalamah et al. [24] used
an active mode Bluetooth Low Energy (BLE) tag. The beacon messages are scanned by smart-phones
(detectors). However, the active BLE tags consume the battery power quickly. It also increased the
chance of overhead and packet collisions at dense events. In facts, this approach decreased the data
accuracy since the people carried the smart-phones (detectors) within the crowd. In contrast, our
approach takes a passive mode tag that improves data accuracy, scalability, and power consumption.
Weppner et al. [25] used smart-phones to scan for other Bluetooth devices to estimate the crowd
density. However, this work did not provide any additional intelligent measurements for managing
the crowds. Also, their work mainly focused on assessing the static crowd density, while our work
tackles a mobile crowd to handle the crowd mobility and safety [26]. Alessandrini et al. [27] used RSSI
in Wi-Fi for localization in the crowd and to track the flow. We are using RSSI in BLE [28] as a tool
for localizing objects. Several papers studied RSSI in BLE for indoor localization. Wu et al. [11] used
the BLE RSSI captured by three signal sniffers to classify if people are in a queue during the crowd at
indoors. Our approach is different because we used BLE RSSI from the respond beacons, then we used
RSSI average and variation to detect the crowd density and mobility indoor and outdoor events.

3. ICE-MoCha Architecture

Mobile crowd management is one of the hardest tasks because predicting human behavior during
a crowded event is extremely difficult. In ICE-MoCha, we study the feasibility of using BLE beacon
signals from various BLE transmitters for tracking the mobile crowd status.

3.1. ICE-MoCha Layer

According to the crowd safety and risk analysis [29], understanding the impact of crowd density
(the number of people per square meter) for both a standing crowd and a mobile crowd is critical
for managing crowd safety. For example, to assess the efficiency of crowd movement, a capacity
of places, it needs to understand the relative risks of both standing crowd density and the moving
crowd density. In some case, if a standing crowd becomes mobile and a unidirectional crowd becomes
non-unidirectional, the planned capacity design fail. It can cause any unexpected disasters. Figure 3
illustrates the standing, unidirectional, and non-unidirectional density in people per square meter.
At low densities (i.e., one person per square meter), the mobile crowd is free-flowing and stable, and
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the standing crowd is safe and comfortable. As illustrated in Figure 4, when the crowd density (the
number of people per square meter) increases, the comfort level of the crowd decreases and flow speed
starts to decrease as people cannot take full paces forward. After a saturation point, crowd mobility
becomes constrained and accumulated, and the flow rates dramatically drop. For the crowd moving in
the same direction, when density becomes more than three people per square meter, the flow speed
starts to decrease, and when density becomes more than four people per square meter, the flow speed
drops to become a high-risk crowd. However, when the crowd moves randomly in different directions,
the flow speed decreases significantly, and the lower density and even at a density of 3 or 2.5 people
becomes a high-risk crowd. In a low-density case, a collision can be avoided by stopping the flows.
However, in a high-density case, when crowd force pushes people in the front forward, shock waves
began to ripple through the tightly packed mass, and it causes a crush and crowd disasters. The crowd
safety management should be able to predict the potential flow directions well before the crowd is
getting into a high-crowd condition.

Figure 3. Crowd density illustration.

Figure 4. Mobile crowd density vs. flows.

As shown in Figure 5 [7], using the advanced artificial intelligence (AI) technology and machine
learning (ML) algorithms, the intelligent video surveillance enables us to detect and track multiple
moving objects. However, it cannot scale to monitor various objects in a high-density crowd due
to the limitation of visual processing. Also, video surveillance cannot follow the moving objects if
obstacles or another human block them. It is hard to handle the hand-over from one camera angle to
another [13]. Furthermore, the video surveillance alone cannot identify and predict particular crowd
status such as group semantics. For example, it does not expose the group identity and location within
the crowd and their moving direction and speed. Hence it alone lacks the capacity of providing an
appropriate crowd safety management in real-time.
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Figure 5. Smart video surveillance.

