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Abstract: A museum is an important place for science education for children. The learning method in
the museum is reading exhibits and explanations. Museums are investing efforts to quantify interests
using questionnaires and sensors to improve their exhibitions and explanations. Therefore, even in
places where many people gather, such as in museums, it is necessary to quantify people’s interest by
sensing behavior of multiple people. However, this has not yet been realized. We aim to quantify the
interest by sensing a wide range of human behavior for multiple people by coordinating multiple
noncontact sensors. When coordinating multiple sensors, the coordinates and the time of each sensor
differ. To solve these problems, coordinates were transformed using a simultaneous transformation
matrix and time synchronization was performed using unified time. The effectiveness of this proposal
was verified through experimental evaluation. Furthermore, we evaluated the actual museum content.
In this paper, we describe the proposed method and the results of the evaluation experiment.

Keywords: three-dimensional range image sensor; time synchronization; coordinate transformation
matrix; sensing interest; learning support system

1. Introduction

The museum is very important as a place for science education for children [1]. This is because the
museum helps children gain knowledge by learning and through experience using content and learning
materials [2]. The learning material and content in the museum are mainly about the exhibit and
their explanations. Moreover, a panel and video tape recorder of explanation is used to complement
the exhibits. In recent years, proposals have been drawn for further improving learning using these
contents and learning materials. This proposal discriminates popular and unpopular exhibits using
questionnaires and interviews, and changes the exhibits from time to time [3]. This is very important
in further improving the efficiency of learning. In addition, research and development of museum
learning support systems in science education is being researched and developed as a way to support
children’s learning [4–7]. As a method to evaluate these systems, subjective evaluations such as
questionnaires and interviews, which are similar to evaluations of exhibits, are used frequently [4–9].
However, there are major problems in these evaluation methods; it is inefficient because it is time
consuming. Furthermore, because it is a formal structured mechanism, it is difficult to obtain the
natural opinion of the learner. Because we conduct interviews and questionnaires after the children
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have experienced all content, we cannot quantitatively calculate the interest at a certain exhibit at
a given time. Therefore, in essence, we cannot improve the content or learning materials. This is a
problem that needs to be solved.

To solve these problems, techniques for sensing the interests of people have attracted attention
and various research studies have been carried out. Some studies use a contact/noncontact sensor;
studies that use contact sensors include measurements of physiological phenomena, electro dermal
activity (EDA) [10] and electroencephalograms [11,12], estimation of a line of sight using eye gaze
capturing devices, and blinking related to the most interests [13,14]. However, although these can be
quantitatively measured, there is a problem that natural opinions cannot be obtained as the subjects
may be stressed, and it takes time to wear these devices. Meanwhile, research using noncontact
sensors includes measuring blinks using a web camera [15–20] and measuring the line-of-sight using
an installation-type measuring instrument such as Tobii [21]. However, since these are noncontact
methods, which allow measuring the natural body of the experiencer, there is a problem in that the
measurement range is limited. For example, in a situation where there are many people like in a
museum, there are cases where people cannot be tracked (Figure 1). Because people may overlap
each other in the video, the sensor cannot recognize more than one person at a time. Therefore, it is
necessary to measure these parameters within a range of 5–10 m. Therefore, there is a need for a
system that measures quantitatively and in a noncontact manner the interest of “the place and the
time” in a wide range. The learning effect in an actual museum has not been evaluated using our
proposed technique.
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Figure 1. When people overlap each other in the sensor’s line of sight, the sensor cannot track these
people. The sensor cannot recognize person B hidden behind person A.

We propose a system to solve these problems. By cooperating multiple noncontact sensors,
quantitative interest in a wide range can be estimated in a noncontact manner. In particular,
the proposed system observes behaviors such as a line-of-sight and eye blink for multiple learners
at all times by using a large number of cooperating sensor groups arranged in the environment (for
example, in the museum).

In this paper, we describe a method of coordinate transformation and time synchronization
that can enable cooperation of multiple sensors and the results of the evaluation experiment.
In addition, we describe the results of evaluating the contents and learning materials implemented in
actual museums.

