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Abstract: In this paper, we present a method to create a safe arithmetic that can be used to
obfuscate implementations that require operations over commutative groups. The method is based
on the structure of the endomorphisms of certain extensions of the original commutative group.
The endomorphisms of a commutative group are non-commutative (in general), thus we can use a
non-commutative group to emulate the arithmetic of a commutative one. The techniques presented
in this paper are very flexible and the programmer has a wide variety of options to obfuscate the
algorithms. The system can be parameterized using conjugations, thus it is possible to generate a
different arithmetic for each instance of the program with a change in the security parameters, even
in cases in which this number is huge (for example, in IoT applications). The security of this method
is based not only on the difficulty of the conjugacy search problem (in a harder version because only
partial information about the groups is known by the attacker), but also in a number of extra options
that can be chosen by the programmer. The paper explains the general method, analyzes its algebraic
properties and provides detailed examples based on the vector spaces over F2 and XOR operators.

Keywords: white box cryptology; group-based cryptology; non-commutative cryptology; code
obfuscation; IoT Security; fog computation; cloud computation

1. Introduction

The most traditional framework for cryptography is a pair of users, Alice and Bob, where Alice
wants to send a message m to Bob through a communication channel. Alice and Bob live in secure
bubbles, but the outside world is insecure and other users can be listening to the channel, therefore
they agree to two functions E and D such that D(E(m)) = m and instead of sending m, Alice sends
E(m). Bob knows the function D and can compute m = D(E(m)) but any listener through the insecure
channel would get E(m) and this information is useless without the function D. The functions E and
D can be parameterized by a value k (the key) such that the algorithms can be made public and, if the
value k is kept safe, the communication is secure.

This framework (the channel is insecure but the functions E and D are computed in a safe
environment) is not valid in many real life situations. Consider the following examples:

• A sensor network with multiple nodes in which an attacker could have full access to some of them
• A virus or an intruder getting valuable information from a running system
• Cloud or fog computations in which the environment is not completely safe due to malicious

nodes or vulnerabilities such as Meltdown, Spectre, etc.
• Content providers broadcasting encrypted data to users that could try to obtain decryption keys

to illegally distribute them to other users
• Computer games with limited licenses that could be manipulated by the users to obtain upgraded

versions for free
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As we can see in these examples, the sensitive information can be the data used in the computation
or even the algorithm itself. White box cryptography assumes that the attacker has full access to the
hardware and software, and even in that insecure environment, the obfuscated software would not
provide sensible information to the attacker.

To define clearly which information is available to the attacker and which design parameters are
not visible, we consider that an obfuscated implementation has public and private elements. The code
itself is one of these public elements. A system is considered safe if the private elements cannot be
(easily) recovered using the public information. Although all the techniques explained in this paper
can also be used to hide the algorithm, we consider the worst case in which the attacker knows the
algorithm that is implemented.

This case is usually considered in white box cryptography, for example safe implementations of
the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) have been a major
target in the development of white box cryptography.

One of the first proposals for DES, made by Chow et al. in [1], attracted great interest, although it
was almost immediately broken by Jacob et al. in [2] and Goubin et al. in [3]. Chow et al. also proposed
a white-box implementation for AES in [4], broken by Billet et al. in [5]. The algorithms for DES and
AES share a similar structure, they have several rounds with combinations of affine transformations,
XOR operators and S-boxes. A general attack over this kind of algorithms applied to cases different
from DES and AES was given by Michiels et al. in [6]. Another attack based on this structure was
given by Biryukov et al. in [7].

One standard technique used in white box cryptography when we have an addition is to spread
the information into pieces (called shares) that are combined using the addition and some hidden
linear transformations. For example, suppose that a vector v is represented by two vector v1 and
v2, and we have secret linear transformations e1 and e2 such that v = e1(v1) + e2(v2). The attacker
can see v1 and v2 but e1 and e2 remain secret. If w = e1(w1) + e2(w2) is the representation of another
vector, we know that v + w = e1(v1 + w1) + e2(v2 + w2), thus the program can compute additions
without revealing e1 and e2. The problem is that the combination of these techniques with nonlinear
transformations (S-boxes) can be analyzed to recover information.

A milestone in the history of white box cryptography was the WhibOx challenges that took place
in 2017 (see [8]). In this contest, the developers created white box implementations of the advanced
encryption standard (AES) following certain rules. The result was that the 94 challenges presented
were broken 877 times. All of them were broken, in many cases using known techniques including the
ones published in the previously mentioned examples. These kinds of breaks were done in a short
period of time. Only 21 required more than one day to be broken for the first time. In general, those
were the ones that required more special and unpublished attacks.

The second most resistant implementation on that contest is based on some of the ideas presented
in this paper, although this paper is not about that implementation because the method presented in
this paper is more sophisticated and it is not limited to the conditions of that contest. More details
about the challenge and the attack made to the first implementation can be seen in [9,10].

It is possible to consider several approaches to white-box implementations. One of them is to
consider an algorithm as a boolean circuit and implement methods for the basic boolean operators.
This is the idea presented in [10]. In this paper, we assume that the algorithm requires an obfuscated
arithmetic over a commutative group V. Vector spaces are commutative groups and they are our main
examples, but the theoretical construction is done in general. The role played by square matrices in the
case of vector spaces, is played by the endomorphisms e : V → V in the case of commutative groups.

To represent the elements, we combine endomorphisms and values in V, but instead of having
invisible operators ei and visible values vi, we have visible information related with the operators
ei and invisible values vi. There are many advantages in this new approach. First, we can have a
huge number of endomorphisms even in small cases, for example a vector space with 28 vectors has
282

= 264 matrices and we only need a small number of them to represent all the vectors, thus we have
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a lot of freedom to choose the ones to be used. The actual matrices need not be revealed, only how
they operate, and many subsets can have identical operation tables. Moving the representation from V
to the side operators is a kind of nonlinear transformation similar to a logarithm. This non-linearity
avoids the standard attacks based on linearity and new layers of security can be applied without risk.
The problem is that we cannot apply the linearity to compute the addition, thus we have to learn how
to add using this new representation. This can be done by introducing new operators that are different
from traditional ones. This new arithmetic is also an advantage because it can be parameterized by
choosing different subsets of transformations (something similar to having a free choice for the base
of the logarithms). The new operators also require smaller tables than the standard ones because
the growth of the tables is linear and not quadratic. Finally, the use of non-commutative subgroups
given by endomorphisms forces the attacker to solve the conjugacy search problem (CSP), which
is considered hard even for quantum computers; thus, systems based on non-commutative groups
can be considered as post-quantum cryptosystems. Several protocols and cryptosystems have been
developed in recent years based on non-commutative groups (see, for example, [11]).

This paper is structured as follows. After this Introduction, the theory is explained in two steps.
The main public and private elements of the theory are explained in Section 2. The second step is
given in Section 3, in which we show some mathematical properties of the theory that can be used
for an attacker to analyze the system and protections against them. The method is discussed in
Section 4. In that section, we include information about use cases and further applications, especially
to IoT. In Section 5, we show a big example with the most advanced features. The conclusions are in
Section 6. Section 7 has information about patents related with this research. Finally, the paper has
two appendices. Appendix A gives some basic mathematical terminology that is used in the paper.
Appendix B contains a small obfuscated implementation using the techniques explained in the paper,
written in full detail.

2. Private Arithmetic (Basic Version)

In this section, we describe the mathematical structure of an obfuscated implementation using
a private arithmetic. Cryptography and cryptanalysis are in many cases “cat-and-mouse” games, in
which the cryptographer tries to mislead the attacker by breaking the original rules and the attacker
also tries methods that were not originally considered by the cryptographer in order to analyze the
system and reveal the secret information.

The intention of this section is to give the definitions that explain the structure of the proposed
obfuscation in a logical way. However, these definitions and procedures can be made more flexible
to include some traps or difficulties to the attacker. Examples of these traps could be that not all the
elements of a group are used in actual computations and we can include some misbehavior in these
elements. In this example, we cannot say that A is a commutative group if there are two elements in A
that do not have a correct multiplication. These special cases are a nightmare for explanations and we
have decided to start with a basic version without tricks and we consider them in Section 3.

The objective of this theory is to obfuscate algorithms or data used in mathematical computations.
The computations take place in a commutative group V that is called the external commutative group.
This group is considered public.

The idea behind the technique that we explain is to use another commutative group M that is
called the internal commutative group to make the internal computations. This group is private and, in
fact, is not visible in the implementation. The operations in M are done using tables that do not provide
the usual group addition, but certain information that is used to compute other non-standard operators.

In this section, the relation between M and V is simple; we have a projection p : M→ V. This is a
surjective group homomorphism and every element v ∈ V is represented using values m ∈ M such
that p(m) = v. This relation is much more complex in the non-basic version given in Section 3.
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The tables and methods that let us compute with the elements of M are called internal arithmetic.
We call external arithmetic any computation that requires the actual value in the external group V and not
only the value over M. A private arithmetic is a combination of an internal and an external arithmetic.

A critical point in the program is a place at which the actual value in V has to be used
for the computation. For example, the input and the output of the program are critical points.
The computations that take place in between are called connected components. A more detailed
explanation about the connected components is provided in Section 2.10.

We decompose the analysis in two parts: first we analyze the internal arithmetic. This arithmetic
can be used for several implementations. The elements of the internal arithmetic are:

• Public:

– Public Group (G)
– Heading Spaces (X)
– G-structure of the heading spaces (G× X → X)
– Reduction Maps (r : X → Y)
– Dissolving Maps (D : X → Gn)

• Private:

– Internal Commutative Group (M)
– Correspondence between heading spaces and valid elements (πX)
– Extended Arithmetical Group (H oϕ G)
– Action of H oϕ G on M.
– Base points (B)

The second part is the elements that depend on the implementation and the group V (the external
arithmetic). Its elements are:

• Public:

– The external commutative group V
– The program
– Input Tables
– Output Table
– Tables for non-linear operators

• Private:

– Control values and deals
– Extra affine transformations

We have already mentioned the external commutative group V and the internal commutative
group M; the rest of the elements are analyzed in different subsections.

2.1. Public Group G (Public)

The arithmetic is ruled by a group G. This group is given up to isomorphism. Therefore, it is
possible to give it with its multiplication table or with any other representation that let us compute
with the elements of the group. The group G is in general non-commutative.

2.2. Extended Group H oϕ G (Private)

We select a second group H and a group homomorphism ϕ : G → Aut(H) to build the semi-direct
product of the groups, H oϕ G. The group G is public, but the extension of the group to H oϕ G is not.
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2.3. Representation of H oϕ G Using Endomorphisms of M (Private)

One of the most critical points in the security of the obfuscation is how the values of H oϕ G
operate over the elements of M. This requires a group homomorphism ψ : H oϕ G → Aut(M). This is
known in the literature as a representation of the group H oϕ G on M, but, in this paper, we use also the
word representation for other constructions, for example the representation of an element of V using
elements of M, or the representation of elements in M with other arithmetical expressions; therefore,
we use the more generic term action of H oϕ G on M, which is used when M has no additional
structure, but is valid in general.

