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Abstract: Electronic noses recognize odors using sensor arrays, and usually face difficulties for odor
complicacy, while animals have their own biological sensory capabilities for various types of odors.
By implanting electrodes into the olfactory bulb of mammalian animals, odors may be recognized by
decoding the recorded neural signals, in order to construct a bioelectronic nose. This paper proposes
a spiking neural network (SNN)-based odor recognition method from spike trains recorded by the
implanted electrode array. The proposed SNN-based approach exploits rich timing information well
in precise time points of spikes. To alleviate the overfitting problem, we design a new SNN learning
method with a voltage-based regulation strategy. Experiments are carried out using spike train
signals recorded from the main olfactory bulb in rats. Results show that our SNN-based approach
achieves the state-of-the-art performance, compared with other methods. With the proposed voltage
regulation strategy, it achieves about 15% improvement compared with a classical SNN model.
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1. Introduction

Electronic noses usually use sensor arrays to recognize odors [1,2]. However, when facing many
types of odors, traditional electronic nose requires a combination of different sensors, resulting in
larger size and higher costs. In addition, sensors will be redesigned when given a new type of odor,
which is difficult and expensive. Animals have natural sensory capabilities for recognizing various
types of odors, and it is promising to provide new options for odor sensor design using biological
components of animals. Bioelectronic noses use olfactory receptors [3] as sensing elements in the
electronic smell systems [4,5]. Previous work has developed new biomaterials [6] for bioelectronic
noses and obtained good results in odor detection tasks [7]. With the development of brain–machine
interface (BMI) [8], biological neural activities can be in part understood with the recorded electronic
neural signals, for example, motor imagery [9], gestures [10], and memory evaluation [11]. In this
way, odor information could be decoded from neural signals recorded by implanting electrodes into
the olfactory bulb of mammalian animals [12]. In virtue of the powerful biological olfactory system,
bioelectronic noses are promising to provide fast response and high sensitivity, and will help to build
cyborg intelligent systems that integrate machine and biological intelligence [13–15]. A big challenge
for bioelectronic noses is how to effectively decode odors from neural signals.

Neural signals recorded from the olfactory bulb are temporal spike trains from multiple channels.
For most machine learning algorithms requiring vector-based inputs, existing neural signal decoders
transform spike trains into firing rates in time windows (bin-based approaches) as features [16].
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The binned features can be easily processed by classical machine learning models. You et al. used a
maximum likelihood estimation (MLE) method to recognize odors from spike trains recorded in rat
olfactory bulbs [17]. Its key step was to calculate the difference of spike firing rate before and after odor
stimulation as features, then build a Gaussian model with training data, and finally use maximum
likelihood estimation to predict the input odor. Dong et al. used population vector similarity and
support vector machine (SVM) for low concentration odor detection [12]. Ma et al. used the Kalman
filter to decode the spike trains of neurons in the primary motor cortex to predict lower limb muscle
activity [18]. The summary of these approaches is shown in Table 1. However, bin-based approaches
ignore the rich timing information in spike trains, such as the firing time point of single spike and the
time interval between neighboring spikes. It is a critical problem to exploit the rich information in
spike timing for accurate and efficient neural signal decoding.

Table 1. Summary of bin-based approaches.

Study Method Task Bin Size Neuron Feature

[17] Maximum
likelihood estimation odor recognition 0.1 s 128

bin-based vector[12] Population
vector similarity

low concentration
odor detection 0.1–1.0 s 10

[18] Kalman filter lower limb muscle
activity prediction 0.03 s 16

Spiking neural networks (SNNs) [19] mimic biological neural networks more closely by
incorporating timing information in computing, which have proven to be effective in tasks
such as sequence discrimination [20], object recognition [21], sound classification [22] and so
on. The biologically plausible properties make SNN a promising option for neural decoding
tasks. Instead of using binned features, SNN uses time points of spikes, which make it capable
of processing precise timing information in spike trains [23]. Existing spiking neuron models
include the Hodgkin–Huxley (HH) model [24], Leaky Integrate and Fire (LIF) model [25], Izhikevich
model [26], etc. Learning algorithms of spiking neural networks can be divided into supervised
learning algorithms and unsupervised learning ones [27]. Supervised learning algorithms include
SpikeProp [28], Tempotron [29], Remote Supervised Method (ReSuMe) [30], Precise-Spike-Driven
Synaptic Plasticity (PSD) [31], and so on. Unsupervised learning algorithms are relatively rare, and the
most representative one is Spike Timing Dependent Plasticity (STDP) [32].