ICE-MoCha enhances the safety management method for the mobile crowd by harnessing a BLE
signal data analytics layer over the existing video surveillance. Among the many crowd mobility
characteristics, by using a BLE bracelet and BLE scanners, ICE-MoCha measures the beacon counts,
the RSSI power, and its variation pattern. Although these metrics are used in various applications, their
behavior in a high-density is not well known. By integrating the parameters and application-specific
semantics over the video surveillance, ICE-MoCha can identify the crowd density, the object group
location, and the flow direction and speed in both indoor and outdoor environments. ICE-MoCha
also can predict any potential accidents and disasters. For example, participant’s data such as names,
ID numbers, group ID, destination locations, contacts, and necessary health information can be
registered into the tracking bracelet. By using group speed and direction detection algorithms,
ICE-MoCha can predict a potential collision in various mobile crowd scenarios.

3.2. ICE-MoCha Design

ICE-MoCha uses a Bluetooth low energy (BLE) communication. As illustrated in Table 1, BLE
is known to be more energy efficient than other wireless technologies such as classic Bluetooth and
Wi-Fi [30]. The coverage range of BLE, over 100 m, is as good as others. It is enough to cover the densely
populated crowd area. ICE-MoCha consists of the BLE tracker bracelets worn by a human, the BLE
scanners, and the scanning algorithms. Each BLE tracker bracelet has a unique identification-ID to
identify each bracelet.

Table 1. RF transmission approaches.

Protocol Range Mobility Deployment

BLE ≥100 m ≤5 Mph Ubiquitous, Low power usage, low association time

WiFi ≥100 m ≤5 Mph Ubiquitous, Low power usage, high association time

Cellular ≥10 Km ≥60 Mph Ubiquitous, Low power usage, high association time

3.2.1. BLE Scanning Approaches

In a wireless communication system, there are a couple of common messaging modes. In a
passive mode, a node does not send any periodic message but scans incoming messages. In an
active mode, a node periodically sends messages to indicate its existence. As illustrated in Figure 6,
the combination of these two modes are used between the BLE scanners and the pedestrians’ bracelets
(BLE trackers) to communicate the crowd states. A tuple of the BLE tracker mode and the BLE scanner
mode approaches including an active-active approach (AAA), an active-passive approach (APA),
a passive-active approach (PAA), and a passive-passive approach (PPA) were investigated to ensure
efficiency in power usage, increase the scalability in message communications, and improve the
accuracy in event detection.
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Figure 6. BLE Scanning Approaches.

• An active/active approach (AAA) has a better chance of capturing most of the pedestrians’
bracelets data because the BLE scanners point is sending a request and waiting for a response,
in the same time the pedestrians’ bracelets are on active mode, sending requests, and waiting for
responses. However, this will cause higher power consumption on both sides, which is one of
our significant concerns in improving battery consumption. That does not only increase battery
consumption, but it also increases the number of requests and responses causing overhead and
increasing the probabilities of data collisions.

• An active/passive approach (APA) is a passive scanning approach for the BLE scanners.
The pedestrians’ bracelets keep on sending their locations. The BLE scanners listen and respond
upon receiving messages. The pedestrians’ bracelets are always active, the power consumption
on the bracelet is one of the main concerns, and one of the primary research focus is to reduce the
power consumption on the pedestrians’ bracelets. Also, the number of messages is proportional to
the number of bracelets. Hence, for a densely populated environment, the approach may increase
the message overhead and cause a high chance for message collisions.

• A passive/active approach (PAA) is a BLE scanner driven approach. The BLE scanners are
sending polling or probing requests. The pedestrians’ bracelets are listening and responding
upon receiving the request messages. As the pedestrians’ bracelets are passive, the power on the
bracelet is efficiently utilized. Also, the number of messages is kept to a minimum as the bracelets
are responding upon the requests. As the control is in the BLE scanner side, the responding
messages from the bracelets can be efficiently controlled as well. The approach can decrease the
message overhead and maintain a smaller chance of message collisions.