The group G is a subgroup of H oϕ G, thus the action ψ also induces an action of G on M.
Given two actions ψ, ψ′ : H oϕ G → Aut(M), these are equivalent if there exists a group

automorphism t : M→ M such that ψ′(u) = t−1ψ(u)t for all u ∈ H oϕ G.
Equivalent actions generate different arithmetics using the same groups. Their similar structures

make them difficult to recognize for an attacker.

We next present an example of these kinds of constructions. Let M = F4
2 and h =

[ 1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

]
and

g =

[ 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
.

Let G be the group generated by the matrix g and H the group generated by h. In this case, G has
2 elements and H has 3. The group H has a nontrivial automorphism τ : H → H given by τ(h) = h−1

and one possible homomorphism ϕ : G → Aut(H) would be ϕ(gi) = τi. The semi-direct product
H oϕ G is a group of six elements and ψ : H oϕ G → Aut(M) is given using the matrices g and h that
we have defined previously.

The group Aut(M) is the group of invertible matrices 4× 4 over F2. This group has 20,160 elements
and, using invertible matrices t to generate other actions equivalent to ψ, we get 540 essentially different
actions of H oϕ G on M.

2.4. Heading Spaces (Public)

A heading space is a set X with an action G× X → X. It is not even necessary that the set X has
an additive structure; it can be any set that could be operated with the elements of G. We can have one
or more heading spaces.

In this paper, we see several examples of heading spaces. We can have an additional structure
on X, but it is not used; only the multiplication of the elements of G by the elements of X is relevant.
It is also possible to have a set X with some values that are not really used in the computation. If this
happens, we consider in this section that the real heading space is the subset of X given by the orbits
actually used in the computation with legitimate values.

It is always possible to have heading spaces for any number of orbits. If we want to have n
orbits, we can use the heading space X = G × {1, 2, · · · , n} with the action G × X → X given by
g · (g′, i) = (gg′, i) for all g, g′ ∈ G and all i ∈ {1, 2, · · · , n}. It is also possible to use any other set X
with an action for the group G.

Definition 1. A head is a pair (h, x) where x is in a heading space and h ∈ H. The value h is called the
H-modifier of the head. The elements in the program is represented using heads, but the only visible element is
the element x ∈ X. The H-modifier is known by the compiler or the programmer, but it is not visible during the
computation.

2.5. Correspondence between Heads and Elements of M (Private)

For every heading space X, we have a map πX : X → M such that πX(gx) = gπX(x) (a map
between G-gets with this property is called a G-map).
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We say that an element m ∈ M is represented by the head (h, x) if m = hπX(x). In this section, all
the elements of M should be representable by heads for any heading space X; therefore, πX : X → M
should be surjective.

To get this surjectivity, we have to analyze the orbits of M and get a subset of representatives,
M0 ⊆ M such that M = ∪m∈M0 Gm. For these elements m, we need to get values in X such that
πX(x) = m, but this cannot be done without some restrictions.

Let m be an element of M0 and suppose x ∈ X satisfies πX(x) = m. Let Gm = {g ∈ G : gm = m}
and Gx = {g ∈ G : gx = x} be the stabilizers of these elements. The condition πX(x) = m implies
that, for all g ∈ Gx, gπX(x) = πX(gx) = πX(x) = m, therefore g ∈ Gm. This proves that the element
x ∈ X that represents m should satisfy the condition for the stabilizers Gx ⊆ Gm. This is in fact the
only condition required.

If we use a heading space of the type G × {1, 2, · · · , n}, the values (1, i) always have a trivial
stabilizer G(1,i) = {1} and this is contained in any possible stabilizer Gum. In this case, we can pick any
index i to represent the elements of the orbits Gum without restriction.

2.6. Base Points (Private)

We fix a set with one or more elements B ⊆ M. They are called base points.

Definition 2. A link is a triple (h, g, b) ∈ H × G × B. The value h is called the H-modifier of the link.
The value hgb ∈ M is called the element represented by the link.

Elements in the program are represented using heads and links. In the case of links, the only
visible element in the program is the element g ∈ G; the values h and b are known only by the compiler
or the programmer.

Not all the elements of M need to be representable using a single link. In fact, we use multiple
links to represent the elements of M.

If we denote hGb = {hgb ∈ M : g ∈ G}, we represent the elements in M as a sum of elements
in the subsets hGb for h ∈ H and b ∈ B. Given a number of subsets, the elements of M that can be
written as the sum of elements in the chosen subsets is called a sumset. This problem is well studied in
additive number theory (see [12] for details), but, in our case, we have multiple solutions and a simple
check lets us find them.

2.7. Reduction Maps (Public)

Let X and Y be heading spaces. A reduction map r : X → Y is a map for which we can find h ∈ H
and b ∈ B such that

hπY(r(x)) = πX(x) + b

for all x ∈ X. The pair (b, h) is called the type of the reduction.
These maps can always be constructed because we can take any x ∈ X, compute h−1(πX(x)+ b) ∈

M and find a value y such that πY(y) = h−1(πX(x) + b). Any value y satisfying the condition can be
defined as r(x).

Let r : X → Y and s : Y → Z be two reduction maps with such that the type of r is (b, h) and the
type of s is (c, l). Then, we can make the composition of these reductions to have

h(lπZ(s(r(x)))) = h(πY(r(x)) + c) = hπY(r(x)) + hc = πX(x) + b + hc.

This proves that the composition sr is actually a reduction map with type (b + hc, hl).
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2.8. Dissolving Maps (Public)

A dissolving map for the heading space X with dimension d is a map

D : X → G× G× · · · × G = Gd D(x) = (D1(x), D2(x), · · · , Dd(x)).

This map has hidden values b1, b2, · · · , bd ∈ B and h1, h2, · · · , hd ∈ H such that, for all x ∈ X,

πX(x) = h1D1(x)b1 + h2D2(x)b2 + · · ·+ hdDd(x)bd.

The values bi and hi could be repeated.
The dissolving maps are public, but values bi and hi are private. The number of dissolving maps

depends on the implementation; it could be possible in some cases to create a full implementation
without dissolving maps. The value d is not fixed; we can have dissolving maps with different
dimensions in the implementation.

The dissolving maps are used to transform heads into links. This is something that could be
necessary during the computation. If we know by construction that this is only applied to a certain
subset of heads, it is possible to define the map D only over this subset.

2.9. Control Values and Deals (Private)

All elements in V can be represented in many ways in terms of M. During the computation, it
may be reasonable not to reuse the representations, especially in critical points. For example, suppose
V = F4

2, M = F6
2, and P is an invertible matrix 6× 6 over Z2. We can define the projection p : M→ V

as the first four bits of Pm and consider the last two bits as control values.
If we use different control values at different critical points, we know that the representatives of

the elements will never coincide.
There are many ways to define the control values. They can be checked before the H-modifiers or

after them. It is also acceptable that the control values are not computed in the same way during the
program. The multiple representation of the values and the way to control which representative is
used during the computation is something that the programmer can use to increase the security level
with great flexibility, but this is considered in Section 3.

A set of representatives that can represent all the elements of V but with a constant control value
is called a deal. Using different deals at critical points is a way to protect against code injection.

2.10. The Program (Public)

Under white-box premises, the program is available to the attacker and, therefore, it can be
considered as public information. The arithmetical elements in the program are a combination of
heads and links. The number of heads and links used to represent a single element is dynamic and it
changes during the execution of the program.

Each head or link has a visible part (the element x ∈ X or the element g ∈ G), and hidden
parts, the H-modifier h and a base point b ∈ B for links. Thus, the element x ∈ X can represent the
value hπX(x) for any h ∈ H and the link with value g ∈ G in the program, can represent any hgb for
h ∈ H and b ∈ B. These hidden parts of the arithmetical element are known by the compiler or the
programmer to decide which operations are possible and which tables have to be used at a particular
moment. The heads can be in different heading spaces.

Suppose we have an element given by some heads xi and some links gj, the real value could
be ∑i hiπXi (xi) + ∑j h′jgjbj. The addition of two arithmetical elements is just the juxtaposition of the
values (i.e. it requires no code). The problem is that, after a number of operations, the elements are
huge and we need a way to reduce their sizes. This is done with the reduction maps.

Suppose we have a head x ∈ X and a link g. Internally, we know that they have the same
H-modifier (for example l ∈ H) and we also know that the base point for the link is b ∈ B. Suppose we
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have a reduction map r such that the associated partition of X is ∪Xi and x ∈ Xi with associated
constants hi = h and bi = b. In this case, we can proceed as follows:

lπX(x) + lgb = lg(g−1πX(x) + gb) = lg(πX(g−1x) + b) = lghπY(r(g−1x))

= lϕg(h)gπY(r(g−1x)) = lϕg(h)πY(gr(g−1x)).

This proves that the new head gr(g−1x) is a head representing the value lπX(x) + lgb with hidden
H-modifier lϕg(h). This process lets us reduce the size of the arithmetical elements combining a head
with a link if they have the correct hidden modifiers and we have the appropriate reduction map.
If this is not the case, the reduction is not possible.

One of the characteristics of this arithmetic is that the designer has a number of possible reductions
and he has to decide the precise order of the reductions. Any attacker wishing to modify a value, or
paste a part of the code in another part of the program, or interchange values, immediately gets many
meaningless values. At the same time, this makes the generation of the code more difficult, but this is
a problem that is not visible in the final result. To have some freedom, it is reasonable to have many
reduction maps, although the number required is not excessively large.

The final code is several steps that, in the visible program, look like gr(g−1x) for g ∈ G and x in a
heading space. This long sequence of values is combined with the values coming from the input tables
or even constants.

The reduction that we have explained thus far lets us combine a head with a link, but we could
need to add two heads. In that case, one of the heads has to be dissolved using a dissolving map into a
number of links that let us continue the reduction process. This is not strictly necessary; depending
on the design, it could be possible to have an implementation without dissolving maps. We see an
example of this in Appendix B.

The designer of the program has to keep track of the H-modifiers for all possible executions of the
program. This can be difficult, because the new H-modifier (lϕg(h)) depends on g, which is a value
that could be input dependent. To deal with this problem, it is better to have a very simple function
ϕ that could have at most two or three different values. This would let us classify the elements of G
depending on the value ϕg and keep track of the subset of G in which the values can range. If this is
too complex for the implementation, a reasonable solution is to take a trivial map ϕ and therefore use
the direct product H × G instead of a semi-direct product H oϕ G.

2.11. Input Tables (Public)

One of the critical points in a white-box implementation is the input of new values. The designer
has to decide the correct representation that is used for the input values; they can be given by a head,
a number of links or a combination of both. The control values let us use different deals in critical
points. It is a good idea to use a deal for the input values that are not used at any other critical point of
the program.

The H-modifiers of the input values are known by the designer, and the actual values given in the
tables have to be checked to guarantee that all possible computations give the correct H-modifier in
the following critical point. This is what we have mentioned in the previous subsection regarding the
values ϕg for all g in the input table.

2.12. Output Tables (Public)

This is the second critical point in the program. As we have done with the input values, the
output uses a deal that has not been used at any other critical point. The H-modifiers of the elements
when the output is reached should be known by the designer in order to build the table.

