
sensors

Article

Microservice-Oriented Platform for Internet of Big
Data Analytics: A Proof of Concept

Zheng Li * , Diego Seco † and Alexis Eloy Sánchez Rodríguez
Department of Computer Science, University of Concepción, Concepción 4070409, Chile; dseco@udec.cl (D.S.);
alexisanchez@udec.cl (A.E.S.R.)
* Correspondence: imlizheng@gmail.com or zli@udec.cl; Tel.: +56-41-220-3686
† Millennium Institute for Foundational Research on Data, Chile.

Received: 15 January 2019; Accepted: 28 February 2019; Published: 6 March 2019

Abstract: The ubiquitous Internet of Things (IoT) devices nowadays are generating various and
numerous data from everywhere at any time. Since it is not always necessary to centralize and analyze
IoT data cumulatively (e.g., the Monte Carlo analytics and Convergence analytics demonstrated in
this article), the traditional implementations of big data analytics (BDA) will suffer from unnecessary
and expensive data transmissions as a result of the tight coupling between computing resource
management and data processing logics. Inspired by software-defined infrastructure (SDI), we
propose the “microservice-oriented platform” to break the environmental monolith and further
decouple data processing logics from their underlying resource management in order to facilitate BDA
implementations in the IoT environment (which we name “IoBDA”). Given predesigned standard
microservices with respect to specific data processing logics, the proposed platform is expected to
largely reduce the complexity in and relieve inexperienced practices of IoBDA implementations. The
potential contributions to the relevant communities include (1) new theories of a microservice-oriented
platform on top of SDI and (2) a functional microservice-oriented platform for IoBDA with a group of
predesigned microservices.

Keywords: big data analytics; Internet of Things; microservices architecture; microservice-oriented
platform; software defined infrastructure

1. Introduction

The emerging age of big data is leading us to an innovative way of understanding our world and
making decisions. In particular, it is the data analytics that eventually reveals the potential values
of datasets and completes the value chain of big data. When it comes to big data analytics (BDA),
in addition to theories, mathematics, and algorithms, suitable infrastructures and platforms are also
prerequisites to efficient BDA implementations. In practice, it is the managed and scheduled resources
that deliver computing power to data processing logics to fulfill BDA jobs at runtime. In this article,
we clarify the physical resources to be infrastructure, while treating the intermediate supporting
mechanisms as layered platforms between the runtime jobs and their infrastructure.

Driven by increasing BDA demands, various and numerous frameworks and tools have emerged
as BDA platforms [1]. According to their functional specifications, these BDA platforms generally
combine data processing logics together with computing resource management. For instance, to
perform Hadoop MapReduce jobs, a Hadoop system including its distributed filesystem needs
to be installed and configured on a dedicated cluster managed by YARN [2]. Consequently, the
current BDA implementations still require significant effort on environmental configurations and
platform manipulations.

Furthermore, based on the de facto platforms, BDA applications tend to be environmentally
monolithic because they are essentially stuck to predefined computing resources no matter how

Sensors 2019, 19, 1134; doi:10.3390/s19051134 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9704-7651
https://orcid.org/0000-0002-2514-9907
http://dx.doi.org/10.3390/s19051134
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1134 2 of 16

redundant the resources are. This environmental monolith is generally acceptable for traditional BDA
problems with centralized workloads. When it comes to the booming ecosystem of Internet of Things
(IoT), there is no doubt that such a mechanism will require tremendously extra overhead for big data
collection from largely distributed sensors/devices for later analytics [3]. Nevertheless, IoT-oriented
data analytics could eventually become inefficient and expensive if we always transfer and process
data cumulatively in a central repository, because many IoT-oriented BDA problems (which we name
“IoBDA”) can be addressed without combining the originally distributed data [4,5].

Inspired by software-defined infrastructure (SDI) [6,7], we propose the use of a standard
microservice-oriented platform to relieve the complexity in IoBDA implementations and to break the
environmental monolith of IoBDA applications. In fact, it has been identified that deploying physical
infrastructures for BDA applications can be costly and challenging [8], not to mention addressing
the possibly tremendous heterogeneity and diversity in hardware. To reduce the infrastructural cost,
as well as obtain deployment agility and automation, there has arisen a software-driven trend in
making the computing environment programmable and software-defined [9]. Typical examples of SDI
include software-defined network (SDN) and software-defined storage (SDS). SDN decouples the data
transmission control from networking devices, such as switches and routers [10], SDS separates the
data store management from storage systems [2], and both of them leverage heterogeneous hardware
to facilitate support of workload demands via open-interface programming. In other words, SDI is
mainly focused on the programmable management and control of computing resources. In contrast,
our proposed microservice-oriented platform is expected to further isolate domain-specific business
logics from the resource control and management.

This article mainly portrays the proof of concept of the microservice-oriented platform for IoBDA,
and it demonstrates this idea by using Monte Carlo analytics and Convergence analytics that both fit
in the characteristics of the IoT environment. We believe such an idea can theoretically be justified by
the philosophy of osmotic computing [11] and technically be supported by the existing underlying
frameworks [12]. We are still investigating IoT-friendly data processing logics and gradually migrating
them to the microservices architecture (MSA) in order to further solidify our proposed platform.

On the basis of our ongoing efforts and current outcomes, we expect this article to make a twofold
contribution to both the IoT and BDA communities:

• A new theory of a microservice-oriented platform on SDI. The theory essentially evolves the
architecture of BDA implementations in general, i.e., further decoupling data processing logic
from computing resource management. Such an architecturally loose coupling will generate
more research opportunities in academia and will better guide BDA practices, particularly in the
dynamic IoT environment.

• A functional microservice-oriented platform with predesigned microservices. In addition to
facilitating IoBDA implementations for practitioners, a functional platform will, in turn, drive
its own evolution along two directions. Vertically, our use cases can help validate and improve
the underlying technologies (deeper-level platforms or frameworks) [12] while strengthening
their compatibility with our platform. Horizontally, the initial functionalities can inspire more
research efforts that aim to enrich microservice-oriented data processing logics and expand the
applicability of this platform.