2. System

2.1. System Overview

We developed a system to estimate quantitative interests in a wide range by coordinating multiple
noncontact sensors. The proposed system constantly observes the behavior of a learner by using a
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large number of sensor groups arranged in a certain environment. Accordingly, we observed the
interests of learners. Based on the obtained results, we realized the quantification of the interest
“the place and the time” which could only be imagined fragmentarily through interviews and
questionnaire-based surveys.

Figure 2 shows a model image of the system, and Figure 3 shows the system setup. The proposed
system consists of a sensor group comprising multiple noncontact sensors and a data storage unit
that accumulates all acquired data. The data storage unit includes elements, such as the direction of
the learner’s face, detection of blinking, and gaze time in the gaze direction, related to the learner’s
interest. In this paper, as the first step in realizing the system, we measure eye blinks, which are said to
be most affected by human interest [22–24].
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To realize the system, we used a Kinect sensor [25] in this study. Microsoft’s Kinect sensor is
a range-image sensor originally developed as part of an indoor video-gaming system. Although it
is inexpensive, the sensor can obtain sophisticated measurements and adjudge the user’s location.
In addition, this sensor can recognize humans and the human skeleton using the library in Kinect’s
software development kit for Windows. The Kinect senor can measure a three-dimensional skeletal
location composed of 25 points on the human body, including the hands and the legs, and it can
identify the user’s pose or status based on these functions. This skeletal information makes it possible
to recognize various body movements.

Coordinate transformation and time synchronization for cooperation of multiple sensors are
required for enlarging the measurement range by cooperating with multiple Kinect sensors. Coordinate
transformation, time synchronization, and blink detection are all automatically initiated on our
developed program. We describe our proposed methods below.
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2.2. Coordinate Transformation Using Simultaneous Transformation Matrix

2.2.1. Coordinate Transformation

When the area requiring measurement is wide or there is a considerable amount of information
to be measured, it is necessary to expand the measurement range by cooperating multiple sensors.
However, when trying to cooperate multiple position measuring sensors, the coordinate system of
each sensor and the measured value should be independent. As shown in Figure 4, the coordinate
system of sensors 1, 2, and 3, and the measured value are independent. To measure the same object,
it is necessary to unify it to one coordinate system, as shown in Figure 5.
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In general, in many position measurement sensors such as the Kinect sensor, the measurement
results in the coordinate system remain unique to each sensor. Therefore, simply by performing
arbitrary multiple sensor placement and measurement, even if the same target position is measured,
the output values of the sensors do not match and it is very difficult to coordinate the measured values.
Various studies have been conducted to solve this problem. Unfortunately, conventional research also
failed to accurately realize coordinate transformation through the cooperation of multiple sensors [26].
As the main method, those studies used a checker board for calibration [27]. However, although this
method can unify the exact coordinate system, it takes a considerable amount of time to unify the
coordinate system.

It takes a few hours for the checkerboard to move several centimeters at a time [27]. It is difficult
to implement this in an environment such as a museum, where this has to be realized ad hoc.
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We therefore propose a method of using the simultaneous coordinate transformation matrix to
unify all coordinate systems in an arbitrary coordinate system. This is a method that can perform
coordinate transformation in a short time and coordinate unification.

2.2.2. Method of Coordinate Transformation Using Simultaneous Transformation Matrix

We describe coordinate transformation using a simultaneous transformation matrix. We define
P(x, y, z) as the coordinates as seen from the coordinate system unique to Kinect sensor at the point P
in space. Furthermore, we define P′(x′, y′, z′) as the coordinates in the unified coordinate system at the
point P in the space. P is the coordinate system of Figure 4, P′ is the coordinate system of Figure 5 after
unification. At this time, by using the coordinate transformation matrix T, it is possible to convert to P′

from P, using Equations (1) and (2).
x′

y′

z′

1

 =


r11 r12 r13 qx

r21 r22 r23 qy

r31 r32 r33 qz

0 0 0 1




x
y
z
1

, (1)

P′ = TP, (2)

Coordinate representation such as that in Equation (2) is called a simultaneous coordinate
representation. This can express the movement of the coordinate system by the expression of
multiplication of one coordinate transformation matrix. We describe each component of the coordinate
transformation matrix T as follows. Figure 6 shows the component of T.

