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Abstract: To solve the problems of the large differences in gray value and inaccurate positioning of
feature information during infrared-visible image registration, we propose an automatic and robust
algorithm for registering planar infrared-visible image sequences through spatio-temporal association.
In particular, we first create motion vector distribution descriptors which represent the temporal
motion information of foreground contours in adjacent frames to complete coarse registration without
feature extraction. Then, for precise registration, we extracted FAST corners of the foreground, which
are described by the spatial location distribution of contour points based on connected blob detection,
and match these corners using bidirectional optimal maximum strategy. Finally, a reservoir updated
by Better-In, Worse-Out (BIWO) strategy is established to save matched point pairs and obtain the
optimal global transformation matrix. Extensive evaluations on the LITIV dataset well demonstrate
the effectiveness of the proposed algorithm. Particularly, our algorithm achieves lower registration
overlapping errors than the other two state-of-the-arts.

Keywords: image registration; temporal motion information; foreground contour; FAST corner;
spatial location distribution; reservoir

1. Introduction

Multi-sensor image fusion [1–4], which can enhance the ability of target description and scene
understanding, is widely used in target tracking [5], face recognition [6], night vision observation [7]
and many other fields. Image registration, as an important procedure for image fusion, greatly
determines the accuracy of target alignment in the scene, thus affecting the quality of infrared-visible
image fusion.

There exist two challenging problems in infrared-visible image registration. On the one hand,
images from different sensors manifest different phenomena [8]. Visible images record the reflected
light information of objects while infrared images record the thermal field distribution. Thus, the gray
value of two types of images are quite different. On the other hand, directly extracting feature
information across different types of images for registration [8–10] may lead to inaccurate positioning,
which would reduce the accuracy of the final transformation matrix for alignment.

To overcome the challenges above, many effective algorithms [11–15] have been proposed in
recent years. Most of them are committed to using motion information to register targets in the scene.
St. Charles et al. [14] proposed a framework based on shape matching, but its performance depends
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largely on foreground detection. Sun et al. [15] proposed combining motion and feature information to
register targets. However, it cannot provide satisfactory results during special moments.

We propose a coarse-to-precise registration algorithm for infrared-visible image sequences via
spatio-temporal association. In the coarse registration step, the motion vector field of the detected
foreground is calculated. Inspired by the Histograms of Oriented Gradients (HOG) [16], we first
create Motion Vector Distribution (MVD) descriptors to represent temporal motion information of
foreground contours, and then randomly select contour points in the infrared image and search
for their corresponding contour points in the visible image without feature extraction. Such coarse
registration can roughly align targets in the scene and thus eliminate the influence of inaccurate
positioning of feature information. In the precise registration step which is based on intra-frame
feature matching, we first relocate foregrounds with the computed coarse parameters, and then
extract FAST corners [17] of the targets. We further use shape context descriptors [18] to describe the
spatial location distribution of the connected blob contours. To match these feature points, we create
bidirectional optimal maximum strategy and establish a reservoir updated by Better-In, Worse-out
(BIWO) strategy to save them. The optimal global transformation matrix is computed using the
matched point pairs in the reservoir. Benefiting from the use of temporal motion information, stricter
feature description and matching, and a robust reservoir, the proposed algorithm can achieve high
registration accuracy. To sum up, the main contributions of this work are as follows:

(1) We propose a spatio-temporal associated registration algorithm for infrared-visible image
sequences, which combines temporal motion information and intra-frame feature matching
scheme, achieving low registration overlapping errors.

(2) We create MVD descriptors of foreground contours for coarse registration without feature
extraction. Thus, foreground targets can be roughly aligned to eliminate the impact of inaccurate
positioning of feature points.

(3) We propose a description of feature points based on the spatial location distribution of connected
blob contours, and perform feature matching using bidirectional optimal maximum strategy.
A robust reservoir updated by BIWO strategy is proposed to improve the accuracy of the final
global transformation matrix.

The rest of the paper is structured as follows: Section 2 provides a review of related work. Section 3
introduces algorithm overview and details of each procedure. Section 4 presents qualitative and
quantitative evaluations of the proposed algorithm as well as comparisons with other state-of-the-arts.
Section 5 presents the conclusions.