The remainder of this article is organized as follows. Several studies related to our work are
summarized in Section 2. Section 3 elaborates on the definition of the microservice-oriented platform for
IoBDA and briefly justifies its feasibility. Sections 4 and 5 demonstrate two IoT-friendly data processing
logics to facilitate implementing Monte Carlo analytics and Convergence analytics, respectively, which
will, in turn, be used to prototype our microservice-oriented platform. Section 6 draws conclusions
and outlines two directions for our future work.

Sensors 2019, 19, 1134 3 of 16

2. Related Work

By offering many benefits, including better scalability, reliability, and maintainability, microservice
technologies have been employed successfully in practical projects (e.g., data organization and analysis
in a Solar Nexus project [13]). However, these projects are still based on a dedicated computing
environment, and their application scenarios have nothing to do with distributed data sources in the
dynamic IoT environment.

On the basis of observations that recent technological advances are moving Cloud’s centralized
computing capacity close to users, osmotic computing has been proposed to represent the
new paradigm of dynamic microservice-oriented computing that exploits both Cloud and Edge
resources [11]. Unlike our proposed platform in this article that aims at technical solutions to
IoBDA, the authors of [11] essentially supply a philosophy of MSA in smart environments. On
the other hand, this philosophy can be used to justify the novelty and feasibility of our proposed
microservice-oriented platform.

As a matter of fact, given its advantages of agility and scalability, MSA has been considered
promising middleware architecture for IoT in general [14]. When it comes to the BDA domain, the
closest work to ours is the distributed BDA framework for IoT [12]. It also emphasizes handling
different data streams from various sources. Nevertheless, the layered framework in this study
is mainly a microservice management mechanism including management policies, a messaging
infrastructure, etc. Although this mechanism is supposed to facilitate the development of MSA-based
applications, it does not care about the design and implementation of individual microservices, not to
mention their boundary identification. On the contrary, our work is intended to support specific data
processing logics with predesigned standard microservices (and/or templates), which will largely help
inexperienced developers facing immature IoBDA implementations. Considering the microservice
management at runtime, in particular, this framework [12] can act as a supporting layer beneath our
proposed platform.

3. Conceptual Explanation and Justification

Emerging from the agile practitioner communities, MSA emphasizes addressing the shortcomings
of monolithic architecture by decomposing the monolith into multiple small-scale, loosely coupled,
and independently deployable microservices and making them communicable with each other through
lightweight mechanisms (e.g., REST APIs) [15]. In fact, the booming container technology has
enabled virtualization for many types of edge devices [16], and this eventually supports building
container-based microservices within those devices. Note that it is possible to introduce agent
microservices (similar to the concept of “infrastructure mediate systems” [17]) to represent or
coordinate non-virtualizable binary sensors.

Unfortunately, despite the various benefits of MSA, there is still a lack of systematic guidelines for
microservice boundary identification in general [18]. Thus, it would be more feasible and practical to
narrow our focus down to specific problems and reach consensus on concrete microservices in the same
context. In turn, the predefined microservices can be shared and employed to facilitate constructing
MSA-based applications in the specific problem domain. In other words, given a particular problem
context, it will be worthwhile and beneficial to build a scaffold-like platform in advance by designing
a family of domain-specific microservices (or microservice templates) that predefine different pieces of
business logics potentially involved in the problem.

In this work, we dedicate ourselves to developing a microservice-oriented platform for IoBDA:
i.e., the problem context here is IoBDA. As mentioned previously, in contrast to different instances
of SDI, our platform emphasizes the microservice-level abstraction of IoT-friendly BDA logics. The
so-called microservices contained in the platform essentially cater loosely coupled and distributable
tasks of those BDA logics, as demonstrated in Sections 4 and 5. Ideally, this context-specific platform
will be able to cover various BDA logics, and each logic should have been well-analyzed into suitable
tasks to match the predesigned microservices (and/or microservice templates).

Sensors 2019, 19, 1134 4 of 16

Since there is no one-size-fits-all approach to BDA implementations, we are gradually
investigating different data processing logics that are applicable to the IoT environment, such as Monte
Carlo analytics, which can obtain approximate results through random observations or sampling,
and Convergence analytics, which can rely on cascade MapReduce processes to gather increasingly
dense results. It is noteworthy that both scenarios are compatible with the analytics characteristics
in IoT, i.e., to divide a problem into micro-portions and to reduce unnecessary data transfer without
sacrificing meaningful insights gained from the whole data [4,5].

In practice, the microservice-oriented platform will enable the implementation of data processing
logics in the IoT environment via the orchestration of a set of standard microservices (and/or
microservice templates). Benefiting from the nature of loose coupling, early-task microservices can be
deployed close to where the data are generated so as both to avoid unnecessary data accumulation and
to conduct data processing jobs more efficiently. In particular, programming a data processing logic
will be realized as functional service calls without necessarily being concerned with or even being
aware of the backend resource management.

More importantly, the microservice approach can conveniently address the challenges in the
integration of heterogeneous sensor technologies [19,20] and in the communication between IoT
sensors/devices. Similar to the early computer industry, today’s sensor industry has not yet employed
or reached any global agreement on standard protocols and universal interfaces [21]. Given the
various niche markets, different sensor vendors even tend to continue the existing incompatible
protocols and keep their own proprietary standards in order to secure market shares against their
competitors. By wrapping different data processing tasks into microservices, sensors will be able
to expose their interfaces as unified and language-neutral APIs (e.g., typical REST APIs look like
“cloudpracticeaesr.appspot.com/mci/1000000”, as demonstrated in Section 4), while diverse sensor
communications will then become standard microservice communications that mainly rely on the
predominant TCP/UDP-based Internet protocols [22].