If we use a fixed control value for the output, the number of valid values is not large, thus we can
create small output tables.
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2.13. Tables for Nonlinear Operators (Public)

It is quite common to have nonlinear operators that have to be applied to the arithmetical
operators. These are elements outside the arithmetic and we need a special table to define them.
The input and output of these tables are critical points of the implementation and, as we have done
with the input and output tables, it is a good idea to use a unique deal (not used with any other critical
point) to define the input entries and the output entries of this table. The tables are usually applied to
heads and the output can be a head, a link or a combination of both.

2.14. Additional Affine Transformations (Private)

Consider the flow chart of the algorithm. The general structure is a graph with some critical
points and a number of linear operations. Two points in the chart are said to be linearly equivalent if
there are no critical points in between. This equivalence relation defines several connected components.
All operations in a connected component are group operations, therefore we can apply any affine
transformation to a whole connected component with the rule that everything that is done at the entry
points of the connected component has to be undone at the exit points of the connected component.
These operations can be glued to the tables at the critical points.

Consider, for example, V = Z7 and a program that computes a nonlinear operator S, adds a key
value k and an input value v, and finally computes another operator T of the result. The graph of this
connected component is in Figure 1.

S

Add k

Add v Input Table

T

Figure 1. Example of a connected component.

Suppose that, by design, we decide that the output of S is multiplied by a and added to b.
Instead of having x, we have ax + b and this has to be considered in the encoding of the input table,
which should give us av instead of v. We can now add the value to the output of S, (ax + b) + av =

a(x + v) + b. At the exit point of the connected component (the input of T), we have to undo the
change and add the key k, thus the encoding of the table for T will compute a−1(y− b) + k before
computing the real T. All these things can be included in the definition of the tables with no additional
cost, but they are constant transformations that remain fixed for all executions of the program.

3. Additional Security Measures

In Section 2, we are too strict in the definitions and properties required for a private arithmetic.
This is a first approach and it is necessary to make a simplified version to introduce the theory. In this
section, we are much more flexible. In a real implementation, it is important to include elements that
could make the analysis more confusing to the attacker. The ideas of this section and others that could
be considered by the programmer help to increase the security.

3.1. The Relation Between the Internal and the External Arithmetic

We have two commutative groups, V and M, and in Section 2 we have defined a projection
p : M→ V that lets us represent every element v ∈ V by at least one element m ∈ M. If we have to add
two elements v1 and v2, we simply compute the sum of their representatives, and it is a representative
of the sum because p is a homomorphism. However, this is not the only option. We could also have
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more than one element in M to represent the elements of V. Consider p : M×M× · · · ×M → V
a surjective group homomorphism and v1, v2 ∈ V such that p(m1

i , m2
i , · · · , mk

i ) = vi, then v1 + v2 =

p(m1
1 + m1

2, m2
1 + m2

2, · · · , mk
1 + mk

2). When this happens, V is said to be a group generated by the
group M.

The most general construction is to have a surjective group homomorphism p : Mn → N such
that V is a subgroup of N. We can emulate the arithmetic of the elements of N using tuples of elements
in M, thus we can do it for V because all the elements of V are in N. When V is a subgroup of a group
generated by M, it is said to be subgenerated by M.

The category of groups or modules subgenerated by M is denoted by σ[M] in the literature
(see [13], Chapter 3, Section 15). This category is closed under submodules, coproducts and quotients,
therefore we cannot get any further groups iterating the constructions.

Making the group M quite different from V is something that increase the security, because the
group V is public (it is usually described in the algorithm), but the group M and the relation between
M and V is not known by the attacker, thus the internal arithmetic would be safe.

3.2. Quasi-Reductions

In Section 2.7, we show that the reductions can be composed. This property could be used by
the attacker because, making all possible compositions, some patterns could be revealed. It is also
usual to compare different reductions in order to remove some security measures (this is usually called
differential cryptanalysis). For example, consider X and Y two heading spaces, r : X → Y a reduction
with type (b, h) and x1, x2 ∈ X.

The type of r gives

hπY(r(x1)) = πX(x1) + b hπY(r(x2)) = πX(x2) + b.

If we subtract these values, we get

h(πY(r(x1))− πY(r(x2))) = πX(x1)− πX(x2).

This equation has removed the value b and introduced some equations that could be used by
the attacker.

The idea of quasi-reductions is to consider maps r : X → Y that do not satisfy the condition
hπY(r(x)) = πX(x) + b for any (h, b) and mix them with real reduction maps to introduce
a non-arithmetical behavior in the program that could make any attack based on arithmetical
properties difficult, in particular, differential cryptanalysis. This property also avoids the possibility
of composition.

We show how to deal with these quasi-reductions with an example that is expanded in Section 5.
Suppose V = F8

2 and M = F20
2 . The projection p : M→ V is given by the first eight bits and consider

that the last four bits have a non-arithmetical behavior (let E be the subspace generated by these
four bits).

A quasi-reduction r : X → Y satisfies hπY(r(x)) = πX(x) + b for the first 16 bits, but the last four
bits have random values (or any other pattern that could be interesting to hide the real structure).
If we have to compute the addition of two elements m1 and m2, we can be sure that the first 16 bits are
actually the addition of the first 16 bits of m1 and the first 16 bits of m2, but the last four bits have a
value fixed by the definition of r, but not following any addition rule. These extra values break the
arithmetical analysis, thus, given two values x1 and x2 in X, we have

h(πY(r(x1))− πY(r(x2))) = πX(x1)− πX(x2) + e(x1)− e(x2).

where e(x1) − e(x2) is an error that belongs to E and depends on x1 and x2 and, hence, it is quite
difficult to analyze.
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The main objective of this subspace E is to introduce values to break the arithmetical properties
of the tables but we have to give correct results in spite of these errors. Therefore, we have to keep
these values under control. The easiest way is that E would be a k[H oϕ G]-submodule of M. In this
way, every element in M can be decomposed in two parts, the error e ∈ E and a value in M/E that
behaves arithmetically (without errors). Space E is not visible, thus only the programmer can clean the
errors from the values in order to generate correct computations.

3.3. Valid and Forbidden Elements

Consider an attacker trying to obtain information from the public elements. The attacker has a
group G and elements in a heading space X that can be multiplied by elements in G, thus, given x ∈ G,
it is quite natural to make all possible multiplications {gx : g ∈ G}. This is called the orbit of the
action. These orbits over X are related with the orbits of the action G×M→ M because the element x
represents an element in M.

The elements of M can be multiplied by elements of G and elements of H. The elements of H
modify the element to be represented using some fixed rules, therefore it is interesting to analyze the
orbits of M as H oϕ G-set. The orbit of m ∈ M is {hgm : hg ∈ H oϕ G} = (H oϕ G)m.

Our objective is to use orbits that cannot be easily recognized, but some elements could be a
problem. For example, the case of 0 ∈ M is very particular. The elements of H and G are linear
transformations, therefore hg0 = 0 for all h ∈ H and g ∈ G, thus 0 generates an orbit with only
one element. We would prefer orbits not to be very different and this special orbit can be a problem.
This can also be true for other special orbits. The idea is to remove these special elements from the
arithmetic and use only normal elements. We analyze in a bit more depth why these elements appear.

First, note that the elements of H and G are endomorphisms of M and therefore have linear
properties in the multiplication (H oϕ G)×M→ M. This makes M not only an H oϕ G-set but also a
R-module for the group ring R = Z[H oϕ G]. The commutative group M is thus a R-module and the
composition series, 0 = M0 ≤ M1 ≤ · · · ≤ Mn = M, is unique up to equivalence (by Jordan–Hölder
theorem). As we show, the orbit generated by M0 only has one element, but it is possible to have small
orbits in M1 and even in M2. The elements of these small orbits are better to be removed.

Let M̃ be a subset of elements in M that we want to remove from the arithmetic (they are called
forbidden elements), and we have a reduction r : X → Y with type (b, h). The elements of M̃ can
be removed from the image of πY and πX; however, what happens if we have x ∈ X such that
h−1(πX(x) + b) is a forbidden element? In that case, we cannot make the definition of r(x) and the
compiler should ensure that this reduction is never going to be executed in the program. If r : X → Y
is the only reduction with origin in X, this implies that πX(x) can also be considered a forbidden
element for X and it can be included in M̃ although its orbit could be normal.

This shows that the forbidden elements could depend on the heading space X and the projection
πX : X → M, which could be undefined, not only because πX(x) is a forbidden element but also
because the reductions would take it to a forbidden element in another heading space, thus the family
of forbidden elements is something dynamic. In Section 5, we show how to analyze the orbits and
select the forbidden elements with an example.

3.4. Overlapping Orbits and Combinations of Heading Spaces

We show in previous subsections that the attacker can get some information by playing with the
reductions and analyzing the orbits. The implementation should make this task as difficult as possible.

A heading space is a set X with a multiplication by elements of G. It is not even necessary that all
the multiplications give correct results, because they could correspond to forbidden elements. If we
have several heading spaces X1, X2, · · · , Xk, we can join them in a single set X as a disjoint union.
If X and Y are combinations of heading spaces, a reduction map r : X → Y is a combination of
reduction maps.
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For an attacker, it is not completely trivial to decide if two elements x1, x2 ∈ X belong to the same
heading space or not. It is even more difficult to know all the elements that belong to the same heading
space. The attacker could use the following claims to group the elements that belong to the same
heading space.

1. All elements that appear at the same position in the program under different valid inputs belong
to the same heading space.

2. For every x ∈ X, all elements in the orbit of x, Gx, belong to the same heading space.
3. Let x ∈ X and r : X → Y be reduction maps, then all the values r(gx) belong to the same heading

space for all g ∈ G.

The first claim is difficult to avoid, but only gives partial information because, at a certain point
of the program, the elements not only belong to the same heading space, but also have some fixed
control values; therefore, the subset of X obtained using this technique is only a small part of the
heading space.

The second claim can be very useful to incorporate errors into the analysis of the attacker.
We know that not all the elements of the orbit Gx are valid elements. Suppose that the elements not
used in the orbit Gx are precisely those needed by other orbit in another heading space to represent
their valid elements. Then, we can use the orbit Gx with two different meanings, depending on the
value g ∈ G. We call this method overlapping orbits. It is not easy that this property happens by
chance, but it could be possible if we select the orbits that belong to each heading space looking for this
particular property. We show this in Section 4. Overlapping orbits is not easy, and the tables do not
have more than a few of them overlapped, but these can be enough to introduce errors in the analysis
of the attacker.

The third claim is not true. Several values of r(gx) are invalid and we can define the tables with
any value we want. The values chosen for the invalid elements can be in any heading space. If the
orbit Gx has elements overlapped with another orbit, it is even worse because the values r(gx) are in
different heading spaces and they are actually used in the computation.

4. Discussion

We list some of the most notable features of this method. Some of them are qualitative and others
can be quantified.

4.1. Flexibility

A private arithmetic assumes that the external commutative group is fixed, but all other
constructions can be decided. All the internal arithmetic can be decided by the programmer depending
on the resources (time and memory) and his own expertise in automorphism groups.

The selection of the orbits, their representatives, the base points, etc. can be decided freely.
The number of choices is really high.

4.2. Non-Standard Operators

The most natural choice to obfuscate the addition in a commutative group is to have one or more
binary operators to be applied over encrypted operands. The standard attacks try to match encrypted
values with plain values and to use the algebraic properties of the group addition to find as many
plain values as possible.