• A Passive/Passive Approach (PPA) does not perform any active probing. Both the BLE scanners
and the pedestrians’ bracelets are on listening mode. Although this approach can save power
usage, it does not provide any meaningful information about the moving groups. A possible
option is if the control room can detect a low traffic situation (during the off-peak times) by using
other methods such as CCTV.

In a passive BLE scanner mode, BLE scanner does not perform any periodic active probing by
assuming that BLE tracker periodically sends beacon messages. However, if the BLE tracker bracelets
sends beacon messages periodically, the power consumption on each bracelet is one of the primary
concerns. Besides, the number of messages is proportional to the number of bracelets. Hence, in a
densely populated crowd, the passive BLE scanner approach can significantly increase the message
overhead and cause a high chance for message collisions. Meanwhile, in an active BLE scanner mode,
a BLE scanner periodically sends polling or probing requests. The BLE tracker bracelets are listening
and responding upon receiving a probe message. As the BLE tracker bracelets are in a listening mode
without periodically sending beacon messages, it can maintain its power consumption efficiently.
Besides, the number of beacon messages is kept to a minimum as the bracelets are responding only to
the requests. As the control is in the BLE scanner side, it can adequately control the number and period
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of beacons according to the size and density of the crowd. The approach can decrease the message
overhead and maintain a smaller chance of message collisions. ICE-MoCha uses a passive BLE tracker
mode and an active BLE scanner mode approach (PAA). An ICE-MoCha probing message includes a
sampling factor by indicating a replying pattern. For example, a BLE scanner specifies the BLE IDs
for a few specific groups. Using this methodology reduces the probabilities of collisions. It also helps
to decrease the power consumption of the BLE tracker bracelet because only the bracelet with the
specified ID will reply in response to the polling messages.

3.2.2. Crowd Detection Scenarios

Group speed and direction detection: Even if the crowd is moving in the same direction,
the moving speed can be different from one group to another. It may cause congestion and collision
by the fast-moving groups. For example, Figure 7 illustrates the scenario where a couple of groups
are walking in the same direction. However, a fast-moving group 1 in the back causes congestion
by taking up the front group 2. ICE-MoCha can detect the moving speed of each group from the
time-stamp and the distance from BLE scanners at point A to B. If the speed of each group can be
detected earlier, the system could predict any potential collision. Assuming the average walking
speed of a human is 3.1 mph (5 kph) [8], ICE-MoCha can identify the speed of each group and gives a
warning to the fast-moving groups or members. Furthermore, if group 2 is moving slower than the
average speed, the system can alert group 2 to speed up or give a slow down warning to group 1.
The BLE scanners also coordinate to detect the movement direction of each group. By comparing the
time-stamps of each groups’ passing position, ICE-MoCha can also detect the moving directions of
each group. For example, Figure 8 illustrates that a group 2 is moving from the BLE scanner point A to
point B. However, assuming that group 1 is supposed to move in an opposite direction according to the
schedule, ICE-MoCha can identify a potential wrong direction of group 1 (or a temporary backward
movement). The wrong movement shall be alerted to the group and other neighbor group as it may
result in a collision with upcoming group 2.

Figure 7. Group speed detection illustration.