In this study, we propose a novel spiking neural network(SNN)-based neural signal decoder to
recognize odors with spike train signals recorded from olfactory bulb in rats. Unlike most previous
work that requires bin-based inputs, our approach exploits rich timing information in precise time
points of spikes. To deal with a small amount of training data, we especially propose a new SNN
learning method with a voltage-based regulation strategy (SNN-VR), in order to alleviate the overfitting
problem during training. Experiments are carried out using spike train signals recorded from olfactory
bulb in rats. Results show that, compared with bin-based odor decoders, the SNN approaches achieve
better performance in two-class, three-class, and four-class odor recognition tasks. With the proposed
voltage-based regulation strategy, the SNN-VR approach obtains about 15% improvement compared
with the classical SNN model. SNN-VR demonstrates better generalization ability especially with
small training sets.

2. Materials and Methods

In this section, we present the SNN-VR odor recognition method in detail. Firstly, we describe
neural signal acquisition and processing procedure to record spike trains from olfactory bulb areas
in rats. Then, we briefly introduce some typical classifiers using bin-based features. After that,
we elaborate on how to effectively decode odor information from spike trains using SNNs, and give
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details of the proposed SNN-VR approach. The framework of the BMI-based bioelectronic nose is
illustrated in Figure 1.

Figure 1. Odor recognition with spiking neural network.

2.1. Data Acquisition

Spike train signals are recorded by implanting electrodes into the main olfactory bulb of rats [33].
Microelectrode arrays with 8 × 2 microwires were implanted vertically into the cell body layer
(600–800 µm) of Mitral/Tufted (M/T) cells in rat olfactory bulbs to detect spike firing and field
potential waveform as shown in Figure 2. Omiplex Neural Data Acquisition System (Plexon) was
used to record electrophysiological signals and odor stimuli events. The sampling rate was 40 kHz.
The spike waveform was obtained by filtering the raw data (250–3000 Hz, Butterworth) and the spikes
were detected by double thresholds method. All procedures were carried out in strict accordance with
a protocol approved by Zhejiang University Animal Care and Use Committee.

(a) (b)

Figure 2. (a) illustration of rat brain and olfactory bulb area (red circle); (b) microelectrode array
(8 × 2 microwires).

The odor stimuli were given by glass dishes containing the odor solutions in front of the rats’
nose. The concentration of all odor solutions was controlled to 10−3 mol/L. The neural signals were
recorded during free breathing in anesthetized rats. According to the odor map [2], a total of four
odors were used for analysis including octanol (odor-1), pentanal (odor-2), butyric acid (odor-3) and
isopentyl acetate (odor-4), where the first three odors can cause strong neural response in olfactory
bulb area while the fourth odor can only cause little neural response. The duration of odor stimulation
was 4–5 s in each trial, and there were 5 trials a day for each odor. There was a 2-min interval between
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two consecutive trials and a 10-min interval between two kinds of odor stimuli. The signals were
recorded continuously for 4 days to obtain enough data for decoding. Table 2 shows more detailed
descriptions of the neural signal dataset.

Table 2. Description of neural signals.

Content Value

Rat 1
Odor types 4

Recorded neurons 11
Samples per odor 20

Recording time length 40 s
Stimulation time length 4–5 s

In the dataset, there are a total of 80 samples of neural signals (20 samples per odor).
The experiments are carried out using random test, that is, a total of 100 experimental trials are
conducted and the average accuracy is presented. In an experimental trial, for each odor type,
16 samples are randomly selected for training, and the 4 remaining samples are used for testing.

2.2. Odor Recognition with Bin-Based Classifiers

With bin-based classifiers, we use spike counts in small time bins for each neuron as the features.
We calculate the spike counts cni of each bin and combine these values into a feature vector. First, we
select a bin of certain size and calculate spike counts of each bin as the feature cni (k), n represents
the n-th neuron, k represents the odor type, and i is the index of the bin. The feature vector of each
neuron is:

xn(k) = [cn1(k), cn2(k), . . . , cnM (k)], (1)

where M represents the number of bins in the time period, taking a bin of 0.5 s and time period of
5.0 s as an example, M = 5.0 s/0.5 s = 10. Then the feature vectors of all neurons during each odor
stimulation are combined into a new feature vector x(k) = [x1(k), x2(k), . . . , xn(k)].