4. Case I: Microservice-Oriented Logic for Monte Carlo Analytics

4.1. Architectural Design with Microservice Identification

By stressing the independence and distribution of IoT sensors/devices, we came up with a
microservice-oriented star-topology logic (cf. Figure 1) for implementing IoT-based Monte Carlo
solutions for random sampling problems that can represent a broad class of easy-to-parallel
applications. To address a random sampling problem is to statistically perform a set of observations
from a tremendous range of (or even infinite) possibilities to approximate the answer under a particular
condition. Following the Monte Carlo method, suppose the exact probability of a situation is P, and
we randomly perform observations; then, the percentage of observations that match the situation will
approximately be equal to P if the observation number is large enough. In this case, the workload
of performing observations (e.g., population estimation through traffic monitoring in a city) can
conveniently be divided into any size of pieces and distributed widely.

We are mainly concerned with three roles in the generic logic of Monte Carlo analytics, as
illustrated in Figure 1. Correspondingly, we predefine microservices with respect to these roles and
briefly explain them as follows.

• Observer is a microservice template to be instantiated for specific observation tasks. Multiple
observation tasks can be accomplished either by a group of observer instances or by multiple
observation activities of a single observer instance. As the name suggests, observer instances
are supposed to be deployed or migrated to virtualization-friendly IoT sensors/devices or
their governors.

• Central Processor splits a whole job into independent pieces as observation tasks, assigns
individual tasks to available observer instances, and correspondingly receives observation results.
In addition to passing the observation results to Observation Aggregator, the central processor

cloudpracticeaesr.appspot.com/mci/1000000

Sensors 2019, 19, 1134 5 of 16

can also incrementally retrieve and manipulate the aggregated observation results into continuous
and value-added outputs if needed.

• Observation Aggregator collects, stores, and can directly output observation results if they are
immediately ready to use. Note that the observation results here should not be a simple transition
of original data from the observer side. Taking a sampling task as an example, the observation
will send back a statistical result instead of the information about detailed samples (see the
demonstration in Section 4.2). In other words, the observation aggregation here does not conflict
with the principle of collectionless analytics in the IoT environment.

Observer

Instance

Central

Processor

••• •••

Observation

Aggregator

••• •••

Figure 1. Star topology of the microservice-oriented logic for Monte Carlo analytics.

Given these predefined microservices and the pre-settled Monte Carlo processing logic,
an IoT-friendly random sampling problem would quickly be addressed on such a platform. Note that
the underlying resource management mechanisms (e.g., Google App Engine mentioned in Section 4.2)
are completely transparent to the platform users.

4.2. Conceptual Validation Using Double Integral Estimation

To demonstrate and initially validate the effectiveness and efficiency of such a platform for Monte
Carlo analytics, we selected the approximation of a double integral as the random sampling problem.
A double integral of a function can be interpreted as the volume between the surface given by the
function and its x–y region. In particular, the area of any x–y region that is represented as a single
integral can also be estimated through the Monte Carlo method, as described by Equation (1).

∫ b

a
f (x)dx ≈ b− a

N

N

∑
i=1

f (xi) (1)

where f (xi) is the ith random evaluation of the function within the interval [a, b], and N indicates the
total number of trials in the Monte Carlo estimation.

Although the generic description in Equation (1) aims at a single integral, we can conveniently
extend it to a double integral by iterating two similar steps, i.e., (1) area approximation and (2) volume
approximation according to the estimated area, as concisely outlined in Algorithm 1.

Sensors 2019, 19, 1134 6 of 16

Algorithm 1 Monte Carlo Approximation of Double Integral
Input: N: the total number of trials in Monte Carlo estimation.
Output: The approximation result of the predefined double integral

∫ b
a

∫ h(x)
g(x) f (x, y)dydx.

1: valid_points← 0 . for counting the number of points inside the valid x–y region.
2: function_evaluations← 0 . for summing up individual evaluations of f (x, y).
3: X ← a random number between a and b
4: Y ← a random number between MIN{g(x)} and MAX{h(x)}, x ∈ [a, b]
5: for i← 1, N do
6: if g(X) <= Y and Y <= h(X) then . If the random point (X, Y) is located inside the valid x–y region.
7: valid_points← valid_points + 1
8: function_evaluations← function_evaluations + f (X, Y)
9: end if

10: end for
11: area← (b− a) · (MAX{h(x)} −MIN{g(x)}) · valid_points/N, x ∈ [a, b] . Estimating the area of the valid x–y region.
12: volume← area · function_evaluations/valid_points . Note that the function was evaluated valid_points times.
13: return volume . The estimated volume as the double integral result.

We explain the complete process by using a concrete example specified in Equation (2).
The projection of the corresponding function f (x, y) = (4xy− y3) onto the x–y plane is illustrated in
Figure 2. It is noteworthy that the x–y plane covering the projection happens to be a unit square in this
case, and it is constrained by x ∈ [0, 1], y ∈ [x3,

√
x].

∫ 1

0

∫ √x

x3
(4xy− y3)dydx (2)

Figure 2. Projection of the function f (x, y) = (4xy− y3) onto the x–y plane, x ∈ [0, 1], y ∈ [x3,
√

x].

When it comes to the area approximation, imagine that we blindly draw points inside the unit
square; there must be some points drawn inside the valid x–y region of the projection and others that
are not. After spreading numerous points randomly over the square, its area can be replaced with the
number of points, as can the x–y region’s area. Then, we will be able to use the ratio of point numbers
to satisfy the Monte Carlo approximation of the projection area, i.e., Amountprojection/Amountall =

Areaprojection/Areaall.
While drawing points, the evaluations of f (x, y) also accumulate at the points located inside the

valid x–y region. Once the projection area is estimated, we can use the accumulated evaluations to

Sensors 2019, 19, 1134 7 of 16

calculate and sum up the corresponding solid volumes and eventually use the average volume to
approximate the double integral result.