Group density detection: ICE-MoCha can scan the density of each group within the monitoring
range and shares the information with the neighbor scanners in real-time. In practice, a crowd collision
(i.e., unexpected high density) often happens for various reasons. It can be due to the structure of the
road as well as human errors. For example, as illustrated in Figure 9, two lanes are merged into one
lane and various intersections mix flows into several directions. Also, shown in Figure 10, a group
of people in a crowd may be veering off an opposite lane (when it is available) instead of using the
slow and crowded path so that they can move faster. These cases can be identified by tracking the
density changes on each point. Both Case A and Case B illustrate scenarios where groups 1 and 2 are
merging into one lane due to the road design either merging lanes or intersection. BLE scanners can
detect both cases by checking the density distribution changes on a scanning point B. The density at
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the BLE scanner point B becomes higher than the density at the BLE scanner point A. Case C illustrates
a scenario where group 2 is, all of a sudden, changing its path in the middle of the road to veer off
the opposite lane. Case D is a similar scenario, but group 2 takes both lanes. BLE scanners can detect
Case C by checking the density distribution changes on a scanning point. At the BLE scanner point A,
the density near the scanner is high, but the far side is low. However, in the BLE scanner point B,
although the total density is the same, the density near the scanner becomes low and the far side
changes to high. BLE scanners can also detect Case D by checking the density changes. At the BLE
scanner point A, the density near the scanner is high, but the far side is low (like in Case C). However,
the density at the BLE scanner point B becomes higher than the density at the BLE scanner point A,
as well as the density near the scanner and the far side of the scanner, become comparable. The density
distribution can be measured by multiple scanners using the RSSI power and beacon counts (shown in
experimental results).

Figure 8. Wrong lane group detection via direction.

Figure 9. Lane merge detection via density.
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Figure 10. Wrong lane group detection via density.

3.3. ICE-MoCha Framework Deployment

Although ICE-MoCha has been designed as an RF-based surveillance layer along with the existing
video surveillance technologies, it can be deployed as a standalone safety management framework.
ICE-MoCha framework consists of three main hardware components including a BLE transmitter tag,
a BLE signal scanner, and an analytic server as well as various software components including
parameter integration and application-specific semantics creation algorithms. Firstly, a BLE transmitter
tag (i.e., a bracelet, sticker, necklace, shoe, etc.) is worn by the individual object to emit a simple
RF signal with its a unique identification (ID). Secondly, a BLE signal scanner (i.e., an infrastructure
placed nearby the event area) efficiently collects RF signals and relay them to a backend analytic server.
Thirdly, an analytic server runs various algorithms to request, store, analyze data, create information
to report alerts. Also, a BLE signal scanner runs an efficient signal collection algorithm instead of
passively scanning the incoming RF signals. For example, to avoid any potential signal collision, a BLE
scanner uses a sampling algorithm for its probe request. It can distribute the response patterns by
specifying BLE IDs for a few specific groups for a probe period so that only the BLE transmitter tag with
the specified ID will reply in response to the request. Among the many BLE signals, analytic server
algorithms use beacon counts, the RSSI power, and its variation pattern parameters. By integrating
those parameters and applying application-specific semantics, ICE-MoCha can identify the crowd
density, the object group location, and the flow direction and speed. ICE-MoCha also can predict
any potential accidents and disasters. For example, participant’s data such as names, ID numbers,
group ID, destination locations, contacts, and necessary health information can be registered into the
tracking bracelet. By using group speed and direction detection algorithms, ICE-MoCha can predict a
potential collision in various mobile crowd scenarios.

ICE-MoCha deployment can be configured differently from one event scenario to another because
each event has a different crowd characteristic. For instance, the type of crowd can be mainly static
or mobile as well as the location and environments can be indoor or outdoor. Also, the monitoring
duration can be occasional or regular. However, ICE-MoCha has initially been designed as a practical
and field usable safety management framework for Hajj [31]. Hajj is the Muslim pilgrimage to Mecca
that takes place in the last month of the Islamic calendar year. All Muslims are expected to make
this pilgrimage at least once during their lifetime. Usually, in addition to the native Saudi Arabians
who regularly go to Hajj, around two million Muslims from around the world gather in Mecca, Saudi
Arabia. The actual Hajj period lasts for five days. During the period, people move among multiple
locations including Mina, Mozdalifa, Arafat, and Jamarat (in addition to Mecca) that are a few miles
apart from one another [31]. Some people walk while others use public transportation to get to the
locations, but in most cases, they all end up walking because cars are not allowed during the most
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crowded times. Due to the lack of adequate crowd management methods, many serious incidents
including crowds that collide and children who go missing are not uncommon sights [32]. Often,
the identities of some of those casualties are not eventually discovered. Hence, they are buried in Saudi
Arabia. Furthermore, in trying to identify the victims, the government of Saudi Arabia has to do extra
work, which includes DNA testing that usually takes a very long time to process [33]. For example,
sharing DNA samples with other countries isn’t an easy task for Saudi Arabia. Besides, for the many
children who get lost during the Hajj, trying to find their group or family is an arduous manual process
considering the huge mobile population at the event.