The method given in this paper has one or more reduction maps. The reduction maps are unary
operators. The visible algorithm also provides a multiplication between elements in a group G and the
heading spaces. The group G cannot be matched with elements in the external commutative group
and the standard attacks do not fit with the arithmetical structure given by the reductions.
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4.3. Nonlinear Relations Between Values and Their Representatives

The arithmetical elements in the program are represented by heads and links. The visible elements
are elements in the heading space for heads and elements in G for links. The connection between these
elements is not linear; for example, suppose g1 and g2 are the visible part of two links. Even if they
would have the same H-modifier and the same base point, hg1b + hg2b is in general not connected
with any hgb for any g ∈ G, because G is closed under group multiplication, but the addition is not
allowed. Something similar happens for heads. Consider the example given in Appendix B, two heads
x1, x2 could have visible representatives v1, v2 ∈ Z2

10. The addition v1 + v2 ∈ Z2
10 has no connection at

all with the head that represents the addition of πX(x1) + πX(x2)

The nonlinear relation between values and their representatives is something that many
obfuscations consider, but, in most cases, it is done in an artificial way, which must be undone
before the obfuscated additions. In this system, the non-linearity is completely natural and fits the
structure of the computations.

4.4. Linear Growth

We have previously mentioned that the arithmetical operators (the reductions) are unary operators
instead of binary ones. This property means that the growth of the tables is linear, while the growth
of the security elements is quadratic. For example, suppose that M = Fk

2. The heading spaces has a
number of elements with the same order of magnitude of M, and we can say O(2k). The number of
invertible matrices k× k over Z2 (which could be considered as a measure of the security level, as
shown in Section 4.6) is O((2k)2) = O(22k), a quadratic growth in comparison with the growth of the
size of the tables. Using binary operators, the table would require two inputs and thus the growth of
the tables would also be quadratic.

The linear growth lets us optimize the security for the resources available, increasing the size of
M and getting a much greater increase in the security than when using binary operators. This property
is especially relevant in the case of IoT because the resources are usually quite limited.

4.5. Protection against Differential Cryptanalysis

Another noteworthy characteristic of this system is that we can incorporate non-arithmetical
behavior to the operators. This is what we have called quasi-reductions, and we explain them in
Section 3.2. These quasi-reductions increase the protection against differential cryptanalysis.

4.6. Security and Conjugacy Search Problem

There are algorithms in which we can obtain the secret information only playing with the inputs
and outputs. In that case, even a black-box implementation of the algorithm would reveal the secret
information and it is worthless to make a white-box implementation that would not increase the
security at all, because the attacker has a running implementation by definition of white-box. This is
what we call intrinsic vulnerabilities and we show an example of this in Appendix B.1.

There are other vulnerabilities due to naive choices, for example, taking M = V, or a group G
that generates orbits that can be easily analyzed.

There are also algorithms with many mathematical properties that are not evident at first sight
and that can be used to get the secret information despite the encoding. Strictly speaking, these are
not intrinsic vulnerabilities because they can be local to a piece of the code. For example, suppose
that we have a program given in rounds, such that, if we randomly modify a value at the beginning
of a round, this change is spread in a way that depends on the secret values. A blind obfuscation
of the algorithm could make it easy to recognize the structure of rounds and independently of the
arithmetical obfuscation, it is possible to modify a value at some point with the value given in a
previous execution. This code injection combined with the mathematical property of the algorithm
known by the attacker could reveal the secret information without actually breaking the arithmetic.
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These vulnerabilities make it almost impossible for an automatic program to generate obfuscated
code. There are even theoretical studies about the impossibility of having a general virtual black box
system. See [14,15] for details.

The advanced encryption standard (AES) is a typical example of this. There are many
publications studying the mathematical properties of this algorithm that can be used to break white-box
implementations. In particular, AES is inherently vulnerable to differential fault analysis (DFA) and
this kind of attacks can be applied to the majority of the public implementations of AES (see, for
example, [2]). However, not only DFA, the number of known attacks to white-box implementations of
AES is huge. The experience of the WhibOx Challenge (see [8]) shows that many implementations of
AES can be broken independently of the arithmetical encoding.

The method presented in this paper helps to protect, mainly because it is possible to use multiple
representations of the elements with different control codes, but not all possible design vulnerabilities
can be avoided if the structure of the program is revealed in the obfuscated code, and this is something
that the designer of the program has to decide, independently of the arithmetic.

What we can analyze here is the security related to the arithmetical elements. We use in this
system a group G that is a subgroup of Aut(M). The natural choice is to have a G much smaller than
Aut(M). For example, if M is F20

2 , Aut(M) is the set of invertible matrices 20× 20 over F2. The number
of them is ∏i=019(220 − 2i) ≈ 2398.2. The group G, in comparison, is really small; in the example given
in Section 5, it has 2520 elements.

In recent years, the number of cryptographic algorithms based on non-commutative groups
has increased. We can see in [11] several algorithms based on non-commutative groups and the
group-theoretical problems on which they are based. In the system proposed in this paper, we have
a group G that it is given by a table or any other method that lets us compute with the elements.
The attacker knows that this group is a subgroup of Aut(M) but the internal group M is not known.
Using the critical points, in particular the input and output tables, it could be possible to get some
information about the properties of the values in the external group V compared to their corresponding
internal values in M. This information is always partial. In the worst scenario, the attacker could guess
that the original representation of the group G in Aut(M) is made using some special representation.
However, this original representation ψ : G → Aut(M) can be modified up to conjugacy using any
invertible element t ∈ Aut(M) with the equivalent representation ψ′(g) = tψ(g)t−1. The number of
options for t can be huge and these new representations change completely the elements that belong
to each orbit and their properties. The attacker needs to determine the conjugacy used with very short
information about the effects in the external group. The conjugacy problems are considered hard
to solve and the security of group-theoretic cryptography is very often based on them. See [11] for
general background on these kinds of problems.

4.7. Use Cases and Further Applications

In the Introduction we give several use cases for white-box cryptography. In general, white-box
cryptography should be considered when the attacker has access to the program and can manipulate it
without restrictions to obtain the critical information, for example the keys.

As we can see in [16], the problem of mistrust in IoT is one of the main factors that have affected
how IoT security is perceived. IoT devices can become adversaries themselves and they can be used
to obtain critical information. The protection of our code with a white-box obfuscation makes this
impossible, because the valuable information is not visible to the hostile environment.

The method proposed in this paper is not only valid in general as a white-box method. We show
above that it is possible to generate a huge number of different arithmetics choosing some parameters,
which makes it especially useful for the generation of code for IoT. Another characteristic of the code is
the homogeneity. The code generated using this method has long sequences of reduction steps, each
requiring a similar table lookup (we can see an example of this in Algorithm A3). The white-box
protection let us delegate the computation of a number of these reductions to other devices without
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risk, because the program is supposed to be public. As we can see in [17], the security is a major threat
in edge and fog computing, but using this method it is possible to avoid that risk.

5. A Huge Private Arithmetic

In this section we analyze an example with all the security measures considered in the paper
and a huge size. The arithmetic is generated for the group V = F8

2. We also analyze the memory
requirements to generate this arithmetic.

The internal commutative group M is F20
2 . The elements of M are decomposed infive subvectors

of four bits each. Thus, we denote m = (m0, m1, m2, m3, m4) the vector of M and the mi is vectors in F4
2.

We use the subvector m4 as error space and the others as arithmetical values.
We use block matrices with five blocks of 4× 4-matrices in the diagonal to generate G. The group

of invertible 4× 4-matrices over F2 has 20, 160 matrices and generates some orbits that are too big
for our purposes. It is better to consider a subgroup of this group with 2520 elements and combine it
with some permutations of the five blocks in the diagonal. In this case, we consider H the subgroup
generated by the rotation of the first four blocks. This generates a group H with order four and the
elements of H commute with the elements of G, thus we have a direct product instead of a semi-direct
product for the extended arithmetical group H × G.

There are many combinations that let us generate the subgroup of 2520 elements. One of them

is to use the matrices a =

[ 1 0 1 1
0 1 0 0
1 1 1 0
0 0 1 1

]
and b =

[ 1 0 1 0
1 1 0 0
0 0 0 1
0 1 0 0

]
in Mat4×4(F2). Many others can be found by

conjugacy.
The group G0 generated by these two matrices has 2520 elements. For each g ∈ G0, we can make

the block matrix


g 0 0 0 0
0 g 0 0 0
0 0 g 0 0
0 0 0 g 0
0 0 0 0 g

 ∈ Mat20×20(F2) that is identified with g. The matrix h to generate H could

be the block matrix h =

[ 0 0 0 I 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 I

]
∈ Mat20×20(F2), where I is the identity matrix in Mat4×4(F2).

At this point, it is necessary to decide which elements of M that are valid. This decision requires
some analysis of the group ring and the orbits because our intention is to remove the elements that
could have a recognizable behavior in the tables. We have to analyze the Z[G] structure of M. It is
equivalent to use this structure or the F2[G]-structure because m has characteristic two, thus we can
take R = Z[G] or R = F2[G].

The R-module M has a composition series 0 = M0 ≤ M1 ≤ M2 ≤ M3 ≤ M4 ≤ M5 = M, in
which Mi+1/Mi are simple R-modules. The composition series in this case has Mi+1/Mi always
isomorphic to F4

2, the vector space of 16 elements with the structure given by G0 × F4
2 → F4

2 (note
that G0 and G are isomorphic). The Jordan–Hölder theorem says that any other composition series
0 = M′0 ≤ M′1 ≤ M′2 ≤ M′3 ≤ M′4 ≤ M′5 = M has the same length and M′i+1/M′i is also isomorphic to
the same simple module.

We use a very simple decomposition in blocks that makes the structure visible. The structure (up
to isomorphism) is not changed if we consider a conjugated action given by t−1Gt with any invertible
matrix t. It is better to make the theoretical analysis with the original version and apply the conjugation
afterwards.

It is an obvious choice to remove the element 0, but we also remove the elements of the
different R-modules that can appear in the first two steps. In the version before conjugation, the
elements (m0, m1, m2, m3, m4) ∈ M such that they can appear in the position M1 in the composition
series are the ones such that dim(span(m0, m1, m2, m3, m4)) ≤ 1, and the ones that can appear in
the position M2 are the ones such that dim(span(m0, m1, m2, m3, m4)) ≤ 2. If we want to consider
them as forbidden elements, we have to restrict the subset of valid elements to those ones such
that dim(span(m0, m1, m2, m3, m4)) ≥ 3 or a subset of these elements. There are 1, 015, 560 elements
satisfying this condition. They are distributed in 403 orbits with 2520 elements per orbit.
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They can be classified using matrices 4× 5 with columns (m0, m1, m2, m3, m4) and defined normal
forms for the generator of the orbits. Consider a map f : {0, 1, 2} → {0, 1, 2, 3, 4} strictly increasing.

We fix in the vectors
[ 1

0
0
0

]
,
[ 0

1
0
0

]
and

[ 0
0
1
0

]
in the positions f (0), f (1) and f (2). The rest of the values

will be free if they keep the matrix in an almost echelon form. Strictly speaking, it is not an echelon
form because the group can reduce only three positions (it is not the full group of invertible matrices).
The generators are given in Table 1.