Sensors 2019, 19, x FOR PEER REVIEW  5 of 20 

 

It takes a few hours for the checkerboard to move several centimeters at a time [27]. It is difficult 
to implement this in an environment such as a museum, where this has to be realized ad hoc. 

We therefore propose a method of using the simultaneous coordinate transformation matrix to 
unify all coordinate systems in an arbitrary coordinate system. This is a method that can perform 
coordinate transformation in a short time and coordinate unification. 

2.2.2. Method of Coordinate Transformation Using Simultaneous Transformation Matrix 

We describe coordinate transformation using a simultaneous transformation matrix. We define 
P(x, y, z) as the coordinates as seen from the coordinate system unique to Kinect sensor at the point 
P in space. Furthermore, we define P'(x', y', z') as the coordinates in the unified coordinate system at 
the point P in the space. P is the coordinate system of Figure 4, P' is the coordinate system of Figure 
5 after unification. At this time, by using the coordinate transformation matrix T, it is possible to 
convert to P' from P, using Equations (1) and (2). 𝑥′𝑦′𝑧′1 = 𝑟 𝑟 𝑟 𝑞𝑟 𝑟 𝑟 𝑞𝑟 𝑟 𝑟 𝑞0 0 0 1

𝑥𝑦𝑧1 , (1)

𝑃 = 𝑇𝑃, (2)

Coordinate representation such as that in Equation (2) is called a simultaneous coordinate 
representation. This can express the movement of the coordinate system by the expression of 
multiplication of one coordinate transformation matrix. We describe each component of the 
coordinate transformation matrix T as follows. Figure 6 shows the component of T. 

 

Figure 6. Translation matrix. 

In Figure 6, the components from r11 to r33 represent the rotational movement of the coordinate 
system, and they are expressed by the multiplication of the equation of the rotational movement 
around each axis.  𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟 =  𝑅 𝑅 𝑅 , (3)

We describe the rotational movement Rx in the coordinate system around the X axis as an 
example of the rotational movement around the axis. As shown in Figure 7, when the coordinate 
system is rotated by θx about the X axis, the coordinates P'(x', y', z') of the point in the coordinate 
system after movement are given by Equation (4). Equation (4) is expressed using coordinates P(x, y, 
z) and θx. 

Figure 6. Translation matrix.

In Figure 6, the components from r11 to r33 represent the rotational movement of the coordinate
system, and they are expressed by the multiplication of the equation of the rotational movement
around each axis.  r11 r12 r13

r21 r22 r23

r31 r32 r33

 = RxRyRz, (3)

We describe the rotational movement Rx in the coordinate system around the X axis as an example
of the rotational movement around the axis. As shown in Figure 7, when the coordinate system is
rotated by θx about the X axis, the coordinates P′(x′, y′, z′) of the point in the coordinate system after
movement are given by Equation (4). Equation (4) is expressed using coordinates P(x, y, z) and θx.

x′ = x,
y′ = ycosθx + zsinθx,

z′ = −ysinθx + zcosθx,
(4)
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When Equation (4) is expressed as a matrix, Equation (5) is expressed as x′

y′

z′

 =

 1 0 0
0 cosθx sinθx

0 −sinθx cosθx


 x

y
z

, (5)

From Equation (5), the rotational movement around the X axis is represented by a matrix of
Equation (6).

Rx =

 1 0 0
0 cosθx sinθx

0 −sinθx cosθx

, (6)

Similarly, in the case of rotation about the Y and Z axes, the expressions for converting the
coordinates on the original coordinate system to the coordinates in the coordinate system after rotation
are expressed by Equations (7) and (8).