After discussing with the government official of the Hajj event in Saudi Arabia for a potential
deployment method, we identified the necessary background information. The type of crowd is
mobile, the period of the event is five days, the environment is mostly outdoors, the crowds move
in the form of groups, not all of the attendees carry smart-phones, and if they have them, they will
use it for an emergency, and the age of pilgrimages vary from children to adults. Also, we identified
that the pilgrims’ or attendees’ information such as names, ID numbers, camp numbers and locations,
contacts, and necessary health information could be securely placed into the tracking bracelet during
the registration process. In case of an emergency, the data could be retrieved by the public safety
personnel to facilitate help such as looking for the group or camp for a lost child or identifying a
specific casualty. According to the information we have acquired, we prototyped an ICE-MoCha
framework for a Hajj event. We designed a disposable BLE transmitter that had a low cost (i.e., $1 to $2
for a BLE chip, battery lasted for ten days to make the total cost in a range from $3 to $10) with versatile
form-factors in design and size (i.e., harnessed as a sticker, bracelet, necklace, or shoe). As illustrated
in Figure 11, each BLE scanner periodically sends request messages to BLE transmitters with specified
tag IDs to reply. Collecting beacon counts, the RSSI power, and its variation pattern parameters from
the BLE transmitter tags, a BLE scanner conveys the data to an analytic server. By integrating those
data, the analytic server applied the ICE-MoCha algorithms to characterize the crowd density, the
object group location, and the flow direction and speed. In the case of any suspicious crowd movement
such as using the wrong direction, moving too fast, etc., the server sent a detailed alert message to
the situation control room to do the necessary action such as dispatching the local police officers and
the emergency medical technicians (EMTs). For example, if one group was moving in the opposite
direction on the road, the control room got a warning from the ICE-MoCha server. The control room
can check the situation to notify police officers who are near to the group location to guide the flow in
the correct direction. Besides, the information can also be used to predict any potential congestion and
suspicious movements that may cause future disasters. The control room authorities can revise their
safety management plans including additional infrastructure placement and policeman locations.

Figure 11. ICE-MoCha Deployment and Design.
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4. Evaluations

As ICE-MoCha is a mobile cyber-physical system in a densely populated environment,
the communication feasibility issue should be evaluated in a real environment [4]. Hence, we verify
how human object movements could affect the BLE signal in a crowded environment.

4.1. Experimental Setup

We conducted experiments at a couple of different settings. First, we experimented during one of
the largest events at UMKC called “Culture Night”, where around 1300 people from different countries
are presenting their cultures in a conference hall. The goal of this experiment was to study how
significantly interference and crowd density could affect ICE-MoCha. As the conducted experiments
were mainly for the feasibility analysis, we wanted to see if the BLE signal from a BLE transmitter
tag can indicate any crowd status. For the purpose, only one BLE transmitter within the crowd was
carrying a smart-phone with an application that advertises its BLE signal. Also, to explore multiple
scenarios during the event to establish a better understanding of crowd status. As illustrated in
Figure 12, a conference hall size was about 700 m2 (33 m * 21 m), and people area was about 370 m2

(26 m * 14 m). We posted a couple of BLE scanners on an opposite side placed at the height of 3 m.
The distance between the two BLE scanners was about 25 m. We also put another BLE scanner placed
at the height of 1 m next to the door. A moving human object walked around the hall in a circle.

Figure 12. Culture night indoor experiment.

Second, we conducted RSSI experiments both indoors and outdoors. As shown in Figure 13,
we placed a BLE transceiver at 2.75 m height and a BLE transmitter at 1 m height in 3 m apart.
We put human interference from none to three or four people near the BLE transmitter. We set up the
transceiver to scan for a minute each test, with a total of ten separate times for each test session.