Table 1. Generators and number of orbits.

f Generators Number of Orbits

(0, 1, 2)

[
1 0 0 ∗ ∗
0 1 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 ∗ ∗

]
28 = 256

(0, 1, 3)

[
1 0 ∗ 0 ∗
0 1 ∗ 0 ∗
0 0 0 1 ∗
0 0 0 0 ∗

]
26 = 64

(0, 2, 3)

[
1 ∗ 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗
0 0 0 0 ∗

]
25 = 32

(1, 2, 3)

[
0 1 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗
0 0 0 0 ∗

]
24 = 16

(0, 1, 4)

[
1 0 ∗ ∗ 0
0 1 ∗ ∗ 0
0 0 0 0 1
0 0 0 0 0

]
24 = 16

(0, 2, 4)

[
1 ∗ 0 ∗ 0
0 0 1 ∗ 0
0 0 0 0 1
0 0 0 0 0

]
23 = 8

(0, 3, 4)

[
1 ∗ ∗ 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

]
22 = 4

(1, 2, 4)

[
0 1 0 ∗ 0
0 0 1 ∗ 0
0 0 0 0 1
0 0 0 0 0

]
22 = 4

(1, 3, 4)

[
0 1 ∗ 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

]
21 = 2

(2, 3, 4)

[
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

]
20 = 1

Total 403

For each heading space, we have to choose which elements are used. We have to be careful to have
multiple representations for each element in V, but we can choose the orbits we want. We could decide
to have heading spaces with a number of orbits between 200 and 300 from these 403 ones. The selection
of these orbits can be made in order to get properties such as overlapping orbits (see Section 3.4).
For example, consider X and X′ as two heading spaces that have an orbit (G, i) overlapped. We define
at the same time two reductions r : X → Y and r′ : X′ → Y′. The types of the reductions r and r′ are
(h, b) and (h′, b′). We select a value xi ∈ X and x′i ∈ X′ to be the base point on these orbits and finally
we compute ug := h−1(gxi + b), vg := (h′)−1(gx′i + b′) for all g ∈ G. The values ug and vg will belong
to some orbits, the idea is to choose the orbits in Y and Y′ in such a way that ug and vg are not valid
elements in Y and Y′ at the same time. The rest of the orbits can be chosen randomly, bearing in mind
that some of them are now forbidden to have a correct definition of r and r′ in the overlapped orbit
(G, i). The forbidden elements in the orbits are filled in tables r and r′ with fake values that can be part
of different heading spaces, as explained in Section 3.4.

Let k1, k2, · · · , kn be the number of orbits for each heading space. If they are between 200 and
300, we can consider that the number of elements in the combined heading space will be around 250n.
The representation of each element is an index i for the orbit (two bytes) and two other bytes for the
group element g ∈ G. The size of the tables required for these combinations of heading spaces and
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reductions are 2520 · 250 · n · 4 bytes, that is 2.5n megabytes where n is the number of heading spaces.
A big implementation could use eight heading spaces, and therefore a number around 200 megabytes
would be reasonable.

The rest of the implementation would require tables for input and output, and also for possible
S-boxes, another 200 megabytes could be required and the code depends on the algorithm, but could
be another 100 megabytes. If we put together all these numbers, the size of a big implementation
would be around 500 megabytes.

If the attacker knows the details of this construction, the security would be based on the choice
of an invertible matrix t such that the actual group G would be tGt−1. The number of choices for the
non-arithmetical part is the number of maps E→ E. They do not even have to be bijective, thus the
number is 1616 = 264. The number of choices for t is ∏15

i=0(2
16 − 2i) ≈ 2254.2. The conjugation by t

induces a new relation between M and V as well as a change in the base points used to represent the
classes. The search for the conjugacy matrix is much more difficult than the standard conjugacy search
problem, because only partial information is visible.

6. Conclusions

White box implementations are not a simple task. The protection of the arithmetic is something
that requires a lot of resources, which might not be available (especially on IoT applications), therefore
it is critical to decide which are the elements that should be protected. The method presented in this
paper can be used to obfuscate the arithmetic of a commutative group using a related non-commutative
group. The idea of the paper is to completely shuffle the additive structure and use the endomorphisms
to make computations.

Non-commutative groups are attracting the attention of the cryptographic community because
there are many hard problems related to them that can be used for cryptographic purposes. The method
presented in this paper is very flexible and it is possible to modify the implementations by conjugation.
This makes it possible to generate a huge amount of essentially different implementations based on
the same original groups. The search for this conjugacy is not the only problem that the attacker has to
solve, because many different choices can be made to increase the difficulty of the analysis.

7. Patents

The contents of this paper may be related to the following patent applications: WO2018015325
and WO2018115143.
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Appendix A. Summary of Mathematical Concepts and Notations

This appendix contains some standard mathematical definitions and notations used in this paper.
For further references we suggest the book by Bhattacharya et al. ([18], Chapters 1–14) for basic
definitions, the book by Wisbauer ([13], Sections 1–6) for rings and modules and the books by Lam [19]
and Aschbacher [20] for group representations and more advanced results on group theory and
connections with rings and modules.

Group A set G with an operation · : G× G → G that is associative. There exists
an element 1 ∈ G such that 1g = g1 = g for all g ∈ G and for every g ∈ G
there exists g−1 ∈ G such that g · g−1 = 1 = g−1 · g.

Commutative Group A set M with an operation + : M × M → M that is associative and
commutative. There exists an element 0 ∈ M such that 0 + m = m + 0 = m
for all m ∈ M and for every m ∈ M there exists −m ∈ M such that
m + (−m) = (−m) + m = 0.

Ring A set R with two operations +, · : R× R → R and two special elements
0, 1 ∈ R such that (R,+, 0) is a commutative group, the multiplication · is
associative, r · 1 = 1 · r for all r ∈ R, and r(s + t) = rs + rt for all r, s, t ∈ R.

Commutative Ring A ring R is said to be commutative if the multiplication is commutative.
Examples are Z, the ring of integers and Zn the ring of modular integers
for any integer n > 1.

Field A commutative ring in with every nonzero element r there exists r−1 ∈ R
such that r · r−1 = 1. Examples of fields are the rationals and the modular
integers Zp when p is a prime number. If p is a prime, the field Zp can be
denoted Fp. For instance, Z2 and F2 are exactly the same thing.

Module Let R be a ring and M be a commutative group, we say that M is a module
over the ring R if we have a multiplication · : R × M → M such that
(r + s)m = rm + sm, r(m + n) = rm + rn, 1m = m and (rs)m = r(sm) for
all r, s ∈ R and m, n ∈ M. Every commutative group M is, in particular, a
module over Z using the multiplication rm = m + m + · · ·+ m (r-times)
and (−r)m = r(−m) for any integer r ≥ 0 and m ∈ M. If R is a field, the
modules over R are the vector spaces.

Group Homomorphism Let G and H be groups. A map f : G → H is said to be a group
homomorphism if f (k · g) = f (k) · f (g) for all k, g ∈ G and f (1) = 1.
If the groups are commutative, a homomorphism f : M → N should
satisfy f (m + k) = f (m) + f (k) for all m, k ∈ M and f (0) = 0.

Group Isomorphism A group homomorphism f is said to be a group isomorphism if the map f
is bijective. The inverse map will also be a group isomorphism.

Group Endomorphism A group homomorphism between the group and itself is called an
endomorphism.

Group Automorphism A bijective group homomorphism is called automorphism. The set of group
automorphisms is itself a group with the composition and the identity
map as 1. Let p be a prime number and Zp the field of modular integers.
The group of invertible matrices over Zp is an example of an automorphism
group, because the automorphisms of Zp ×Zp × · · · ×Zp can be identified
with the invertible square matrices.

Module Homomorphism Let M and N be modules over R and f : M→ N a group homomorphism
considered as abelian groups. We say that f is a module homomorphism if
f (rm) = r f (m) for all r ∈ R and m ∈ M. Using this additional property,
we can define module isomorphisms, endomorphisms and automorphisms.
If R = Z, the module homomorphisms and group homomorphisms are the
same thing because f (rm) = f (m + m + · · ·+ m) = f (m) + f (m) + · · ·+
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f (m) = r f (m). If R is a field, the module homomorphisms are the usual
linear maps that can be identified with the matrices over the field.

Endomorphism Ring Let M be a module over the ring R. The set of endomorphisms of M
can be endowed with a ring structure if we define the addition of two
endomorphisms f + g as ( f + g)(m) = f (m) + g(m) for all m ∈ M. If R is
a field, this ring is the ring of square matrices. If R = Z or any other ring,
the endomorphisms are the natural generalization of matrices and play a
similar role.

Direct Product Let H and G be groups, the set H × G can be endowed with a group
structure using the multiplication (h, g)(h′, g′) = (hh′, gg′). With this
structure the identity element in H × G is (1, 1). It is straightforward to
identify G with the elements {(g, 1) : g ∈ G} and H with {(1, h) : h ∈ H}.
In this way, the direct product can be written as HG and the elements as
products hg with the rule that, although the multiplication in H and G
might be non-commutative, the elements of H commute with the elements
of G, i.e. gh = hg for all g ∈ G and h ∈ H.

Semi-direct Product Let H and G be groups and ϕ : G → Aut(H) be a group homomorphism.
We denote with ϕg : H → H the automorphism induced by g via ϕ.
The semi-direct product of these groups, denoted by H oϕ G, is given
by the pairs (h, g) with h ∈ H and g ∈ G endowed with the product
(h, g)(h′, g′) = (hϕg(h′), gg′). As we can see, the homomorphism ϕ acts
as a modifier for the product in H. The direct product is a special case
of this construction using the trivial homomorphism ϕ : G → Aut(H)

such that ϕg = idH for all g ∈ G. Semi-direct products are a very
common construction in group theory to build non-commutative groups,
for example, the dihedral groups.

Action of a Group Let G be a group and X be a set. An action of G over X is a map · : G×X →
X such that 1 · x = x for all x and g · (h · x) = (g · h)x for all g, h ∈ G and
all x ∈ X. A set X with an action G× X → X is called a G-set.

Orbits and Stabilizers If we have an action of G on X, the orbit of an element x ∈ G is the subset
of X given by {gx : g ∈ G} = Gx. The stabilizer of the element x is the
subgroup of G given by the elements that fix x, Gx = {g ∈ G : gx = x}.
The number of elements of Gx is a divisor of the number of elements of G
(by Lagrange’s theorem) and the number of elements in the orbit of x is
|G|/|Gx| (see ([18], Chapter 5, Theorem 4.7)).

Group Ring Let G be a finite group and R be a ring. The group ring, denoted R[G] or
RG, is the set of mappings u : G → R with the multiplication given by the
rule (u · v)(h) = ∑g∈G u(g)v(g−1h). The standard notation for group rings
is to identify the map u : G → R with the formal sum ∑g∈G u(g) · g and
multiply using the standard rules (r · g)(s · h) = (rs) · (gh) for all r, s ∈ R
and g, h ∈ G.