Ry =

 cosθy 0 −sinθy

0 1 0
sinθy 0 cosθy

, (7)

Rz =

 cosθz sinθz 0
−sinθz cosθz 0

0 0 1

, (8)

Substituting Equations (7) and (8) into Equation (3) gets r11 r12 r13

r21 r22 r23

r31 r32 r33

 = RxRyRz

=

 cosθycosθz cosθysinθz −sinθy

sinθxsinθycosθz − cosθxsinθz sinθxsinθysinθz + cosθxcosθz sinθxcosθy

cosθxsinθycosθz + sinθxsinθz cosθxsinθysinθz − sinθxcosθz cosθxcosθy

, (9)

Next, qx, qy, qz are components representing parallel movement in each axis direction. Combining
the rotational movement and the parallel movement described above, the movement of the coordinates
is expressed by  x′

y′

z′

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


 x

y
z

+

 qx

qy

qz

, (10)
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Equation (10) can thus be expressed as

 x′

y′

z′

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


 x

y
z

+

 qx

qy

qz

 =

 r11 r12 r13 qx

r21 r22 r23 qy

r31 r32 r33 qz




x
y
z
1

, (11)

Finally, the fourth line in Figure 6 represents the scaling of the coordinate system. In the case of
the coordinate transformation used in this research, it is no need to enlarge/reduce; therefore, it is set
to 1 (equal magnification), as shown in Equation (12).

1 = (0 0 0 1)


x
y
z
1

, (12)

Next, we describe how to calculate such a coordinate transformation matrix T. T can be calculated
from the correspondence relationship between both coordinate systems if there is a point where the
coordinates seen from the coordinate system of both the Kinect’s coordinate system and the unified
coordinate system are known.

When there are n points in space, as shown in Figure 8, the coordinates in the Kinect coordinate
system of the nth point are defined as SPn

(Sxn, Syn, Szn
)

and those in the unified coordinate system as
FPn
(Fxn, Fyn, Fzn

)
. When the coordinates in the homogeneous coordinate system are represented by a

matrix, the coordinates of the 1st to nth points as viewed from each coordinate system are expressed by

SP =


Sx1

Sx2 · · · Sxn
Sy1

Sy2 · · · Syn
Sz1

Sz2 · · · Szn
1 1 · · · 1

FP =


Fx1

Fx2 · · · Fxn
Fy1

Fy2 · · · Fyn
Fz1

Fz2 · · · Fzn
1 1 · · · 1

, (13)
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Therefore, letting STF be the coordinate transformation matrix for transforming the coordinates of
the points in the Kinect coordinate system into the coordinates in the unified coordinate system, this
coordinate transformation can be expressed as

Fx1
Fx2 · · · Fxn

Fy1
Fy2 · · · Fyn

Fz1
Fz2 · · · Fzn

1 1 · · · 1

 = STF


Sx1

Sx2 · · · Sxn
Sy1

Sy2 · · · Syn
Sz1

Sz2 · · · Szn
1 1 · · · 1

 (14)

FP = STF
SP, (15)

From Equation (15), a coordinate transformation matrix STF is calculated. When Equation (14)
is n = 4 and these points are not on the same plane, the coordinate transformation matrix STF can be
obtained as follows, using the inverse matrix of SP [28].

STF = FPSP−1, (16)

We calculate the coordinate transformation matrix by measuring with n = 4. To unify Kinect’s
coordinate system by this method, the point where unified coordinates are known on the real space and
can be measured by Kinect (hereinafter, such a point is called a sample point) should be set. Therefore,
in this research, the measurement result of the sample point measured by one Kinect (hereinafter
referred to as the origin Kinect) is treated as a true value. Then, by substituting the true value and
the results measured by other Kinect into Equations (14)–(16), the coordinate system of each sensor
can be unified to the coordinates of the origin Kinect. After the calculation of the transformation
matrix, each sensor is multiplied by a transformation matrix as shown below for the three-dimensional
coordinate measurement result measured by other Kinect Sensor.