Recall that, in general, the larger the number of random samples, the more accurate the Monte
Carlo approximation. Here, we decided to split this unlimited size of sampling workload into
individual tasks and define each task as drawing 1 million points in a unit square, i.e., x, y ∈ [0, 1].
Then, we implemented the aforementioned observer role to fulfill such a task and deployed a number
of observer instances on multiple Python runtimes of Google App Engine (one of the observer instances
is at https://cloudpracticeaesr.appspot.com/mci/1000000, which returns (1) the number of points
that fall inside the projection area from 1 million random-point generations and (2) the accumulated
evaluations of the function f (x, y) = (4xy− y3) at those points). The experimental result of this Monte
Carlo analytics experiment is visualized in Figure 3. Compared with the double integral value 55/156
or 0.3525641, it is clear that as the number of observer instances (or observation activities) grows, we
can expect progressively more precise approximations of the double integral. Meanwhile, the local
computing workload of the central processor will increase trivially, as it only deals with the random
sampling results.

0.3515

0.3518

0.3521

0.3524

0.3527

0.353

1 11 21 31 41 51 61 71 81 91 101

Number of Observation Activities (one million points each)

Double Integral Value Monte Carlo Approximation

Figure 3. Monte Carlo approximation of the double integral
1∫

0

√
x∫

x3

(4xy− y3)dydx as the sampling size

(number of observation activities) grows.

To help validate the potential efficiency of Monte Carlo analytics in the distributed IoT
environment, we further conducted experiments to compare the performance of finishing the same
integral approximation job (on the basis of 10 million random points generated) between the local
centralized calculation and the application of different numbers of observer instances. In particular,
our local environment is a laptop with an Intel Core i3-6100U @2.3 GHz processor and 4 GB of RAM.
To simulate the distributed locations of sensors, we randomly deployed observer instances to different
geographical regions of Google App Engine [23], as shown in Table 1.

Table 1. Multiple observer instances randomly deployed to different regions of Google App Engine.

Number of
Deployed
Observer
Instances

Region

Number of
Deployed
Observer
Instances

Region

Two us-central (Iowa) One us-east1 (South Carolina)
One us-west2 (Los Angeles) One us-east4 (Northern Virginia)
One northamerica-northeast1 (Montréal) One southamerica-east1 (São Paulo)
One europe-west2 (London) One europe-west3 (Frankfurt)

https://cloudpracticeaesr.appspot.com/mci/1000000

Sensors 2019, 19, 1134 8 of 16

By manually balancing the workload among observer instances and triggering multiple
observation activities if needed, we obtained experimental the results illustrated in Figure 4. Note that
all the experiments were repeated 10 times so that we could expect relatively more accurate results by
using the average values. We also calculated the standard deviation of the 10-trial results from every
experimental scenario, as indicated via the error bars in Figure 4. It seems that fewer observer instances
incur higher performance variations. This phenomenon is due to fewer observer instances undertaking
more observation activities to accomplish the same-sized job and, consequently, exaggerating the
uncertainty in data transmission latency across the Internet.

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
)

Number of Observer Instances

Using Observer Instances

Local Resource Only

Figure 4. Monte Carlo approximation of the double integral
1∫

0

√
x∫

x3

(4xy − y3)dydx, with the fixed

workload (10 million sampling points) as the number of observer instances growing. The error bars
indicate the performance variations in the Monte Carlo approximation job.

Acting as a baseline for comparison, the average execution time of locally approximating the

double integral
1∫

0

√
x∫

x3
(4xy− y3)dydx (without considering any data transmission) is about 14.453 s.

Since it does not make practical sense to compare the baseline with the case of a single-observer
instance, we intentionally removed the single-observer performance from Figure 4. Overall, it can
be seen that the Star-topology Monte Carlo analytics can beat its local version after involving more
than five observer instances in this case, even though the distributed “sensors” require extra Internet
communication overheads. In fact, there could be an even higher networking cost if collecting all
the raw data together before analytics (cf. Section 5.2). Thus, the scenario of IoT-based Monte Carlo
analytics would particularly be suitable for the applications when assuming “the more sensors, the
better performance”, which essentially takes advantage of horizontally scaling the whole system.
Such an advantage is also one of the reasons that we chose MSA to fit IoBDA, i.e., the microservice
technology naturally matches the characteristics of IoT, particularly in terms of better scalability and
maintainability [24].

4.3. Prospect of Practical Application

On the basis of this proof of concept for Monte Carlo analytics, we expect to prototype the platform
by aligning with practical use cases. For example, a possible use case would be a traffic monitoring
system that can facilitate urban design or help adjust local traffic policies. In detail, a single task to
be fulfilled by the Observer will be counting vehicles and pedestrians (analogous to the points inside
and outside the projection area, respectively, in Figure 2). The distributed observer instances can be
deployed together with sensors at different crossroads. Then, our platform prototype with suitable
central processing functionalities will be able to monitor and analyze the traffic information of a city.

Sensors 2019, 19, 1134 9 of 16

By emphasizing the Star topology of data processing in IoT, the Monte Carlo logic can be
conveniently extended to broader application types as long as the applications can take advantage
of the aforementioned horizontal scalability. We take sorting as a generic example application other
than Monte Carlo analytics. Imagine a job is to sort a large total of random numbers. The facilities of
our platform (e.g., the possible Docker files and deployment routines) for supporting Monte Carlo
analytics will remain the same, while developers only need to adapt the job’s implementation to the
Star-topology architecture and instantialize the corresponding microservice templates. For example,
a single task deployed in an observer instance can be (1) generating a small group of random numbers
and (2) using the Quick Sort algorithm to sort the generated random numbers; the central processor
can implement the Merge Sort algorithm to gradually receive and sort the numbers from all the
observer instances.