Appendix B. Full Detailed Example

In this appendix, we present a small example of the obfuscation of a cryptographic algorithm
with the main elements that are commonly used in block ciphers and hash functions, in particular
XOR operations and nonlinear permutations combined in several rounds. The example is developed
in full detail, including all the tables required for the arithmetic. This requirement makes the example
not completely realistic because the tables are much smaller than the ones used in a computer program.
The idea of this appendix is to help the reader to reproduce the constructions with a guided example.
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In this example, the arithmetic is over the vector space V = F4
2, which is the external commutative

group. The nonlinear permutation is the first one given in the data encryption standard algorithm

S = (14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7)

and the algorithm computes the function

ξ : V ×V ×V ×V ×V → V
(v0, v1, v2, v3, v4) 7→ ξ(v0, v1, v2, v3, v4).

The computation combines these values with six hidden keys k0, · · · , k5 ∈ V using rounds. These
values are the secret information that has to be protected.

Algorithm A1 Example (plain version).

1: w1 ← S(k0 ⊕ v0)
2: w2 ← S(k1 ⊕ v1 ⊕ w1)
3: w3 ← S(k2 ⊕ v2 ⊕ w2)
4: w4 ← S(k3 ⊕ v3 ⊕ w3)
5: w5 ← S(k4 ⊕ v4 ⊕ w4)
6: return k5 ⊕ w5

Appendix B.1. Intrinsic Vulnerabilities

The first thing that we do with this example is to prove that it is possible to get the key playing
with some inputs and outputs, independently of the implementation of the algorithm. This is what
we call intrinsic vulnerabilities. Some algorithms reveal information regardless of the implementation.
When this happens, it is impossible to get a secure version under the white box premises, because even
a black box version of the program would be insecure. In this example, the reason is that the function
ξ is too small but we make a white-box version of this function just to show the method, although we
know that it is too small to be realistic.

The first and most evident reason this function is insecure is because the number of possible keys
is 166 = 16777216. This key space is small enough to be analyzed just by checking all the possibilities
with a simple PC.

However, here, we give an attack that uses the nonlinearity of S to break the security.
This vulnerability is not a special property of the permutation S that we have chosen. This is something
general that can be done for all nonlinear permutations. Linear permutations do not have this
vulnerability, but they have many others. Therefore, we cannot get rid of the nonlinearity, because it is
a property required for the general security of the algorithms.

As a question of notation, we write the elements of V = F4
2 using a single hexadecimal value.

Thus, for example, the value b, that in binary form is 1010 represents the vector (1, 0, 1, 0).
We use the auxiliary function f (v, u, k) = k ⊕ S(v ⊕ u) and the associated functions g1(u) =

f (0, u, k)⊕ f (3, u, k) and g2(u) = f (4, u, k)⊕ f (a, u, k). The functions g1 and g2 do not depend on k
because this value is canceled because k⊕ k = 0. If we compute g1(u) and g2(u) for all possible values
u, we get that the possible outputs for g1 are {f, 9, a, 4, c, 2} and the outputs for g2 are {4, 3, 8, 2, e}.
If we know the values g1(u) and g2(u) for a hidden u, we can obtain the value u looking at the
following table

f 9 a 4 c 2

4 0 e ∗ ∗ ∗ ∗
3 b 1 ∗ 5 ∗ f

8 8 2 7 6 9 c

2 3 d ∗ ∗ ∗ ∗
e ∗ ∗ 4 ∗ a ∗
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The values ∗ are given to inputs that cannot be reached for any correct computation of the
functions.

Now, we take the black-boxed version of ξ and fix the inputs v0, v1, v2 and v3. These values
produce a value w4 after the first 4 rounds. We want to compute the hidden value u = k4 ⊕ w4, and,
to do that, we see that f (v, u, k5) = ξ(v0, v1, v2, v3, v) is precisely k5 ⊕ S(v⊕ u) and we can compute
the auxiliary values g1(u) = ξ(v0, v1, v2, v3, 0) ⊕ ξ(v0, v1, v2, v3, 3) and g2(u) = ξ(v0, v1, v2, v3, 3) ⊕
ξ(v0, v1, v2, v3, 4). From the previous table, we get the value u. Now, we only need to compute
ξ(v0, v1, v2, v3, 0) = k5 ⊕ S(u) and recover k5 because k5 = ξ(v0, v1, v2, v3, 0)⊕ S(u). This technique
has obtained the last key and reduced the problem to the function ξ ′(v0, v1, v2, v3) = S−1(k5 ⊕
ξ(v1, v2, v3, v4, 0)). This function has exactly the same structure but with one round fewer. We can
apply the same technique to get the key k4 and afterwards k3, k2, k1 and k0 by removing the security
layers of this algorithm one by one.

A full explanation of the reasons for choosing these particular parameters 0, 3, 4 and a is outside
the scope of this paper. It is a general technique to break encodings that is much more general and
based on differential cryptanalysis. It is especially powerful on block ciphers and there are many
publications on the topic. One general book to learn about these techniques is [21].

The main ideas that should remain after this subsection is that the example is merely to show
how the arithmetic works with something small and we do not claim that the obfuscated version of
this function is secure, because even the black-box version is insecure. Any algorithm can introduce
intrinsic vulnerabilities that have to be studied in detail before starting a white-box implementation.

Appendix B.2. Obfuscated Version (Public Elements)

In this subsection, we see a white-box implementation of the function ξ using the techniques
explained in this paper. First, we show the public elements that are visible in the program and we make
a simple computation. In the following subsection, we give the private elements of the implementation.

Apart for the external commutative group V = F4
2 that it is part of the public algorithm, the first

public element of this obfuscated implementation is the public group G. This group can be given
by its multiplication table (Table A1). The structure of the group up to isomorphisms can also be
considered public, because it can be easily computed using the multiplication table. The group G
can be represented using endomorphisms over multiple commutative groups. For example, we can
represent this group using matrices 2× 2 over the rings Z10 and also over Z11. The correspondence
between the element of the group and the matrices is given in Table A2. We include in this table the
inverses of the elements in the group that are used during the computation. The value X is used to
represent the number 10 in the ring Z11.

Table A1. Group operation.

g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
g0 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
g1 g1 g0 g5 g6 g7 g2 g3 g4 g10 g11 g8 g9
g2 g2 g5 g0 g9 g8 g1 g11 g10 g4 g3 g7 g6
g3 g3 g8 g7 g10 g5 g11 g1 g9 g6 g2 g0 g4
g4 g4 g9 g6 g5 g3 g10 g7 g1 g2 g8 g11 g0
g5 g5 g2 g1 g11 g10 g0 g9 g8 g7 g6 g4 g3
g6 g6 g10 g4 g8 g2 g9 g0 g11 g3 g5 g1 g7
g7 g7 g11 g3 g2 g6 g8 g4 g0 g5 g10 g9 g1
g8 g8 g3 g11 g1 g9 g7 g10 g5 g0 g4 g6 g2
g9 g9 g4 g10 g7 g1 g6 g5 g3 g11 g0 g2 g8
g10 g10 g6 g9 g0 g11 g4 g8 g2 g1 g7 g3 g5
g11 g11 g7 g8 g4 g0 g3 g2 g6 g9 g1 g5 g10
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Table A2. Group representations.

Group End(Z2
10) End(Z2

11) Inverse
g0 [ 1 0

0 1 ] [ 1 0
0 1 ] g0

g1 [ 9 7
0 1 ] [ X 2

0 1 ] g1

g2 [ 1 3
0 9 ] [ 1 9

0 X ] g2

g3 [ 9 2
2 5 ] [ 6 1

1 4 ] g10

g4 [ 5 2
2 1 ] [ 7 1

1 5 ] g11

g5 [ 9 0
0 9 ] [ X 0

0 X ] g5

g6 [ 1 5
8 9 ] [ 5 2

X 6 ] g6

g7 [ 5 7
8 5 ] [ 4 4

X 7 ] g7

g8 [ 5 3
2 5 ] [ 7 7

1 4 ] g8

g9 [ 9 5
2 1 ] [ 6 9

1 5 ] g9

g10 [ 5 8
8 9 ] [ 4 X

X 6 ] g3

g11 [ 1 8
8 5 ] [ 5 X

X 7 ] g4

These matrices are used to operate the elements of the group with the elements of the heading
spaces, which in this case are Z2

10 and Z2
11. The elements of the heading spaces are denoted as column

vectors and the operation by the elements of G is done using the standard multiplication of matrices.
If we multiply gi with the head [ u

v ], we first have to know where the head is. If it is in Z2
10, we use

the matrix associated to gi over Z10 in Table A2, and, if the head is in Z2
11, we use the matrix over Z11

given in the same table.
We have two reduction maps that switch the representations between the two heading spaces.

The reduction R0, given in Table A3, takes values in Z2
10 and gives the results in Z2

11. The reduction R1,
given in Table A4, works the other way round. The values are given in Tables A3 and A4.

Table A3. Reduction 0.

R0 0 1 2 3 4 5 6 7 8 9

0 [ 48 ] [ 80 ] [ 85 ] [ 03 ] [ 15 ] [ 3X ] [ 15 ] [ 64 ] [ 74 ] [ 69 ]
1 [ 1X ] [ 30 ] [ 04 ] [ 58 ] [ 39 ] [ 02 ] [ 26 ] [ 7X ] [ X6 ] [ 73 ]
2 [ 15 ] [ 0X ] [ 3X ] [ 01 ] [ 9X ] [ 96 ] [ 15 ] [ 87 ] [ 95 ] [ 27 ]
3 [ 51 ] [ X5 ] [ 50 ] [ 25 ] [ X8 ] [ 39 ] [ 06 ] [ 53 ] [ 01 ] [ X2 ]
4 [ 48 ] [ 67 ] [ 72 ] [ 08 ] [ 70 ] [ 47 ] [ 42 ] [ 17 ] [ 38 ] [ 88 ]
5 [ 14 ] [ X7 ] [ 8X ] [ 22 ] [ 63 ] [ X6 ] [ 63 ] [ 18 ] [ 93 ] [ 96 ]
6 [ X3 ] [ 33 ] [ X1 ] [ 6X ] [ 91 ] [ 34 ] [ 60 ] [ 08 ] [ 21 ] [ 14 ]
7 [ 51 ] [ 80 ] [ 30 ] [ 68 ] [ 3X ] [ 0X ] [ 13 ] [ 54 ] [ 50 ] [ 79 ]
8 [ 15 ] [ 81 ] [ 29 ] [ 36 ] [ 15 ] [ X7 ] [ 9X ] [ 01 ] [ 3X ] [ 76 ]
9 [ 31 ] [ 99 ] [ 62 ] [ 09 ] [ 26 ] [ 06 ] [ 29 ] [ 24 ] [ 07 ] [ 30 ]
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Table A4. Reduction 1.