Fx
Fy
Fz
1

 =


r11 r12 r13 −qx

r21 r22 r23 −qy

r31 r32 r33 −qz

0 0 0 1




Sx
Sy
Sz
1

, (17)

Fx = r11
Sx + r12

Sy + r13
Sz,

Fy = r21
Sx + r22

Sy + r23
Sz,

Fz = r31
Sx + r32

Sy + r33
Sz,

(18)

Through these calculations, it becomes possible to treat the three-dimensional coordinate
measurement result measured by all Kinects as a unified value in the coordinate system of the origin
Kinect. All these matrix calculations are performed on a program.

2.3. Time Synchronization

2.3.1. Summary

In the measurement by multiple sensors, the measurement start timing and the end timing
are different because the time of each sensor is different. As shown in Figure 9, even if the same
operation is recognized, a time lag occurs, and an accurate analysis cannot be performed; therefore,
time synchronization of multiple sensors is indispensable. By performing time synchronization as
shown in Figure 10, it is possible to perform an accurate analysis using multiple sensors. Nevertheless,
with the conventional synchronization of multiple Kinect sensors, time synchronization has not been
successful [29,30]. Conventional time-synchronization research is based on the establishment of a
unified time and server. Previous studies that used a unified time did not state about the accuracy of
time synchronization, assuming that the cycle of unified time does not fluctuate. However, there is
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a possibility that the unified time deviates. In addition, any research that establishes a server and
synchronizes time is accurate. However, to process and synchronize information with high capacity
and geometric qualities like the Kinect V2 sensor with color images and depth information, it is
necessary to establish an expensive server with a fast processing time. The establishment of an
expensive server has no versatility if we consider the realization at our museum; this is the original
purpose of our study. Therefore, we did not set up a server, and referenced the existing server,
conducted time synchronization by considering the processing time of each personal computer, and
evaluated the accuracy.
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2.3.2. Time Synchronization Using Unified Clock

First, we created unified time and recorded the unified time on multiple sensors; then, we unified
the time of multiple sensors to this unified time and realized time synchronization. Figure 11 shows
the occurrence of this time synchronization. After the measurement, we unified the recorded time of
all the sensors to the unified time. The frequency of the Kinect was 30 Hz, and the clock for the unified
time was 100 Hz. By using this method, we ensured accurate time synchronization.

Next, we explain the algorithm of time synchronization. A personal computer was used to connect
Kinect Sensors 1 and 2 and record the unified time on the Internet by using the DataTime class in the
program. Time on the Internet refers directly to the time of the existing NTP server, and in this research,
we referred to the NTP server of Tokyo Science University (nodarntp.rs.noda.tus.ac.jp); it can be used
within our university. The time of the Internet was recorded at 30 fps, which is the sampling rate of a
Kinect Sensor. However, depending on the performance of the personal computer, the recorded time
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differs from the unified time by approximately 1 ms. Therefore, the error between the times of the NTP
server and recording was constantly calculated in each personal computer, and a correction was made.
As a result, time synchronization was performed.Sensors 2019, 19, x FOR PEER REVIEW  10 of 20 
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2.4. Eye Blink Detection

It is said that people’s interest can be gauged by the blinking of their eyes. We focused on the eye
blink to quantify the interest of multiple people at the museum. Clearly, eye blinking is suppressed
when an entity has caught people’s interests. In other words, when people are more interested, the
number of their eye blinks decreases. If we measure eye blink at all times, we quantitatively estimate
the interest, engagement, and excitement “on the spot, at the time”. However, in the conventional
eye-blink measurement method, the measurement range is narrow because when learners look away,
part of the eye-blink data is missed. The realization of the proposed wide-range eye-blink-measurement
method could capture the eye-blink even when learners look away because its measures eye blinks
using a coordinated sensor. In other words, the sensor always measures and records eye blinks.
By measuring interest quantitatively, we clarified the learners’ interest in the contents of the museums.