5. Case II: Microservice-Oriented Logic for Convergence Analytics

5.1. Architectural Design with Microservice Identification

At this current stage, we mainly use the well-known MapReduce logic to represent Convergence
analytics, which can significantly reduce the data size/amount during analytical processing, e.g., by
merging original and intermediate data. Furthermore, to better fit the characteristics of IoT, we consider
a Tree topology of Convergence analytics with cascade MapReduce logic in practice, as illustrated in
Figure 5. From the perspective of topology, Convergence analytics can be viewed as an extension of
Monte Carlo analytics. However, we distinguish between Monte Carlo analytics and Convergence
analytics by emphasizing different concerns of collectionless BDA. Specifically, Monte Carlo analytics
focuses on spreading observations, while Convergence analytics focuses on reducing the size of
data transmission.

Observer

Instance

Cache

Converger

••• •••

MapReduce

Converger

••• •••

Intermediate Intermediate

End

Figure 5. Tree topology of the microservice-oriented logic for Convergence analytics.

Similarly, we identify three main roles in Convergence analytics, as shown in the legends of
Figure 5. For the purpose of conciseness, although the MapReduce logic can further be broken down
into more specific roles (i.e., mapper and reducer) to be implemented as microservices, we do not
elaborate on those well-known component roles here. In addition, to avoid duplication, there is no
need to respecify the reusable role Observer (cf. Section 4.1). Thus, we only focus on and explain
different convergers as follows.

Sensors 2019, 19, 1134 10 of 16

• Cache Converger prepares data blocks by merging small pieces of data from a limited
range/cluster of IoT sensors/devices, whereas it does not reduce the overall data size. Cache
convergers could particularly be helpful for passing a large number of discrete data records to
the subsequent MapReduce logic, as dealing with tiny-data transactions would be inefficient in
terms of both execution time and energy expense [25]. In fact, caching data before transmission
has become an energy optimization strategy, especially for mobile devices [26]. Note that cache
convergers should be located at (or at least close to) the Internet edge in order to take advantage
of the relatively trivial overhead of edge communication for receiving small data pieces.

• Intermediate MapReduce Converger either receives preprocessed data blocks from observer
instances and cache convergers or receives pre-converged data from antecedent (also intermediate)
MapReduce convergers and then uses the MapReduce mechanism to further converge the received
data. Since we do not expect cache convergers to reduce data size/amount tremendously, the
outermost MapReduce convergers should also be located close to the edge of the Internet.

• End MapReduce Converger receives final-stage intermediate convergence results and still uses
the MapReduce mechanism to complete the whole analytics job. In contrast, the end MapReduce
converger can be located remotely from the Internet edge. There is no doubt that the region-wide
and cross-region communications will incur increasingly higher overhead; however, here we can
expect to transfer less data as compensation, because the intermediate convergence results should
have been much smaller than the sum of their raw inputs.

Note that, in practice, the Tree topology of a cascade convergence logic can be more flexible and
comprehensive than that illustrated in Figure 5. As mentioned above, it is possible to plug and play
more intermediate MapReduce convergers in series and/or parallel connections to conduct iterative
Convergence analytics if needed for various workload distributions.

5.2. Conceptual Validation Using Word Count with Cascade Convergence

Here, we employ Word Count, which is the most popular MapReduce demo, to conceptually
validate the microservice-oriented cascade convergence logic. Imagine that the requirement is to
count words in a distributed text retrieval scenario, including numerous voice-to-text recognition and
optical character recognition (OCR) sensors. Instead of transferring all the recognized texts to a central
repository, the word counting job can be done on our platform with cascade convergers (cf. Figure 5).
In particular, each cache converger can be implemented as a microservice which joins distributed
“words” into a single “file” (i.e., a text document) and meanwhile performs simple data preprocessing
or initial convergence tasks (e.g., restructuring data into predefined formats like JSON or XML). As for
MapReduce convergers, the predesigned mapper/reducer microservice templates can be instantiated
with the word-count-related functionalities and then be deployed/migrated to different and proper
processing locations. The whole process of counting words through cascade convergence is specified in
Algorithm 2. Note that the individual <word, 1> pairs are supposed to be manipulated when caching
the input data (cf. the function Pairify(S) in Algorithm 2), which enables the unification of the Map
procedures of all the MapReduce convergers, including the outermost one.

To facilitate monitoring of the changes in data size during the cascade convergence process, we
conducted several rounds of word count experiments in our local environment. In particular, we
replaced data caching with preparing a set of text files (ranging from around 2 MB to around 20 MB)
by copying, pasting, and intentionally duplicating large amounts of random Wikipedia contents.
As mentioned previously, the texts in each file were further restructured into <word, 1> pairs before
going through the MapReduce convergers. When it comes to the MapReduce convergers, we employed
three intermediate ones to imitate the outermost MapReduce processes within three different sensor
regions so as to make the tree topology here consistent with the demonstration in Figure 5.

Sensors 2019, 19, 1134 11 of 16

Algorithm 2 Cascade-Convergence-based Word Count
Input: S: the continuous string-format “sensor” data.
Output: The word count result.

1: function PAIRIFY(S)
2: P← ∅
3: for each word w ∈ S do . Restructuring data into <key, value> pairs and storing them.
4: P← P+ < w, 1 >

5: end for
6: return P
7: end function
8:
9: function MAPREDUCE(F list)

10: procedure MAP(F)
11: for each line l ∈ F do . Splitting the file into <key, value> pairs.
12: Parse l into < w, v >

13: EmitIntermediate(< w, v >)

14: end for
15: end procedure
16: procedure REDUCE(key, value_array)
17: value_new← 0
18: for each value v ∈ value_array do . Counting the number of a particular word key.
19: value_new← value_new + v
20: end for
21: Emit(< key, value_new >)

22: end procedure
23: return < word, count > list
24: end function
25:
26: while receiving S do
27: repeat
28: F ← ∅ . F is the data block to be cached.
29: repeat
30: F ← F+PAIRIFY(S)
31: until reaching the threshold size of data block
32: until having a F list
33: for each non-end MapReduce convergers do
34: . F list is for the outermost MapReduce convergers,
35: . while intermediateResult list is for the other intermediate MapReduce convergers.
36: intermediateResult← MAPREDUCE(F list or intermediateResult list)
37: end for
38: end while
39: result← MAPREDUCE(final intermediateResult list) . Delivering final result by the end MapReduce converger.
40: return result

Since different experimental results vary significantly because of different sizes of professional
vocabularies in the input files (e.g., same-field texts vs. multi-field texts), we only show the rough data
size changes as an average during the MapReduce convergence process, as portrayed in Figure 6.