2. Related Work

Methods for image registration can be categorized into two types: intensity-based methods and
feature-based methods. Intensity-based registration methods use the gray values of all pixels to
calculate the similarity between two images, and adopt search methods such as genetic algorithm [19],
ant colony algorithm [20], Powell algorithm [21], etc. to get the optimal transformation matrix.
Cross-correlation methods [22] use the regional cross-correlation between two images as the similarity
measure function for registration. However, the computational complexity of such methods is quite
high. Mutual information methods [21,23] utilize the statistical correlation between images for
registration, which are commonly used in multimodal medical image registration. Phase correlation
methods [24,25] are effective complements to image registration, which compute the parameters of
scaling, rotation and translation by calculating the maximum cross power spectrum of two images
from frequency domain. Intensity-based registration methods can hardly be applied in infrared-visible
images due to the huge difference in gray value. Furthermore, textures in visible images are often
missed in infrared images as they seldom influence heat emitted by targets.

Feature-based registration methods extract feature information such as points [9,10], edges [26],
contours [8,14], etc. of the images, which are robust to illumination, temperature, occlusion and
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many other disruptive factors. It is unreliable to directly use edges or contours as they are not
completely consistent across infrared and visible images. Points are the simplest but most efficient
feature information and FAST corner [17] has developed rapidly in computer vision tasks for its fast
computing speed. Similarly, when there exists large spatial variation between infrared and visible
images, the positioning of feature points will have a certain deviation, which means that methods of
directly using feature points for registration [9,10] are inapplicable to our task.

Registration of infrared-visible image sequence has attracted much attention in recent years. Image
sequence can provide motion information between adjacent frames, which can be complementary
to image registration. Methods based on global optical flow information [11] need to calculate the
optical flow of all frames, making their use impossible for real-time registration. Methods based on
target trajectories were proposed in [12,13]. The positioning of the centroids or apexes of the targets
may not be accurate enough, and thus trajectories formed by these points may not fully reflect the
motion state of the targets. Sun et al. [15] proposed to combine motion vectors and feature information.
However, the calculation of motion vectors requires a consistent number of targets in the scene so that
such method is not suitable for situations in which targets enter or leave the scene. In the proposed
registration algorithm, the problem of inaccurate positioning of feature points is overcome by coarsely
registering foreground contours using MVD descriptors. We create a strict matching strategy as well as
a robust reservoir to match and save point pairs extracted from relocated foregrounds, and to calculate
the optimal global transformation matrix. Main procedures will be detailed below.

3. Methodology

3.1. Overview of the Proposed Algorithm

Moving targets in the scene can provide available motion information. We extract the foregrounds
of the images and accomplish registration on them. Figure 1 shows an overall flow of the proposed
registration algorithm for infrared-visible image sequences. It mainly consists of three procedures:
foreground extraction, coarse registration based on temporal motion information, and precise
registration based on intra-frame feature matching.

In coarse registration, we calculate and rectify the motion vector field of two adjacent frames.
The motion vectors on the foreground contours can fully reflect the motion state of the target. Motion
vectors of different parts and different targets are discriminative. Inspired by the HOG [16], we create
MVD descriptors for foreground contours and use corresponding foreground contour points to
calculate coarse parameters of the transformation matrix.

In precise registration, FAST corners [17] of the relocated foregrounds are extracted. These points
are then described by the shape context descriptors [18] of the connected blob contours to which
they belong and matched by bidirectional optimal maximum strategy. A reservoir based on BIWO
update strategy is established to save matched point pairs and to calculate precise parameters of the
transformation matrix.

It should be noted that infrared image is the floating image while visible image is the reference
image in the proposed algorithm. The transformation model we use is similar transformation matrix
including scaling, rotation and translations, which is: yIR

xIR

1

 =

 σ cos θ σ sin θ ∆y
−σ sin θ σ cos θ ∆x

0 0 1


 yVIS

xVIS

1

 (1)

where (xIR, yIR) and (xVIS, yVIS) are the positions of pixels in infrared and visible images, respectively.
σ is the scaling factor, θ is the rotation factor, and ∆y, ∆x are the vertical and horizontal translation
factors. The proposed algorithm is focused on registering planar scenes, which means that various
sensors capture images at long distance from targets.
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Figure 1. Flow chart of the proposed algorithm.