After feature extraction, classifiers including decision tree (DT), k-nearest neighbors (KNN), linear
discriminant analysis (LDA), maximum likelihood estimation (MLE) and supporting vector machine
(SVM) can be used for odor recognition.

2.3. Odor Recognition with Spiking Neural Network

Spiking neural networks (SNNs) [19] are biologically plausible networks, which incorporate
timing information in computing. Instead of using binned-based features, SNN can directly receive
time points of spikes as inputs, therefore it preserves richer information in the firing time point of
single spike and time interval between neighboring spikes [23].

In this study, we use a two-layer spiking neural network consisting of an input and an output
layer for neural signals decoding. The number of neurons in the input layer is same as the recorded
neurons, and there are groups of neurons (each group m representing one odor type) in output layer
which fire zero or one spike. All neurons are fully connected.

2.3.1. Spiking Neuron Model

In this study, we use Leaky Integrate and Fire (LIF) neuron model. The voltage of LIF neuron
is determined by exponentially decayed synaptic current induced by input spikes. Each input spike
from a presynaptic neuron i at time ti would induce a postsynaptic potential (PSP) on the postsynaptic
neuron j, which can be described by the kernel function K(t− ti):

K(t− ti) = V0(exp[−(t− ti)/τ]− exp[−(t− ti)/τs]), (2)
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where V0 normalizes the maximum value of PSP to 1. The parameters τ and τs are the decay time
constants of membrane integration and synaptic currents respectively. K(t− ti) is only valid for the
input spikes before t (ti < t) and becomes zero for the input spikes after t (ti > t).

At time t, the membrane voltage of the postsynaptic neuron j is a weighted sum of all PSPs
contributed by input spikes before time t:

Vj(t) = ∑
i

ωij ∑
ti

K(t− ti) + Vrest, (3)

where ωij represents the synaptic weight between the presynaptic neuron i and postsynaptic neuron j.
When there is no input spike, the postsynaptic neuron j maintains the resting potential Vrest (usually
set to 0). A spike will be fired by the postsynaptic neuron j if Vj(t) exceeds a certain threshold (usually
set to 1).

2.3.2. Tempotron

Tempotron is a classic learning rule for SNN in binary classification tasks [29]. Based on
the Tempotron rule, a neuron fires a spike when it receives a spike pattern from the target class.
The Tempotron learning rule updates synaptic weight ωij when errors occur. During iterative training,
if a postsynaptic neuron j fires an error spike (spike fired by the group of neurons which represent
wrong odor type), synaptic weight ωij would be suppressed according to its contribution to the firing
of error spike. If a postsynaptic neuron j does not fire the expected spike (spike fired by the group of
neurons which represent correct odor type), synaptic weight ωij would be strengthened according
to its responsibility for the failure to fire the spike. To solve the problem of assigning the relative
contribution of input spikes, Tempotron uses the following rule: if the expected spike does not occur,
each synaptic weight ωij increases by a certain value ∆ωi:

∆ωi = λ ∑
ti<tmax

K(tmax − ti), (4)

where tmax denotes the time when the postsynaptic potential Vj(t) reaches its maximum value during
the time period. The constant λ > 0 specifies the maximum value of synaptic weight updating for
each input spike. In contrast, if an error spike occurs, the synaptic weight ωij decreases by ∆ωi.

2.3.3. Tempotron with Voltage-Based Regulation Strategy

Since the Tempotron rule adjusts synaptic weights according to the classification errors, it does not
update synaptic weights when training samples are correctly classified. However, when the training set
is small, it usually causes that the membrane voltage thresholds of some neurons could be approached
easily. When disturbances occur in spike trains, the neurons can fire mistakenly. In odor recognition
tasks, the training data set is usually small. Therefore, we propose a new voltage-based regulation
strategy called Tempotron-VR, to improve the training effectiveness.

Different from the Tempotron rule, the proposed Tempotron with voltage-based regulation
strategy (Tempotron-VR) approach adopts a ∆ω

′
i in synaptic weight updating. By this way, the maximal

voltage value of neurons in the target group (representing correct odor type) will become larger during
training process, so it will be prone to exceed the threshold for firing a spike and the classification
accuracy will increase consequently.