Eye-blink detection follows the flow of human detection, skeleton information detection, face
recognition, and finally pupil detection, as detailed in the following text. First, the Kinect sensor
performs human detection by using a database based on the learning data of skeletal information
of a large number of people. Next, the sensor identifies a person based on the person’s coordinate
information. Accordingly, the same person was tracked in a multipeople environment. Then, the sensor
recognizes a human face and extracts the 3D coordinates of 1347 points on the face as feature points [31].
Based on these information, the eye position, and then the eye blinking were determined. The two
states of the pupil (open/closed eyes) were determined based on the ratio of the iris width to the
maximum iris width obtained by counting the number of black pixels. The state was recognized as
“OPEN” when opening eyes and “CLOSE” when closing eyes based on the set threshold value. It is
said that people’s interest can be gauged using their eye blink. Figure 12 shows the appearance of
OPEN and CLOSE eyes. As shown in Figure 12, when the state changes from OPEN to CLOSE, and to
OPEN again, we count it as one eye blink; the measurement cycle was 30 Hz.

In this way, the number of blinks is automatically measured.
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3. Experiments

We describe the evaluation experiments and the results to evaluate the effectiveness of the
coordinate transformation and time synchronization proposal method for multiple sensor cooperation,
which is necessary for expanding the measurement range. In addition, we describe the results of
evaluating the content of the museum using the proposed system.

3.1. Coordinate Transformation

We conducted an evaluation experiment on whether the coordinate system can be unified by
coordinate transformation using simultaneous transformation matrix. As the first step in realizing the
system, coordinate conversion was carried out using two Kinect Sensors to evaluate the coordinate
system unification.

3.1.1. Evaluation Experiment of Coordinate Transformation

In this experiment, a jig with four sampling points that are not on the same plane for the unification
of two Kinect sensors and coordinate system was used [28]. Figures 13 and 14 show the experiment
setup. We unify the coordinate system of Kinect Sensor 1 and Kinect Sensor 2, as shown in Figure 13.
First, as shown in Figure 13, a jig with sampling points is placed in front of two Kinect sensors, which
measure the four-point coordinates of the jig. The simultaneous transformation matrix is calculated
based on the coordinates of the four points measured by each Kinetic sensor. Next, one subject stands at
a fixed measurement point, and each Kinect sensors measures the subject’s coordinates simultaneously.
The measurement result is coordinate-transformed by the calculated coordinate transformation matrix
to unify the coordinate system. The total number of measurement points is 66 points. Figure 15
shows the measurement points. Next, we describe the method of processing persons and images
programmed. First, each Kinect sensor recognizes the coordinates of sampling points for calculating
the coordinate transformation matrix. Infrared rays were then irradiated into the field-of-view of the
sensor and the position coordinates of the specified sampling point were measured according to the
reflection time, depth information, and color-image information. Based on the coordinates measured
using Kinect sensors 1 and 2, the matrix conversion from matrix to expression was performed on all
the PCs connected to the two Kinect sensors on the program to calculate the coordinate transformation
matrix. Based on the calculated coordinate transformation matrix, the coordinate system of Kinect
sensor 2 was unified to the coordinate system of Kinect sensor 1. Therefore, it is possible to link all the
information on the coordinate axis of Kinect sensor 1.
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3.1.2. Evaluation Experiment Result of Coordinate Transformation

We evaluate the error of the coordinate measurement result of Kinect Sensor 1 and the coordinate
result obtained by coordinate conversion of the measurement value of Kinect Sensor 2 using the
coordinate transformation matrix.