R1 0 1 2 3 4 5 6 7 8 9 X

0 [ 73 ] [ 73 ] [ 15 ] [ 69 ] [ 82 ] [ 17 ] [ 93 ] [ 82 ] [ 42 ] [ 76 ] [ 21 ]
1 [ 97 ] [ 41 ] [ 57 ] [ 95 ] [ 33 ] [ 44 ] [ 83 ] [ 30 ] [ 81 ] [ 53 ] [ 66 ]
2 [ 98 ] [ 41 ] [ 88 ] [ 92 ] [ 45 ] [ 03 ] [ 98 ] [ 40 ] [ 80 ] [ 94 ] [ 02 ]
3 [ 29 ] [ 78 ] [ 93 ] [ 47 ] [ 79 ] [ 29 ] [ 54 ] [ 82 ] [ 04 ] [ 23 ] [ 39 ]
4 [ 48 ] [ 15 ] [ 97 ] [ 63 ] [ 53 ] [ 87 ] [ 35 ] [ 46 ] [ 11 ] [ 77 ] [ 10 ]
5 [ 92 ] [ 49 ] [ 53 ] [ 89 ] [ 43 ] [ 77 ] [ 77 ] [ 85 ] [ 08 ] [ 90 ] [ 33 ]
6 [ 58 ] [ 79 ] [ 90 ] [ 31 ] [ 51 ] [ 77 ] [ 83 ] [ 59 ] [ 35 ] [ 53 ] [ 63 ]
7 [ 48 ] [ 52 ] [ 77 ] [ 57 ] [ 27 ] [ 93 ] [ 87 ] [ 53 ] [ 53 ] [ 02 ] [ 34 ]
8 [ 91 ] [ 19 ] [ 87 ] [ 10 ] [ 82 ] [ 65 ] [ 27 ] [ 13 ] [ 47 ] [ 51 ] [ 62 ]
9 [ 46 ] [ 97 ] [ 16 ] [ 10 ] [ 40 ] [ 28 ] [ 68 ] [ 45 ] [ 73 ] [ 60 ] [ 07 ]
X [ 62 ] [ 18 ] [ 53 ] [ 01 ] [ 70 ] [ 83 ] [ 52 ] [ 86 ] [ 95 ] [ 11 ] [ 17 ]

This algorithm requires an extra table to compute the nonlinear permutation S. This table is also
used for the output and is called B (see Table A5).

Table A5. B map.

B 0 1 2 3 4 5 6 7 8 9

0 [ 00 ] [ 70 ] [ 31 ] [ 05 ] [ 23 ] [ 00 ] [ 23 ] [ 29 ] [ 43 ] [ 00 ]
1 [ 22 ] [ 83 ] [ 91 ] [ 13 ] [ 00 ] [ 32 ] [ 14 ] [ 07 ] [ 95 ] [ 95 ]
2 [ 23 ] [ 13 ] [ 02 ] [ 10 ] [ 02 ] [ 82 ] [ 23 ] [ 37 ] [ 18 ] [ 68 ]
3 [ 82 ] [ 33 ] [ 21 ] [ 64 ] [ 40 ] [ 68 ] [ 00 ] [ 63 ] [ 00 ] [ 00 ]
4 [ 53 ] [ 04 ] [ 11 ] [ 32 ] [ 43 ] [ 15 ] [ 08 ] [ 43 ] [ 19 ] [ 68 ]
5 [ 00 ] [ 71 ] [ 03 ] [ 12 ] [ 32 ] [ 00 ] [ 32 ] [ 97 ] [ 57 ] [ 82 ]
6 [ 18 ] [ 68 ] [ 95 ] [ 01 ] [ 08 ] [ 33 ] [ 09 ] [ 32 ] [ 10 ] [ 65 ]
7 [ 82 ] [ 70 ] [ 00 ] [ 63 ] [ 00 ] [ 13 ] [ 40 ] [ 33 ] [ 21 ] [ 49 ]
8 [ 23 ] [ 08 ] [ 18 ] [ 45 ] [ 23 ] [ 71 ] [ 02 ] [ 10 ] [ 02 ] [ 68 ]
9 [ 10 ] [ 09 ] [ 06 ] [ 07 ] [ 14 ] [ 82 ] [ 00 ] [ 10 ] [ 91 ] [ 83 ]

For each possible input, we need the values that are used to compute it in the algorithm. The first
input (v0) is introduced using a head in Z2

10 and the other input values is introduced using three group
values for each input. The values are given in Table A6.
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Table A6. Input table.

IT v0 v1 v2 v3 v4
i 0 1 2 3 4 5 6 7 8 9 10 11 12
0 [ 33 ] g1 g8 g9 g6 g1 g6 g4 g3 g1 g11 g6 g3
1 [ 82 ] g8 g5 g11 g8 g7 g4 g9 g4 g3 g1 g1 g4
2 [ 18 ] g6 g7 g0 g7 g10 g1 g1 g4 g11 g11 g1 g2
3 [ 01 ] g3 g5 g3 g2 g2 g5 g9 g11 g4 g11 g6 g8
4 [ 68 ] g9 g8 g9 g6 g8 g4 g11 g8 g7 g9 g10 g8
5 [ 95 ] g11 g1 g5 g1 g4 g7 g0 g3 g3 g0 g9 g9
6 [ 10 ] g2 g10 g0 g6 g3 g7 g1 g6 g5 g8 g3 g7
7 [ 67 ] g3 g1 g8 g4 g2 g1 g1 g3 g0 g1 g4 g1
8 [ 31 ] g3 g8 g1 g6 g0 g1 g0 g11 g5 g6 g9 g11
9 [ 78 ] g5 g11 g5 g4 g1 g7 g3 g9 g7 g1 g7 g5
a [ 02 ] g10 g7 g0 g6 g0 g5 g11 g6 g8 g5 g4 g5
b [ 19 ] g2 g6 g2 g5 g6 g0 g5 g8 g2 g1 g8 g10
c [ 70 ] g8 g5 g9 g4 g6 g1 g3 g10 g1 g1 g6 g11
d [ 13 ] g1 g8 g11 g5 g0 g2 g2 g8 g3 g8 g5 g0
e [ 23 ] g10 g7 g6 g4 g8 g2 g8 g10 g9 g8 g9 g7
f [ 29 ] g8 g11 g8 g10 g9 g4 g3 g1 g6 g9 g8 g10

The reduction step in this algorithm, which is called step, swaps the heads between Z2
10 and Z2

11.

Algorithm A2 Basic reduction step.

Require: w is a head, gi ∈ G
1: if w ∈ Z2

10 then

2: return giR0(g−1
i w)

3: else {w ∈ Z2
11}

4: return giR1(g−1
i w)

5: end if

The multiplication of the elements of a group by the heads is done with the matrix representation
of the group elements. Therefore, in the computation giRj(g−1

i w), the matrices corresponding to gi
and g−1

i are over different rings. The full implementation is given in Algorithm A3.
The last public element of the implementation is the program itself.
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Algorithm A3 Public program (obfuscated version).

1: w← IT0(v0)
2: w← step(IT1(v1), w)
3: w← step(g6, w)
4: w← step(IT2(v1), w)
5: w← step(IT3(v1), w)
6: w← B(w)
7: w← step(IT4(v2), w)
8: w← step(g4, w)
9: w← step(IT5(v2), w)

10: w← step(IT6(v2), w)
11: w← B(w)
12: w← step(IT7(v3), w)
13: w← step(g10, w)
14: w← step(IT8(v3), w)
15: w← step(IT9(v3), w)
16: w← B(w)
17: w← step(IT10(v4), w)
18: w← step(g11, w)
19: w← step(IT11(v4), w)
20: w← step(IT12(v4), w)
21: w← B(w)
22: return numeric value of w

We see an execution of the whole function with the input values v0 = 1,v1 = 6,v2 = a,v3 = 5 and
v4 = b.

1: w← [ 82 ]

2: w← g2R0

(
g−1

2 w
)
= [ 4 4

X 7 ] R0 ([ 5 7
8 5 ] [

8
2 ]) = [ 64 ]

3: w← g6R1

(
g−1

6 w
)
= [ 9 5

2 1 ] R1 ([ 6 9
1 5 ] [

6
4 ]) = [ 01 ]

4: w← g10R0

(
g−1

10 w
)
= [ 4 X

X 6 ] R0 ([ 9 2
2 5 ] [

0
1 ]) = [ 85 ]

5: w← g0R1

(
g−1

0 w
)
= [ 1 0

0 1 ] R1 ([ 1 0
0 1 ] [

8
5 ]) = [ 65 ]

6: w← B ([ 65 ]) = [ 33 ]

7: w← g6R0

(
g−1

6 w
)
= [ 6 9

1 5 ] R0 ([ 9 5
2 1 ] [

3
3 ]) = [ 94 ]

8: w← g4R1

(
g−1

4 w
)
= [ 9 2

2 5 ] R1 ([ 4 X
X 6 ] [

9
4 ]) = [ 34 ]

9: w← g0R0

(
g−1

0 w
)
= [ 1 0

0 1 ] R0 ([ 1 0
0 1 ] [

3
4 ]) = [ X8 ]

10: w← g5R1

(
g−1

5 w
)
= [ 5 3

2 5 ] R1 ([ 7 7
1 4 ] [

X
8 ]) = [ 58 ]

11: w← B ([ 58 ]) = [ 57 ]

12: w← g0R0

(
g−1

0 w
)
= [ 1 0

0 1 ] R0 ([ 1 0
0 1 ] [

5
7 ]) = [ 18 ]

13: w← g10R1

(
g−1

10 w
)
= [ 5 8

8 9 ] R1 ([ 6 1
1 4 ] [

1
8 ]) = [ 27 ]

14: w← g3R0

(
g−1

3 w
)
= [ 7 1

1 5 ] R0 ([ 1 8
8 5 ] [

2
7 ]) = [ 22 ]

15: w← g3R1

(
g−1

3 w
)
= [ 5 2

2 1 ] R1 ([ 5 X
X 7 ] [

2
2 ]) = [ 31 ]

16: w← B ([ 31 ]) = [ 33 ]

17: w← g1R0

(
g−1

1 w
)
= [ X 2

0 1 ] R0 ([ 9 7
0 1 ] [

3
3 ]) = [ 96 ]

18: w← g11R1

(
g−1

11 w
)
= [ 9 0

0 9 ] R1 ([ X 0
0 X ] [

9
6 ]) = [ 07 ]

19: w← g8R0

(
g−1

8 w
)
= [ 5 2

X 6 ] R0 ([ 1 5
8 9 ] [

0
7 ]) = [ 3X ]

20: w← g10R1

(
g−1

10 w
)
= [ 5 8

8 9 ] R1 ([ 6 1
1 4 ] [

3
X ]) = [ 45 ]
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21: w← B ([ 45 ]) = [ 15 ]

22: return 10 · 1 + 5 = f

Appendix B.3. Obfuscated Version (Private Elements)

Beyond this point, we look at the information that is not available to the attacker, whose only
visible elements are those given in the previous subsection. Some of the elements might be guessed by
the attacker, but they are not visible.

The keys used in this implementation are k0 = c, k1 = 8, k2 = 1, k3 = f, k4 = 1 and k5 = 4.
We can check that the obfuscated computation of ξ(1, 6, a, 5, b) given in the previous subsection is
correct using Algorithm A1 and the keys provided.

1: w1 ← S(k0 ⊕ v0) = S(d) = 9

2: w2 ← S(k1 ⊕ v1 ⊕ w1) = S(7) = 8

3: w3 ← S(k2 ⊕ v2 ⊕ w2) = S(3) = 1

4: w4 ← S(k3 ⊕ v3 ⊕ w3) = S(b) = c

5: w5 ← S(k4 ⊕ v4 ⊕ w4) = S(6) = b

6: return k5 ⊕ w5 = f

One of the things that could be surprising at first sight to someone not used to this arithmetic is
that, although we make computations in the vector space V = F4

2, we use matrices over the rings Z10

and Z11. We only need heading spaces that let us define the actions of the group G up to isomorphism,
and in this case the group can be described using these particular matrices.