3.2. Foreground Extraction

To fully make use of the temporal motion information, we perform foreground extraction by
using the method in [27]. It uses color and texture information to define the pixels as “background
words” in local dictionaries and introduce a feedback mechanism to continuously upgrade the model.
In the subsequent coarse registration process, we use the motion vector field of the foreground. And in
the precise registration process, we retain FAST corners of the relocated foreground.

3.3. Coarse Registration

When the spatial transformation of two images differs greatly, direct extraction of feature points
may result in inaccurate positioning. Coarse registration on foreground contours can solve this
problem, which we will explain in detail.

3.3.1. Image Preprocessing

We perform some preprocessing on the images to obtain a more accurate motion vector field:

• The lighting condition may change when sensors capture images, which will greatly affect the
accuracy of the motion vector field. For an image sequence with a resolution of M × N, the gray
value of the pixels in the next frame gt+1(i, j) will be rectified to the previous frame gt(i, j) by:

gt+1(i, j)′ = gt+1(i, j)×
[

1
M× N

M

∑
i=1

N

∑
j=1

gt(i, j)/
1

M× N

M

∑
i=1

N

∑
j=1

gt+1(i, j)

]
(2)

• Noise removal is necessary. We use a Gaussian filter (5 × 5 size, standard deviation of 3) to
smooth each frame of the image sequence.

3.3.2. Motion Vector Field Calculation

To obtain motion vector field of the whole image, we calculate optical flow which represents the
instantaneous motion velocity of each pixel. [28,29] are typical methods for optical flow calculation.
But they are inapplicable when the speed of moving targets is too low or too fast, especially in our task
where sensors capture images far from moving targets in the scene. We adopt an improved optical flow
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calculation method presented in [30]. It defines an improved variational equation and introduces a
smoothness constraint to minimize it. Figure 2 shows the motion vector diagrams obtained by adjacent
frames in the image sequence.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 17 

 

introduces a smoothness constraint to minimize it. Figure 2 shows the motion vector diagrams 
obtained by adjacent frames in the image sequence. 

 

(a) 
 

(b) 

Figure 2. Adjacent frames (left and middle) and the motion vector diagrams (right) with display step 
size of 5 pixels. The red arrow direction represents the motion vector direction of the pixel, and the 
arrow length represents the normalized motion vector magnitude. (a) Infrared image; (b) Visible 
image. 

3.3.3. Motion Vector Field Filtering and Re-Projection 

• Motion vector that belongs to the background is set to zero. Because only the motion vector of 
the foreground is sufficiently distinguishable for registering foreground contours. 

• Motion vector near the image boundaries tends to be inaccurate and is not conducive to the 
establishment of subsequent MVD descriptors. We remove the motion vector near the 
boundaries with a threshold of 20 pixels. 

• For a pixel with location ( , )x y , gray value tg , and calculated motion vector ( , )x yu u=u , the 
offset of the gray value relative to the pixel in the next frame 1tg + can be obtained by re-
projection (bilinear interpolation method): 

1( , )t x y tg g x u y u g+Δ = + + −  (3)

If the offset is greater than the threshold (5 pixels in our algorithm), motion vector of this pixel 
is considered to be wrong and is set to zero.  

3.3.4. Creation of Motion Vector Distribution Descriptor and Contour Matching 

For a pixel with ( , )x yu u=u , we can get magnitude and orientation of motion vector by: 

2 2

arctan[ / ( )] [0, 2 )
x y

x y

Mag u u

Ori u u eps

 = +


= + ∈ π
 (4)

where eps  is the minimum floating point precision, ensuring the denominator is not zero. 
Magnitude of motion vector has rotation and translation invariance. To obtain scaling invariance, for 
all motion vector magnitudes ( , )Mag i j , we normalize and encode them by: 

max

0 ( , ) 0
( , )

[ ( , ) / ( ) 36 0.5] otherwise
if Mag i j

Mag i j
round Mag i j Mag eps

=′ =  + × +
 (5)

Where maxMag  is the maximum magnitude value. 

Figure 2. Adjacent frames (left and middle) and the motion vector diagrams (right) with display step
size of 5 pixels. The red arrow direction represents the motion vector direction of the pixel, and the
arrow length represents the normalized motion vector magnitude. (a) Infrared image; (b) Visible image.

3.3.3. Motion Vector Field Filtering and Re-Projection

• Motion vector that belongs to the background is set to zero. Because only the motion vector of the
foreground is sufficiently distinguishable for registering foreground contours.