It is clear that by tremendously reducing the data size through the outermost (as well as
intermediate) MapReduce convergers, the rest of the convergence process enjoys much less overhead
for data transmission. We further define the data transmission saving rate as a metric to quantitatively
investigate the efficiency of Convergence analytics, as specified in Equation (3).

R =
Din − Dout

Din
× 100% (3)

Sensors 2019, 19, 1134 12 of 16

where R represents the data transmission saving rate of a particular convergence process (by any type
of converger). Din and Dout respectively indicate the input data size before the convergence process
and the output data size for the subsequent transmission. After applying this metric to our Word
Count experiment, we illustrate the quantitative measurement in Figure 7. Note that, for the purpose
of conciseness, we used 10 MB as the representative size of input data (i.e., the prepared text files
ranging from around 2 MB to around 20 MB) for the intermediate convergence process to calculate its
data transmission saving rate.

~ 300

KB

2MB

~

20MB

~ 350

KB

~ 300

KB

2MB

~

20MB

~ 300

KB

2MB

 ~

20MB

Intermediate

Intermediate

End

Figure 6. Data size changes during the cascade convergence process of word count experiments.

97.07%

61.11%

0%

20%

40%

60%

80%

100%

Intermediate Convergence End Convergence

D
at

a
T

ra
n
sm

is
si

o
n
 S

av
in

g
 R

at
e

Figure 7. Data transmission saving rates of the intermediate convergence process and the end
convergence process in the Word Count experiment.

Specifically, the data transmission saving rates of intermediate convergence process and end
convergence process within our experiment are roughly 97.07% and 61.11%, respectively. We believe
that such high rates are the result of the extreme case of counting words, because the vocabulary size
of human languages is fairly small, especially at the conversational level [27]. We reckon that other
applications of Convergence analytics could have more moderate rates of data transmission saving.

5.3. Prospect of Practical Application

On the basis of the same logic of the cascade word count, we expect to solidify our microservice-
oriented platform with respect to Convergence analytics through a real project, i.e., visualizing large
spatial datasets in a Web-based map viewer [28], which requires handling tons of position events

Sensors 2019, 19, 1134 13 of 16

generated by GPS devices (vehicles) and quickly visualizing integration results at the client side,
especially when switching zoom levels.

Similarly, without changing the Tree topology of data processing in IoT, our proposed platform
can naturally support more application types beyond Convergence analytics. Still taking sorting as
an example, we can reuse the same architecture (cf. Figure 5) and microservices (and templates) to
quickly satisfy such a different job. In detail, the cache convergers can directly be reused to collect
numbers from nearby sensors and pass data blocks to the subsequent MapReduce convergers, and
the MapReduce convergers should be equipped with suitable sorting functionalities [29]. Note that,
benefiting from the cascade convergence logic, users will not have to rely on a single MapReduce
converger with heavyweight implementations (e.g., what Google did includes thousands of nodes [29]).

6. Conclusions and Future Work

Different types of SDI, such as SDN and SDS, have widely been accepted to make physical
computing environments programmable. In essence, the idea of SDI is still from the computing
resource’s perspective. In contrast, we propose a microservice-oriented platform from the application’s
perspective in order to help make domain-specific business logics microservice-able and further
decouple business logic implementations from resource control and management. Considering the
tremendous distribution of IoT data, such a microservice-oriented platform will particularly be valuable
and useful in the IoBDA domain by relieving the complexity in and breaking the environmental
monolith of traditional BDA mechanisms.

In summary, we use this article to initialize an ambitious proposal at its proof-of-concept stage.
Although it is impossible (and unnecessary) to address all kinds of BDA problems, we have shown
that suitable scenarios such as Monte Carlo analytics and Convergence analytics in IoT can benefit
from the proposed microservice-oriented platform. We plan to follow a reinforcement process to
develop this platform for IoBDA. The platform prototype will stick to limited data processing logics
and applications and then use new applications and include new BDA logics to gradually validate,
improve, and enrich the platform features.

Thus, our future work will unfold along two directions. Firstly, we will try to extend the two
conceptual validation demos described in this article to more practical case studies. Considering
the relatively high failure ratio and long latency from IoT sensors/devices, we will particularly
focus on investigating fault-tolerant mechanisms within the practical IoT environment. In fact,
it has been identified that MSA can naturally help isolate failures [30] and increase application
resilience [31], i.e., one failed microservice does not necessarily affect the other microservices, at least
when there is no chaining between them. Secondly, we will keep enriching this proposed platform, e.g.,
including MSA-friendly machine learning logics [32]. By integrating more types of data processing
logics, the eventually developed platform will provide a catalog of IoBDA scenarios together with
demo applications, which can guide users to select suitable microservices and instantialize relevant
microservice templates for their specific IoBDA implementations.

Author Contributions: Conceptualization, Z.L. and D.S.; Methodology, Z.L. and D.S.; Validation, Z.L., D.S. and
A.E.S.R.; Investigation, Z.L. and D.S.; Data curation, Z.L. and A.E.S.R.; Writing—original draft preparation, Z.L.;
Writing—review and editing, D.S.; Visualization, A.E.S.R.; Supervision, Z.L. and D.S.; Funding acquisition, Z.L.