Sensors 2019, 19, 1172 13 of 19

Figure 16 shows the coordinates of each measurement point after coordinate transformation;
this is the measurement result of Kinect Sensor 1 and the measurement result of Kinect Sensor 2 that
unified the coordinate system using coordinate transformation. In Figure 15, points that could not be
measured outside the recognition range of the Kinect sensor are not plotted. From this result, it can be
seen that the coordinate transformation is performed by the simultaneous transformation matrix. Next,
we evaluate the error of coordinate transformation. The error is the difference in distance between the
known coordinates and the distance difference between the known coordinates and the coordinates of
person coordinates measured by Kinect Sensor 2; this is the distance between the known coordinates
of the X-Z plane and the coordinates after coordinate system unification.
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The museum content we evaluate is for children. It is necessary to distinguish between two
or more children, and therefore, we set the allowable error as half of the shoulder width of the
child. Because the average shoulder width of the child is 33.86 cm, the allowable error is 16.93
cm [32]. Table 1 summarizes the errors of the coordinates obtained by coordinate conversion of the
coordinates measured by Kinect sensor 2 in this experiment. All experimental results are within
tolerance. The average error value of the coordinate transformation was 4.18 [cm], and the standard
deviation was ±2.98 [cm]. Thus, coordinate transformation by using the Kinect sensor can unify the
coordinate system with an accuracy of 4.18 ± 2.98 [cm]. Therefore, the usefulness of the proposed
method is proved.

Table 1. Error of the coordinates obtained by coordinate conversion of the coordinates measured by
Kinect Sensor 2.
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3.2. Evaluation Experiment on Time Synchronization

We conducted an evaluation experiment on whether the time synchronization of two Kinect
sensors can be achieved using time synchronization with a clock for unified time.

3.2.1. Evaluation Experiment of Range of Measurement

In this experiment, we used a clock to unify time using two Kinect sensors. Figure 17 shows
the experiment environment. We performed time synchronization between Kinect sensors 1 and 2,
which are shown in Figure 17. We explain the experimental procedure below. First, we start measuring
using Kinect sensor 1. Second, we start measuring Kinect sensor 2. Therefore, both Kinect sensors
measure at and record for different arbitrary times. The measuring time is 53 s for each Kinect. After the
end of the measurement, we standardized the Kinect sensors 1 and 2 with a clock for unified time.
Through these experiments, we evaluate whether it is possible to synchronize time between Kinect
sensors 1 and 2.
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Figure 17. Experiment environment.

3.2.2. Experimental Result

The results of the verification experiment are shown below. Table 2 shows the experiment start
time, experiment end time, and elapsed time for each of the unified time. Unified time started at 0
s and ended at 53 s. We evaluate the elapsed time of the unified time and Kinect sensors 1 and 2.
53 s have elapsed in unified time, 52.954 s have elapsed in Kinect 1, and 53.033 s have elapsed in
Kinect 2. Therefore, the difference between the elapsed times of Kinect sensors 1 and 2 was 0.079 s.
The average value of time-synchronization error was 0.0069 [s], and the standard deviation was
±0.0024 [s]. As a result, time synchronization using the NTP server can be synchronized with an
accuracy of 0.0069 ± 0.0024 [s]. Furthermore, we must accurately detect the eye blink, which occurs
once, averaging 0.2 s [33]; therefore, we set 0.2 s as the allowable error. Since the difference in elapsed
time is within the allowable error, the effectiveness of the proposed method for time synchronization
was suggested.

Table 2. Experimental result of time synchronization.

Start of Experiment End of Experiment Result

Unified Time [s] Kinect Time [s] Unified Time
[s] Kinect Time [s] Elapsed Time

(Unified Time) [s]
Elapsed Time

(Kinect Time) [s]

Kinect
Sensor 1 0 2.091 53.000 55.045 53.000 52.954

Kinect
Sensor 2 0 3.979 53.000 57.012 53.000 53.033

3.3. Range of Measurement

We conduct an evaluation experiment on measure the range expansion enabled by linking two
Kinect Sensors.
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3.3.1. Evaluation Experiment of Range of Measurement

In this experiment, we used two Kinect Sensors and one subject. Figure 18 shows the state of the
experiment. In the experiment, the subject walked in front of the two Kinect Sensors. The walking
route is as shown in Figure 18. At that time, a comparison is made between the area of one Kinect
Sensor person within the discovery range and the area of two Kinect Sensors person within the
discovery ranges.
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3.3.2. Evaluation Experiment Result of Range of Measurement