Compared with ∆ωi in (4), Tempotron-VR multiplies an additional factor which is correlated with
the maximal membrane voltage Vmax

mn of the nth neuron in the group m. To obtain the factor, we need
to know the ratio of Vmax

tn (t denotes the target group) to the sum of all groups ∑m Vmax
mn . To ensure the

ratio positive, we transform Vmax
mn by:

f (Vmax
mn ) = ln(eVmax

mn + 1). (5)
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We use F(Vmax
mn ) to represent the ratio of f (Vmax

tn ) to the sum of all groups ∑m f (Vmax
mn ):

F(Vmax
mn ) = ln(

f (Vmax
tn )

∑m f (Vmax
mn )

). (6)

The derivative of F(Vmax
mn ) for neurons in the target group t and other groups can be computed by:

F′(Vmax
mn ) = f ′(Vmax

mn ) · ( 1
f (Vmax

mn )
− 1

∑m f (Vmax
mn )

), m = t, (7)

F′(Vmax
mn ) = f ′(Vmax

mn ) · (− 1
∑m f (Vmax

mn )
), m 6= t. (8)

Finally we multiply ∆ωi by F′(Vmax
mn ) to obtain ∆ω

′
i :

∆ω
′
i = λ ∑

ti<tmax

K(tmax − ti) · F′(Vmax
mn ) (9)

While ωij is updated by ∆ω
′
i at each iteration, Vmax

mn of neurons in the target group becomes
larger (due to F′(Vmax

mn ) greater than 0) and Vmax
mn of others becomes smaller (due to F′(Vmax

mn ) smaller
than 0) during training process, which leads to the neurons in the target group firing spikes more
easily and others firing no spike. This strategy helps to prevent over fitting and improves recognition
performance.

During the process of training, for neurons in group m which represents the mth odor type, we
use training samples with class label m as positive samples and others as negative samples. During the
process of testing, we use the majority voting method to predict the most likely odor type. By counting
the firing neurons (neuron that fires a spike) in each group, the class represented by the group which
has the maximal number of firing neurons is the predicted odor type.

3. Experimental Results

In this section, comprehensive experiments are conducted to demonstrate the effectiveness
of our approach in odor recognition tasks. Firstly, we present the odor recognition performance
of SNN-VR in comparison with other approaches. Secondly, we compare the SNN-VR approach
with typical bin-based methods to show the effectiveness of adopting precise timing information.
Thirdly, we compare SNN-VR approach with classical SNN model to demonstrate the strengths of
the voltage-based regulation strategy in neural signals. After that, we investigate the recognition
performance under different time periods to show the ability of SNN-VR for quick recognition. Finally,
we briefly discuss the pros and cons of SNN-VR.

3.1. Odor Recognition Performance

In this experiment, we present the odor recognition performance of Tempotron-VR in comparison
with Tempotron and bin-based approaches. Considering the odor stimulation time is 4–5 s, we choose
the 5-s-long spike trains to fully use the information of neural signals in olfactory bulb during odor
stimulation. For the model parameters, all the parameters in the method are selected with cross
validation. In each experimental trial, 20% of the training set is used for validation. For KNN, we select
the number of nearest neighbors. For SVM, we select both parameters of C and gamma. For SNN,
we choose the τ and τs in Tempotron and Tempotron-VR respectively. For the bin-based classifiers,
the bin size is set to 0.5 s. The results are shown in Table 3.
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Table 3. Odor recognition accuracy with SNNs and bin-based classifiers.

Odor Combination DT KNN LDA MLE SVM-L SVM-R Tempotron Tempotron-VR

1 2 65% 74% 90% 97% 92% 89% 86% 95%
1 3 62% 78% 63% 93% 63% 79% 68% 81%
1 4 65% 71% 71% 92% 72% 76% 68% 79%
2 3 64% 71% 75% 79% 77% 71% 77% 92%
2 4 71% 82% 91% 92% 90% 76% 90% 97%
3 4 43% 47% 41% 47% 44% 51% 57% 50%

Avg 62% 71% 72% 83% 73% 74% 74% 82%

1 2 3 52% 64% 66% 80% 63% 68% 63% 82%
1 2 4 50% 65% 72% 83% 73% 72% 60% 84%
1 3 4 40% 50% 44% 57% 44% 51% 45% 55%
2 3 4 41% 50% 51% 54% 52% 49% 59% 64%

Avg 46% 57% 58% 69% 58% 60% 57% 71%

1 2 3 4 36% 48% 47% 57% 47% 50% 48% 63%

As shown in Table 3, we present the classification accuracy for two-class, three-class and four-class
classification tasks respectively. Overall, the proposed Tempotron-VR method achieves the highest
performance for odor recognition.