Funding: This work was supported in part by Comisión Nacional de Investigación Científica y Tecnológica
(CONICYT) under Grant FONDECYT Iniciación 11180905, in part by the University of Concepción under
Grant VRID INICIACION 218.093.017-1.0 IN, and in part by Millennium Institute for Foundational Research on
Data (IMFD).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2019, 19, 1134 14 of 16

Abbreviations

The following abbreviations are used in this manuscript:

API Application Program Interface
BDA Big Data Analytics
IoBDA Internet of Big Data Analytics
IoT Internet of Things
JSON JavaScript Object Notation
MSA Microservices Architecture
OCR Optical Character Recognition
REST Representational State Transfer
SDI Software-Defined Infrastructure
SDN Software-Defined Network
SDS Software-Defined Storage
XML Extensible Markup Language

References

1. PAT Research. Top 50 Bigdata Platforms and Bigdata Analytics Software. 2018. Available online:
https://www.predictiveanalyticstoday.com/bigdata-platforms-bigdata-analytics-software/ (accessed on
7 January 2019).

2. Darabseh, A.; Al-Ayyoub, M.; Jararweh, Y.; Benkhelifa, E.; Vouk, M.; Rindos, A. SDStorage: A Software
Defined Storage Experimental Framework. In Proceedings of the 3rd International Conference on Cloud
Engineering (IC2E 2015), Tempe, AZ, USA, 9–13 March 2015; IEEE Computer Society: Tempe, AZ, USA,
2015; pp. 341–346.

3. Djedouboum, A.C.; Ari, A.A.A.; Gueroui, A.M.; Mohamadou, A.; Aliouat, Z. Big Data Collection in
Large-Scale Wireless Sensor Networks. Sensors 2018, 18. 4474. [CrossRef] [PubMed]

4. Froehlich, A. How Edge Computing Compares with Cloud Computing. Available online: https://www.
networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
(accessed on 7 January 2019).

5. IEEE. Cloud-Link: IoT and Cloud. Available online: https://cloudcomputing.ieee.org/publications/cloud-
link/march-2018 (accessed on 7 January 2019).

6. Kang, J.M.; Bannazadeh, H.; Rahimi, H.; Lin, T.; Faraji, M.; Leon-Garcia, A. Software-Defined Infrastructure
and the Future Central Office. In Proceedings of the 2nd Workshop on Clouds Networks and Data Centers,
Budapest, Hungary, 9–13 June 2013; IEEE Press: Budapest, Hungary, 2013; pp. 225–229.

7. Kang, J.M.; Lin, T.; Bannazadeh, H.; Leon-Garcia, A. Software-Defined Infrastructure and the SAVI Testbed.
In TridentCom 2014: Testbeds and Research Infrastructure: Development of Networks and Communities; Leung, V.C.,
Chen, M., Wan, J., Zhang, Y., Eds.; Springer: Cham, Switzerland, 2014; Volume 137, pp. 3–13.

8. Harris, R. Myriad Use Cases. Available online: https://cwiki.apache.org/confluence/display/MYRIAD/
Myriad+Use+Cases (accessed on 7 January 2019).

9. Li, C.S.; Brech, B.L.; Crowder, S.; Dias, D.M.; Franke, H.; Hogstrom, M.; Lindquist, D.; Pacifici, G.; Pappe,
S.; Rajaraman, B.; et al. Software defined environments: An introduction. IBM J. Res. Dev. 2014, 58, 1–11.
[CrossRef]

10. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined
Networking: Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014,
16, 1617–1634. [CrossRef]

11. Villari, M.; Fazio, M.; Dustdar, S.; Rana, O.; Ranjan, R. Osmotic Computing: A New Paradigm for Edge/Cloud
Integration. IEEE Cloud Comput. 2016, 3, 76–83. [CrossRef]

12. Vögler, M.; Schleicher, J.M.; Inzinger, C.; Dustdar, S. Ahab: A Cloud-based Distributed Big Data Analytics
Framework for the Internet of Things. Softw. Pract. Exp. 2017, 47, 443–454. [CrossRef]

https://www.predictiveanalyticstoday.com/bigdata-platforms-bigdata-analytics-software/
http://dx.doi.org/10.3390/s18124474
http://www.ncbi.nlm.nih.gov/pubmed/30567331
https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://cloudcomputing.ieee.org/publications/cloud-link/march-2018
https://cloudcomputing.ieee.org/publications/cloud-link/march-2018
https://cwiki.apache.org/confluence/display/MYRIAD/Myriad+Use+Cases
https://cwiki.apache.org/confluence/display/MYRIAD/Myriad+Use+Cases
http://dx.doi.org/10.1147/JRD.2014.2298134
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1109/MCC.2016.124
http://dx.doi.org/10.1002/spe.2424

Sensors 2019, 19, 1134 15 of 16

13. Le, V.D.; Neff, M.M.; Stewart, R.V.; Kelley, R.; Fritzinger, E.; Dascalu, S.M.; Harris, F.C. Microservice-based
Architecture for the NRDC. In Proceedings of the 13th IEEE International Conference on Industrial
Informatics (INDIN 2015), Cambridge, UK, 22–24 July 2015; IEEE Press: Cambridge, UK, 2015; pp. 1659–1664.

14. Kang, R.; Zhou, Z.; Liu, J.; Zhou, Z.; Xu, S. Distributed Monitoring System for Microservices-Based IoT
Middleware System. In ICCCS 2018: Cloud Computing and Security; Sun, X., Pan, Z., Bertino, E., Eds.; Springer:
Cham, Switzerland, 2018; Volume 11063, pp. 467–477.