Figure 13. Indoor and outdoor RSSI experiment setup.

As illustrated in Figure 14, we measured beacon count, RSSI power, and RSSI variation metrics to
detect crowd density, location, speed, and direction. We tested in both indoor and outdoor environment
with different scanner positions (1 m and 3 m) as the system settings. The workload parameter,
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in Figure 14, consists of a couple of sets. The crowd density parameters characterized in no crowd (NC),
medium crowd (MC), and high crowd (HC). For example, given a 370 m2 human area of the hall,
when there were 1000 people, it was about three people in 1 m2. We classified it as HC as it belonged
to the high-risk case for the free moving environment. In the RSSI experiment, the human effect
parameter consists of no human interference (NHI), single human interference (SHI), and multiple
human interference (MHI). As the RSSI testing environment was at 3 m distance, a few human-objects
can make a high crowd effect.

Figure 14. Experimental Settings.

4.2. Beacon Count Tests

Counting beacons for a given time to find a population seems to be a straightforward approach.
However, when there was a mass of crowds, the result may not be the same due to the collision
and interference.

Figure 15 presents the results of the BLE reception rate (i.e., received (R) percentage of sent (S)
beacons) for the different heights in both NC and HC environments. We setup the BLE transceiver
heights for one meter (low) and three meters (high), respectively. In general, it shows that the higher
crowd (HC) there were, the higher number of beacon messages were dropped. The result shows that
the message-receiving ratio in HC environment was about 50% less than that in NC environment.
Furthermore, the reception rate of the higher BLE detector (three meters) was about 31% higher than
that of the lower BLE detector (one meter). In this result, we can see that the efficient BLE detector
location (in height) is above every human height to avoid any signal absorption by the crowds.

Figure 15. BLE reception vs. scanner height in crowd.

Figure 16 shows the average received beacons per second (Bps). For the experiment, we configured
the BLE transmitter’s beacon advertising interval to 20 ms. Adding a random delay of 0–10 ms and a
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scan interval of 10 ms, a BLE scanner can get a beacon about every 40 ms, which means it received
around 24–25 Bps. The results show that in the NC environment the received beacons are around
23 Bps while in the HC environment it decreased to 13 Bps. The results indicate that human object
certainly had an impact on the received beacon count. The effect is proportional to the size of the crowd.

Figure 16. Beacon per second (Bps).

Figure 17, compares the results of beacon counts on two separate BLE scanners (posted in an
opposite side of a hall) for both NC and HC conditions while an object is moving in a circle as showing
in Figure 12. The HC result exhibits a pattern that the beacon count increased when a moving object
approached a specific BLE transceiver, while the beacon count decreased in the other BLE transceiver.
In addition to exposing the proximity of the moving object, the result also infers the moving speed
and direction (i.e., for two BLE transceivers, it will display approaching and going.) We observed that
pattern became evident when the crowd density increased. Meanwhile, the NC result shows that both
BLE transceivers received almost the same number of beacons regardless of a moving object location.
As a result, it indicates that when the environment is NC, object tracking is not possible. However,
receiving a similar amount of beacons on both BLE scanners and the beacon counts are more than HC
condition, we can observe that the crowd condition is at low risk.

Figure 17. Beacon counts for BLE scanners.
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4.3. RSSI Tests

In addition to beacon counting, we further measured a couple of BLE RSSI metrics including the
RSSI power and variation. In both indoor and outdoor environments, we tested under three workload
conditions including NHI, SHI, and MHI. The indoor test results in Figure 18 show that the average
RSSI power in NHI was stronger than both SHI and MHI, while there was no significant difference in
the signal power average between the SHI and MHI. On the other hand, the outdoor average RSSI
power results in Figure 19 show that NHI received stronger signal RSSI power than SHI, and SHI had
stronger signal RSSI power than MHI. As shown in Figure 20, the total indoor RSSI power of both SHI
and MHI is the same, while the total outdoor shows each NHI, SHI, and MHI RSSI powers show a
clear difference.