Compared with bin-based approaches, the SNN models obtain higher recognition accuracy.
In bin-based classifiers, MLE achieves the highest recognition accuracy, while Tempotron-VR shows
similar (two-class 82%\83%) and better (three-class 71%\69% & four-class 63%\57%) performance
than MLE. Since the SNN models do not rely on bin-based inputs, they better exploit the temporal
information in spike trains, which leads to higher decoding performance.

Compared with Tempotron, the Tempotron-VR approach obtains better recognition performance.
As shown in Table 3, the recognition accuracy of Tempotron-VR is significantly higher than that of
Tempotron. More specifically, the average recognition accuracy of two-class, three-class and four-class
of Tempotron-VR is 8%, 14% and 15% higher than that of Tempotron respectively. Since the training
dataset for odor recognition is small, the voltage-based regulation strategy can learn more effectively
and improves odor recognition performance.

3.2. Comparison with Bin-Based Methods

In this experiment, we compare our method with bin-based approaches using different bin
sizes. For bin-based classifiers, bin size is a crucial parameter that influences the odor recognition
performance. Therefore, we evaluate the bin-based classifiers with different settings of bin sizes,
and the results are shown in Figure 3. Figure 3a–c illustrate the results for two-class, three-class and
four-class tasks, respectively.

(a) (b) (c)

Figure 3. Odor recognition accuracy using different bin sizes: (a) two-class case; (b) three-class case;
(c) four-class case. The horizontal axis represents the bin size.
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As shown in Figure 3, the optimal choice of bin size varies among different classifiers.
For classifiers such as DT, KNN, and SVM-R, the odor recognition performance increases as we
use larger bin sizes. For LDA and SVM-L, the odor recognition accuracies firstly improve with the
increase of bin size, and then fall after a peak at a bin size of 0.7. For the MLE classifier, the influence
of bin size is small, and slightly better performance can be obtained using small bin sizes below 0.5.
For most of these classifiers, the accuracies are highly sensitive to the choice of bin size. However,
using small training data, finding an optimal bin size is usually difficult. In addition, the optimal bin
size can be different for different tasks.

Compared with bin-based classifiers, one advantage of SNN is that it can directly input the time
points of spike trains, which avoids the bin size selection process. As shown in Figure 3, the proposed
Tempotron-VR method achieves the highest performance compared with bin-based classifiers using
different bin sizes. The Tempotron-VR method is more feasible and effective in neural signal-based
odor recognition tasks.

3.3. Effectiveness of Voltage-Based Regulation Strategy

In this experiment, we evaluate the odor recognition performance of Tempotron-VR with different
training set sizes. Since data acquisition of neural signals is expensive, the training dataset is usually
small, which can cause an overfitting problem in Tempotron-based model learning. In Tempotron-VR,
the voltage-based regulation strategy strengthens synaptic weights to enhance the maximal membrane
voltage of neurons in the target group at each iteration and improves recognition performance.

To demonstrate the strengths of the proposed voltage-based regulation strategy, we compare
Tempotron-VR with Tempotron using different training data sizes. We tune the number of training
sample groups from 1 to 16, where each sample group contains one sample from each class. The sample
groups are randomly shuffled. The rest of the samples are used for testing. The results are shown in
Figure 4a–c, for two-class, three-class, and four-class, respectively.

(a) (b) (c)

Figure 4. Odor recognition accuracy using different training sets: (a) two-class case; (b) three-class
case; (c) four-class case. The blue line and red line represent Tempotron-VR and Tempotron algorithms,
respectively. The horizontal axis represents the number of sample groups in training sets (each sample
group contains a sample from each class).

As shown in Figure 4, the odor recognition accuracies of Tempotron-VR are higher than Tempotron
over all the settings. For the two-class task, the classification accuracies of Tempotron-VR are 76%,
81%, and 82% using 6, 10, and 14 training sample groups, which are 7%, 11%, and 7% higher than
the Tempotron approach. For the three-class task, Tempotron-VR’s accuracies with 6, 10, and 14
training sample groups are 66%, 71%, and 73%, which outperforms Tempotron by 9%, 14%, and 16%,
respectively. For the four-class task, the improvement is more significant. With 6,10, and 14 training
sample groups, the Tempotron-VR obtains accuracies of 61%, 61%, and 64%, which improved by 15%,
16%, and 17%, compared with Tempotron. It is also notable that, with only 10 training sample groups,
the average accuracy of Tempotron-VR can reach 82%, 70% and 64% for two-class, three-class and
four-class odor recognition, respectively, which demonstrates high learning performance with small
training data.
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3.4. Performance of Quick Recognition

In BMI-based bioelectronic noses, the response time is an important criterion. In this experiment,
we test the recognition performance of our method under different time periods (from 0.1 s to 1 s), to
evaluate the performance for quick recognition. The results are shown in Figure 5.