We describe the experimental results. Figure 19a shows a person discovery range with one Kinect
sensor. Figure 19b shows a person discovery range with two Kinect Sensors. The person tracking
area using one Kinect Sensor is 7.028 m2, and that using two Kinect Sensor is 11.23 m2. The area was
calculated using an approximation curve. From this result, it was found that the measurement area can
be expanded by cooperating multiple Kinect sensors. By cooperating two Kinect sensors, it is possible
to trace a person in the range of 5 m × 4 m. It was suggested that it is possible to further extend the
measurement range by increasing the number of Kinect sensors.
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Figure 19. (a) shows that person tracking area of one Kinect Sensor. (b) shows that person tracking
area of two Kinect Sensors.

3.4. Evaluation Experiment of Contents

From Sections 3.1–3.3, we conducted evaluation experiment on the elemental technologies to
realize the proposed system. We evaluate contents (multiple movies) implemented in an actual
museum by the proposed system using these element technologies. This museum learning support
system includes what I develop [34].
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3.4.1. Experimental Method

In this experiment, we evaluate contents and learning materials implemented in actual museums.
We sensed four learners watching actual videos flowing in the museum using two connected Kinect
sensors. During the experiment, we evaluate whether contents could be evaluated by an eye blink.
The video is composed of different contents of four sections.

Figure 20 shows the experimental environment. By cooperating with two Kinect sensors that
became clear in our experiment, it is possible for a person to track a range of 5 m × 4 m. Therefore, the
museum contents to be evaluated in this experiment is done within 5 m × 4 m. We sense the interests
of the four people who experience the content within this range.
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3.4.2. Experimental Result

We describe the experimental results of one subject as an example. One eye blink is converted
on the graph as shown in Figure 21. Conversion result are shown in Figure 21. In sections 1, 3, 5,
and 7, subjects are taking a break. In sections 2, 4, 6, and 8, subjects are viewing content videos of
museums. First, during the experiment, it is understood that the data is always acquired without data
loss. As shown in Figure 22, there are many eye blinks during a break. We evaluate based on this
result. First, the eye blink rate is calculated as

(Eye blink rate) [times/min] =
(Number of Eye Blink) [times]

(Elapsed Time) [s]
× 60, (19)

The results of calculating the blink rate are shown in Table 3. It is said that eye blink is suppressed
when people has interest or attention [35]. In other words, the more subject have interest, the smaller
subject’s eye blink rate is. As shown in Table 3, eye blink rate increases during a break. In addition,
when subjects watched content video, eye blink rate decreases and eye blink is suppressed. From this,
it is confirmed that the subject is interested when subject is watching the content video. Next, the degree
of interest is described. Eye blink rate is high in the order of 4, 8, 2, 6 from Table 3. From this, it turns
out that the interest is high in the order of 4, 8, 2, 6. This result is supported by a questionnaire to
the subjects. From these results, the effectiveness of the proposed method was suggested. It was
possible to evaluate the content in museum by quantifying the degree of interest of the learner by the
proposed method.

Table 3. Eye blink rate in each section.

1 2 3 4 5 6 7 8

Eye blink rate 19.92 5.37 23.48 3.75 19.48 11.80 54.40 3.69
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4. Conclusions

In this paper, we described a method of coordinate transformation and time synchronization for
the coordination of multiple sensors required for enlarging the measurement range, and discussed
the evaluation results. To expand the measurement range by using multiple Kinect sensors, we
proposed coordinate transformation using a simultaneous transformation matrix, ad hoc coordinate
transformation, and time synchronization using unified time. In the experiment, we conducted
experiments to evaluate the coordinate transformation using simultaneous transformation matrices
and the usefulness of time synchronization using unified time. As a result, coordinate transformation
was realized with accuracy, and it can identify multiple children. Furthermore, time synchronization
could be realized with accuracy of detecting eye blinks. These results showed the effectiveness of the
proposed method.

In the future work, we aim to add attention time or action in face orientation as an element to
sense learners. By doing this, we aim to further quantify learner’s interests.
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