15. Newman, S. Building Microservices: Designing Fine-Grained Systems; O’Reilly Media: Sebastopol, CA,
USA, 2015.

16. Morabito, R.; Cozzolino, V.; Ding, A.Y.; Beijar, N.; Ott, J. Consolidate IoT Edge Computing with Lightweight
Virtualization. IEEE Netw. 2018, 32, 102–111. [CrossRef]

17. Ding, D.; Cooper, R.A.; Pasquina, P.F.; Fici-Pasquina, L. Sensor technology for smart homes. Maturitas 2011,
69, 131–136. [CrossRef] [PubMed]

18. Chen, R.; Li, S.; Li, Z. From Monolith to Microservices: A Dataflow-Driven Approach. In Proceedings of the
24th Asia-Pacific Software Engineering Conference (APSEC 2017), Nanjing, China, 4–8 December 2017; IEEE
Computer Society: Nanjing, China, 2017; pp. 466–475.

19. Augusto, J.C. Past, Present and Future of Ambient Intelligence and Smart Environments. In Agents and
Artificial Intelligence; Filipe, J., Fred, A., Sharp, B., Eds.; Springer International Publishing: Berlin, Germany,
2010; Volume 67, pp. 3–15.

20. Viani, F.; Robol, F.; Polo, A.; Rocca, P.; Oliveri, G.; Massa, A. Wireless Architectures for Heterogeneous
Sensing in Smart Home Applications: Concepts and Real Implementation. Proc. IEEE 2013, 101, 2381–2396.
[CrossRef]

21. Gorman, B.L.; Resseguie, D.; Tomkins-Tinch, C. Sensorpedia: Information sharing across incompatible sensor
systems. In Proceedings of the 2009 International Symposium on Collaborative Technologies and Systems
(CTS 2009), Baltimore, MD, USA, 18–22 May 2009; IEEE Press: Baltimore, MD, USA, 2009; pp. 448–454.

22. Vresk, T.; Čavrak, I. Architecture of an Interoperable IoT Platform Based on Microservices. In Proceedings
of the 39th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO 2016), Opatija, Croatia, 30 May–3 June 2016; IEEE Computer Society: Opatija,
Croatia, 2016; pp. 1196–1201.

23. Google. App Engine Locations. 2019. Available online: https://cloud.google.com/appengine/docs/locations
(accessed on 11 February 2019).

24. Butzin, B.; Golatowski, F.; Timmermann, D. Microservices approach for the Internet of Things. In Proceedings
of the 21st International Conference on Emerging Technologies and Factory Automation (ETFA 2016), Berlin,
Germany, 6–9 September 2016; IEEE Press: Berlin, Germany, 2016; pp. 1–6.

25. Chen, F.; Grundy, J.; Yang, Y.; Schneider, J.G.; He, Q. Experimental Analysis of Task-based Energy
Consumption in Cloud Computing Systems. In Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering (ICPE 2013), Prague, Czech Republic, 21–24 April 2013; ACM Press: Prague,
Czech Republic, 2013; pp. 295–306.

26. Balasubramanian, N.; Balasubramanian, A.; Venkataramani, A. Energy Consumption in Mobile Phones:
A Measurement Study and Implications for Network Applications. In Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement (IMC 2009), Chicago, IL, USA, 4–6 November 2009; ACM
Press: Chicago, IL, USA, 2009; pp. 280–293.

27. Gibbons, J. The Numbers Game: How Many Words Do I Need to Know to Be Fluent in a Foreign Language?
2018. Available online: https://www.fluentu.com/blog/how-many-words-do-i-need-to-know/ (accessed
on 7 February 2019).

28. Cortiñas, A.; Luaces, M.R.; Rodeiro, T.V. A Case Study on Visualizing Large Spatial Datasets in a Web-Based
Map Viewer. In ICWE 2018: Web Engineering; Mikkonen, T., Klamma, R., Hernández, J., Eds.; Springer:
Cham, Switzerland, 2018; Volume 10845, pp. 296–303.

29. Hamilton, J. Google MapReduce Wins TeraSort. 2008. Available online: https://perspectives.mvdirona.
com/2008/11/google-mapreduce-wins-terasort/ (accessed on 21 February 2019).

30. Taibi, D.; Lenarduzzi, V.; Pahl, C. Architectural Patterns for Microservices: a Systematic Mapping Study.
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018),
Madeira, Portugal, 19–21 March 2018; Science and Technology Press: Madeira, Portugal, 2018; pp. 221–232.

http://dx.doi.org/10.1109/MNET.2018.1700175
http://dx.doi.org/10.1016/j.maturitas.2011.03.016
http://www.ncbi.nlm.nih.gov/pubmed/21531517
http://dx.doi.org/10.1109/JPROC.2013.2266858
https://cloud.google.com/appengine/docs/locations
https://www.fluentu.com/blog/how-many-words-do-i-need-to-know/
https://perspectives.mvdirona.com/2008/11/google-mapreduce-wins-terasort/
https://perspectives.mvdirona.com/2008/11/google-mapreduce-wins-terasort/

Sensors 2019, 19, 1134 16 of 16

31. Bogner, J.; Zimmermann, A. Towards Integrating Microservices with Adaptable Enterprise Architecture.
In Proceedings of the 20th International Enterprise Distributed Object Computing Workshop (EDOCW 2016),
Vienna, Austria, 5–9 September 2016; IEEE Computer Society: Vienna, Austria, 2016; pp. 1–6.

32. Slepicka, J.; Semeniuk, M. Deploying Machine Learning Models as Microservices Using Docker; O’Reilly Media:
Sebastopol, CA, USA, 2017.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Conceptual Explanation and Justification
	Case I: Microservice-Oriented Logic for Monte Carlo Analytics
	Architectural Design with Microservice Identification
	Conceptual Validation Using Double Integral Estimation
	Prospect of Practical Application

	Case II: Microservice-Oriented Logic for Convergence Analytics
	Architectural Design with Microservice Identification
	Conceptual Validation Using Word Count with Cascade Convergence
	Prospect of Practical Application

	Conclusions and Future Work
	References