Figure 18. Indoor average RSSI.

Figure 19. Outdoor average RSSI.

Figure 20. Average RSSI comparison.
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In summary, both indoor and outdoor results indicate that they can identify any human
interference (i.e., NHI vs. non-NHI). However, the indoor case cannot discern the density level
difference (i.e., SHI vs. MHI). Unlike the indoor case, the outdoor case can distinguish the different
density levels. It indicates that the RSSI power metric alone can identify a coarse level of the human
interference, especially the indoor case.

We test a variation of the received RSSI power. We picked the maximum, and minimum RSSI
power values among the beacons received in a second (Vps), and used the difference as a variation
value. The indoor RSSI variation test results in Figure 21 show that the RSSI variation in NHI is stable
while the RSSI variation in other non-NHI (i.e., SHI and MHI) is randomly fluctuating. On the other
hand, the outdoor RSSI variation test results in Figure 22 show that the RSSI variation results in all
workloads (NHI, SHI, and MHI) unstably vibrating. As shown in Figure 23, the average indoor RSSI
variation values are stable in all workloads from 8.5 to 10 Vps. Although the average values were
similar, the variation values in both SHI and MHI are fluctuated while NHI variation was stable.
Meanwhile, the average outdoor RSSI variation values were much higher than the indoor variation
average values and are also different between NHI and non-NHI. The non-NHI values were similar
and higher than the NHI value. In summary, the indoor results indicate that they can identify any
human interference (i.e., NHI vs. non-NHI). However, the outdoor case cannot discern any density.
Hence, it indicates that the RSSI variation metric alone can identify a coarse level of indoor human
interference. For example, it can be used to check if there is a person in the room or not, but it not
possible to notice the crowd density.

Figure 21. Indoor RSSI variation.

Figure 22. Outdoor RSSI variation.
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Figure 23. RSSI variation Comparison (Indoor vs. Outdoor).

4.4. Discussion

The primary purpose of this study is to improve crowd safety management method through
real-time radio frequency (RF) to predict and prevent potential disasters. Our approach focused on
characterizing and analyzing the crowd mobility in speed, direction, and density through BLE beacon
count and RSSI power and variation. In summary, the findings from the experimental results include
the following: the BLE beacon count approach can be used to detect a location, direction and the speed
of an object during the crowd by coordinating multiple scanners. The RSSI power average can be
used to identify human interference outdoors, while RSSI variation can check any human intervention
indoors, but it cannot evaluate the density. Therefore, by integrating those metrics, ICE-MoCha can
identify the flow direction and speed, and the crowd density and object group location.

5. Conclusions

One of the critical services in smart cities is the safety management of urban communities.
However, it is very challenging to predict crowd clashes in real-time among the mobile crowds for
preventing any potential disaster. In this work, we designed, implemented, and tested ICE-MoCha
that enhances crowd mobility characterization through real-time BLE data analytics. The proposed
ICE-MoCha can enhance or complement video surveillance based approaches and enables crowd
management in a real-time and scalable manner using effective and efficient BLE signal analysis.

Among the crowd mobility characteristics, it identifies the crowd density, the object group location,
and the flow direction and speed by analyzing BLE beacon counts, the radio strength signals received
(RSSI) power, and its variation pattern. Addressing the scalability and capability issues of the smart
video surveillance by tightly integrating BLE signal analytics, our work translates the signals into
group semantics to track the crowd status and predict any potential accidents and disasters.

We have conducted various practical mobile crowd experiments in both indoor and outdoor
environments under different crowd movement scenarios. We demonstrated the feasibility that our
approach can effectively detect the direction, the location, the speed, and the density of the mobile
crowd in real-time. We believe it sheds lights on future crowd safety management systems where
more sophisticated crowd management functionalities could be enabled by augmenting with other
approaches in a complementary manner.
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