(a) (b) (c)

Figure 5. Odor recognition accuracy within short time periods: (a) two-class case; (b) three-class case;
(c) four-class case. The horizontal axis represents the length of time periods.

As shown in Figure 5, the odor recognition performance improves as we tune the time period
from 0.1 s to 1 s. With the time period of 1 s, the Tempotron-VR achieves accuracies of 77%, 63%, and
53% in two-class, three-class and four-class odor recognition tasks, respectively. With a response time
of 0.5 s, the accuracies of Tempotron-VR are 69%, 55%, and 47%. The proposed Tempotron-VR method
demonstrates good odor recognition ability within a short time period and is promising for quick
detection in bioelectronic noses.

3.5. Discussion

Experimental results show that the proposed Tempotron-VR approach achieves the state-of-the-art
performance compared with bin-based classifiers and Tempotron. The results also demonstrate the
advantages of Tempotron-VR. Compared with bin-based classifiers, our method avoids the selection of
bin size by directly using spike timings as input, which make it more feasible for practical applications.
In addition, the timing information of spikes can be better exploited to achieve higher odor recognition
performance. Compared with Tempotron, the proposed Tempotron-VR strategy can learn more
effectively from small training data, which is crucial in neural signal-based odor decoding where signal
acquisition can be extremely expensive.

One drawback of SNN-based odor recognition is that the computational cost of SNNs is relatively
higher. We evaluate the time cost of each experimental trial in the training stage and the run time
of each sample in test stages with SNN and SNN-VR. The experiments are carried out on a desktop
computer with an Intel(R) Core(TM) i5-4590 CPU, 8 GB RAM memory and 64 bit operating system.
In an experimental trial, for each odor type, 16 samples are randomly selected for training, and the four
remaining samples are used for testing. It is repeatedly executed ten times for measuring the average
results and the time is measured in seconds. As shown in Table 4, SNN costs 10.77 s, 19.37 s and
27.63 s for two-class, three-class and four-class tasks respectively. For SNN-VR, the average training
time of each trial is slightly higher, which is 13.94 s, 21.04 s and 28.57 s respectively. To predict a test
sample, SNN needs 0.011 s, 0.012 s and 0.011 s on average for two-class, three-class and four-class
tasks, respectively, while, in SNN-VR, the average testing time of each sample is 0.019 s, 0.020 s and
0.021 s, respectively. The results show that, although the computational cost of the SNN-VR method
is relatively higher, the online test time for each sample is only around 0.02 s, which is acceptable in
applications. In addition, this problem is expected to be solved by using specialized hardware for
SNN computing, i.e., the neuromorphic chips [34]. The specialized chips contain millions of neurons,
which make it possible to compute SNN models in real time [34]. These chips are computationally
efficient and energy-saving [35], which is promising for applications in bioelectronic noses.



Sensors 2019, 19, 993 10 of 12

Table 4. Training and test time of SNN and SNN-VR.

Number of Odors
Training Test

SNN SNN-VR SNN SNN-VR

2 10.77 13.94 0.011 0.019
3 19.37 21.04 0.012 0.020
4 27.63 28.57 0.011 0.021

4. Conclusions

In this study, we propose a novel spiking neural network (SNN)-based neural signal decoder to
recognize odors with spike train signals recorded from the main olfactory bulb in rats. The proposed
SNN-based approach exploits rich timing information well in precise time points of spikes. To deal
with small training data, we especially propose a new SNN learning method with a voltage-based
regulation strategy (Tempotron-VR), in order to alleviate the overfitting problem. Results show that,
compared with bin-based odor decoders, the SNN approaches achieve better performance in two-class,
three-class, and four-class odor recognition tasks. With the proposed voltage-based regulation strategy,
the SNN-VR approach obtains about 15% improvement compared with classical SNN models, while
SNN-VR demonstrates better generalization ability especially with small training sets.
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LDA Linear Discriminant Analysis
MLE Maximum Likelihood Estimation
SVM-L Support Vector Machine (Linear kernel)
SVM-R Support Vector Machine (RBF kernel)
PCA Principal Component Analysis
SNN-VR SNN with Tempotron-VR
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