We give an alternative presentation of the public group G that is used to define further private
elements of the obfuscation. The group G can be described as a non-commutative group generated by
three elements, u, v and w, such that u3 = v2 = w2 = 1. The element w commutes with all the others,
but the other two do not commute because uv = vu2. All the elements of the group can be written as
wivjvk for i ∈ {0, 1}, j ∈ {0, 1} and k ∈ {0, 1, 2}. One possible correspondence between the elements of
G that we have been using and this representation is given in Table A7.

Table A7. Group correspondences.

Group wivjuk

g0 1
g1 wvu
g2 vu
g3 u2

g4 wu
g5 w
g6 wvu2

g7 v
g8 wv
g9 vu2

g10 u
g11 wu2

Although this group can be found using 4× 4-matrices over F2 (in fact, there are 30,240 ways
to select u, v and w matching the conditions in Mat4×4(F2)), the implementation uses the internal
commutative group M = F6

2 and thus 6× 6 matrices over F2 to represent the endomorphisms.
The computation of the real value represented by each element and the control values is done

with the matrix P =

 1 1 1 0 0 1
1 1 0 1 0 0
0 1 1 1 0 0
0 1 0 0 1 1
1 1 1 0 1 0
1 1 1 1 0 1

.
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The first four bits are the projection and the last two are a control value. In this case, the control
value is computed in the same way during the program.

The representation of G using matrices in Mat6×6(F2) is made using the matrices

u =

 1 0 1 1 1 0
1 0 1 1 1 1
1 0 0 0 1 1
1 1 0 1 1 1
1 1 0 1 0 0
1 1 0 0 0 1

, v =

 1 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 0 1 0 1
0 1 0 1 1 0

 and w =

 1 1 1 1 1 1
1 0 1 1 1 0
0 0 1 0 0 0
1 0 0 1 0 1
0 0 0 0 1 0
0 1 1 1 1 0

.

The action of the group G on M = F6
2 using these matrices generates 11 orbits and all of them

are valid elements in this implementation. For each of them, we fix an element mi that is the base
point to generate the orbit. The other elements of the orbit are Gmi = {gmi : g ∈ G}. For each of
these representatives, we have to compute the stabilizer to find other elements in the heading spaces
that could represent them. The list of representatives and stabilizers over the vector space F6

2 is given
in Table A8. The vectors in F6

2 are represented in horizontal form, but they should be considered
column vectors.

Table A8. Orbits representatives and stabilizers.

Representative Stabilizer

m0 = (0, 0, 0, 0, 0, 0) Gm0 = G
m1 = (1, 1, 1, 0, 1, 0) Gm1 = {1, vu2}
m2 = (1, 0, 0, 0, 1, 0) Gm2 = {1, vu2}
m3 = (1, 0, 1, 0, 0, 0) Gm3 = {1}
m4 = (0, 1, 1, 0, 0, 0) Gm4 = {1, vu2, w, wvu2}
m5 = (0, 0, 0, 1, 0, 0) Gm5 = {1, wvu}
m6 = (1, 0, 0, 1, 0, 0) Gm6 = {1}
m7 = (1, 1, 0, 0, 0, 1) Gm7 = {1, vu, w, wvu}
m8 = (1, 0, 1, 0, 0, 1) Gm8 = {1, w}
m9 = (0, 1, 1, 0, 1, 0) Gm9 = {1, wvu}
m10 = (1, 1, 1, 1, 0, 1) Gm10 = {1, vu2, w, wvu2}

If we use the action over the heading spaces with the corresponding matrices given in Table A2,
we get more than 11 orbits, but we only need to consider representatives that can extend the arithmetic
of the mi. Strictly speaking, the heading spaces are the subsets of Z2

10 and Z2
11 that belong to the orbits

that we select for the representation, but this is not a problem because we define the tables over the
other elements with some random values, and they are not reached during a legitimate execution of
the program (unless we introduce fake instructions).

As we have seen, the construction of the correspondences between the heads and the elements of
M requires the selection of elements xi and yi in the heading spaces such that that the stabilizer of the
element(s) that represents mi in the heading spaces is (are) contained in the stabilizer of mi. In this
case, we only use one representative for each mi, although more can be used. This would increase the
number of possible representations for each element. In this case, we have multiple representations
because, in some cases, the stabilizers of the elements in the heading spaces are strictly smaller than
the stabilizers of the corresponding values mi. The tables with the corresponding representative in the
heading spaces and the stabilizers of these representatives are given in Table A9 for the heading space
Z2

10 and Table A10 for the heading space Z2
11.
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Table A9. Representatives in heading space Z2
10.

Representative Stabilizer

x0 = [ 80 ] Gx0 = {1, vu} ⊆ G = Gm0

x1 = [ 08 ] Gx1 = {1, vu2} ⊆ {1, vu2} = Gm1

x2 = [ 52 ] Gx2 = {1, vu2} ⊆ {1, vu2} = Gm2

x3 = [ 47 ] Gx3 = {1} ⊆ {1} = Gm3

x4 = [ 56 ] Gx4 = {1, vu2} ⊆ {1, vu2, w, wvu2} = Gm4

x5 = [ 66 ] Gx5 = {1, wvu} ⊆ {1, wvu} = Gm5

x6 = [ 69 ] Gx6 = {1} ⊆ {1} = Gm6

x7 = [ 16 ] Gx7 = {1, wvu} ⊆ {1, vu, w, wvu} = Gm7

x8 = [ 37 ] Gx8 = {1} ⊆ {1, w} = Gm8

x9 = [ 71 ] Gx9 = {1} ⊆ {1, wvu} = Gm9

x10 = [ 64 ] Gx10 = {1, wvu2} ⊆ {1, vu2, w, wvu2} = Gm10

Table A10. Representatives in heading space Z2
11.

Representative Stabilizer

y0 = [ 69 ] Gy0 = {1, wv} ⊆ G = Gm0

y1 = [ 25 ] Gy1 = {1, vu2} ⊆ {1, vu2} = Gm1

y2 = [ 18 ] Gy2 = {1, vu2} ⊆ {1, vu2} = Gm2

y3 = [ 26 ] Gy3 = {1} ⊆ {1} = Gm3

y4 = [ 65 ] Gy4 = {1} ⊆ {1, vu2, w, wvu2} = Gm4

y5 = [ 99 ] Gy5 = {1, wvu} ⊆ {1, wvu} = Gm5

y6 = [ 87 ] Gy6 = {1} ⊆ {1} = Gm6

y7 = [ 33 ] Gy7 = {1, wvu} ⊆ {1, vu, w, wvu} = Gm7

y8 = [ 06 ] Gy8 = {1} ⊆ {1, w} = Gm8

y9 = [ 83 ] Gy9 = {1} ⊆ {1, wvu} = Gm9

y10 = [ 57 ] Gy10 = {1, vu2} ⊆ {1, vu2, w, wvu2} = Gm10

To build the internal group of the obfuscation, we consider the group H, which is a cyclic group
of order 3 generated by an element h. This group has a nontrivial automorphism τ : H → H given
by τ(ht) = h−t and we can use it to define ϕ : G → Aut(H) by ϕ(wivjuk) = τi. This is a group
homomorphism because the subgroup generated by w is a direct summand of G. This direct summand
has order 2 and thus it is isomorphic to Aut(H). The homomorphism ϕ can be considered as the
projection over the subgroup generated by w and the composition with the isomorphism between this
subgroup and Aut(H).

Using ϕ, we can generate the semi-direct product H oϕ G. This is the internal group of the
obfuscation and it has 36 elements. This group can be represented on Aut(M) using the matrix

h =

 1 1 0 1 0 0
1 0 1 1 1 0
0 0 1 0 0 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 1 0 0 0

 and the previous definitions of u, v and w. This means H oϕ G is a subgroup of

Aut(M). Note that H oϕ G cannot be given by an extension of G in Mat2×2(Z11), but this is not
necessary because we need actions only for the group G over the heading spaces.

We have only one base point b = (1, 0, 1, 0, 1, 1). Using these values, we can compute the values
associated to the heads and links. Suppose g is a link with H-modifier h2, then the real value is
h2gb ∈ M and we can use the matrix P to compute Ph2gb, whose first four bits would be the value in
V and the last two the control value.

Given a head x ∈ Z2
10 with H-modifier h, we have to search for a group value g and a

representative of the orbit xi such that x = gxi. This value g is a 2 × 2 matrix over Z10, but we
have to get the matrix associated to the same group element, but in Mat6×6(F2), to compute gmi and
finally apply the H-modifier to it. The value in M is hgmi. The value in V and the control values are
the first four bits of the vector Phgmi and the last two, respectively.



Sensors 2019, 19, 1122 29 of 31

In this program, we have also included some extra affine transformations that modify the final
value in V for heads and links. The flow and the critical points of the program are given in Figure A1.

This figure includes the information for the H-modifiers and the control values at each critical
point. The critical points given by inputs with multiples links have H-modifiers for each entry, and
they are not equal for all inputs. The only rule is that, at the next critical point, the H-modifier should
be correct, and this is checked for all inputs because it depends on the values ϕg and the previous
H-modifiers.

The addition of keys has been combined with the affine transformations on each connected
component, thus it is not necessary to make an explicit computation to add the key.

There are four connected components, I, II, III and IV. Each has an affine transformation that is
made at the starting points of the component and restored at the ending point. The addition of the
key is combined with the affine constant to get the correct result. The linear transformations and the
additive constants are listed in Table A11.

IT0(v) = S(k0 + v)

Add k1

Add v1 IT1

S

Add k2

Add v2 IT2

S

Add k3

Add v3 IT3

S

Add k4

Add v4 IT4

Output S(v) + k5

Flow

H-modif. h, control (0, 1)

Critical Points

Control (1, 1)

H-modif. h2, control (1, 0)

H-modif. 1, control (1, 1)

Control (1, 0)

H-modif. h2, control (0, 1)

H-modif. h2, control (1, 0)

Control (1, 0)

H-modif. h2, control (0, 0)

H-modif. h, control (0, 1)

Control (1, 0)

H-modif. h2, control (1, 1)

I

II

III

IV

Figure A1. Connected components, flow and critical points.
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Table A11. Affine transformations on connected components.

Connected Component Linear Transformation Additive Constant

I

[
0 1 0 1
1 1 0 1
1 1 1 1
1 1 0 0

]
a

II

[
1 1 0 1
0 1 1 1
1 1 0 0
0 0 1 1

]
8

III

[
0 1 0 0
0 1 1 1
1 1 0 0
0 1 0 1

]
6

IV

[
0 1 0 0
1 0 1 1
0 0 0 1
0 1 1 0

]
b

Note that it is not necessary to use an output table because, using different control values, table B
can be reused for the output when the control value is (1, 1). In this implementation, we have not used
dissolving maps because the program is designed to compute combinations of heads and links and the
combination of two heads it not required.
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