• Motion vector near the image boundaries tends to be inaccurate and is not conducive to the
establishment of subsequent MVD descriptors. We remove the motion vector near the boundaries
with a threshold of 20 pixels.

• For a pixel with location (x, y), gray value gt, and calculated motion vector u = (ux, uy), the offset
of the gray value relative to the pixel in the next frame gt+1 can be obtained by re-projection
(bilinear interpolation method):

∆g =
∣∣gt+1(x + ux, y + uy)− gt

∣∣ (3)

If the offset is greater than the threshold (5 pixels in our algorithm), motion vector of this pixel is
considered to be wrong and is set to zero.

3.3.4. Creation of Motion Vector Distribution Descriptor and Contour Matching

For a pixel with u = (ux, uy), we can get magnitude and orientation of motion vector by:{
Mag =

√
ux2 + uy2

Ori = arctan[ux/(uy + eps)] ∈ [0, 2π)
(4)

where eps is the minimum floating point precision, ensuring the denominator is not zero. Magnitude
of motion vector has rotation and translation invariance. To obtain scaling invariance, for all motion
vector magnitudes Mag(i, j), we normalize and encode them by:

Mag′(i, j) =

{
0 i f Mag(i, j) = 0
round[Mag(i, j)/(Magmax + eps)× 36 + 0.5] otherwise

(5)
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where Magmax is the maximum magnitude value.
Orientation of motion vector has scaling and translation invariance, but no rotation invariance.

For all motion vector orientations Ori(i, j), we first encode them by:

Ori′(i, j) =

{
0 i f Mag(i, j) = 0
round[Ori(i, j)/(2π + eps)× 36 + 0.5] otherwise

(6)

where each code denotes an interval of 10◦ and code 0 represents that magnitude value is zero.
To obtain rotation invariance, we then turn the main orientation, selected by the maximum in its

statistical histogram, as code 1. The remaining orientations are recorded in a clockwise direction as
code 2 to 36:

Ori′′ (i, j) =


0 i f Ori′(i, j) = 0

36 i f mod[Ori′(i, j)−Mcode + 1.36] = 0

mod[Ori′(i, j)−Mcode + 1.36] otherwise

(7)

where Mcode is the main orientation code before recording.
Inspired by the HOG [16], taking a point on the foreground contour as the center, we first perform

histogram statistics on non-zero magnitude and orientation of motion vector in a 9 × 9 pixels block.
We then assign two-dimensional Gaussian distribution weight (9 × 9 size, standard deviation of 5)
to generate it. We finally obtain encoded motion vector magnitude distribution vector HMag and
orientation distribution vector HOri of the center point and both of them are 36-dimensional. Massive
experiments demonstrate that under the planar condition, the speed of moving target in the scene
is low, resulting in a smaller discrimination of motion vector magnitude distribution. When there
are multiple targets moving in different directions in the scene, or when movements such as waving,
turning, etc. occur, the distribution of motion vector orientation is more differentiated. Based on
this, we add weight factor ω (ω = 0.2 in our algorithm) and combine these two histogram vectors to
create motion vector distribution descriptors (72-dimensional) for foreground contour points (the total
number is N):

MVDk = [ωHMag
k (1−ω)HOri

k ] k = 1, 2, . . . , N (8)

We randomly select some foreground contour points (in our algorithm, 10% of infrared contour
point set each frame). For a selected infrared point, visible contour point with the smallest Euclidean
distance between motion vector distribution descriptors is regarded as the corresponding point.
The random sample consensus (RANSAC) algorithm [31] is adopted to calculate the optimal
transformation matrix. Figure 3 shows the matching result of randomly selected foreground
contour points.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 17 

 

Orientation of motion vector has scaling and translation invariance, but no rotation invariance. For all motion 
vector orientations ( , )Ori i j , we first encode them by:  

0 ( , ) 0
( , )

[ ( , ) / (2 ) 36 0.5] otherwise
if Mag i j

Ori i j
round Ori i j epsπ

=′ =  + × +
 (6)

where each code denotes an interval of 10 and code 0 represents that magnitude value is zero. 
To obtain rotation invariance, we then turn the main orientation, selected by the maximum in its 

statistical histogram, as code 1. The remaining orientations are recorded in a clockwise direction as 
code 2 to 36: 

0 ( , ) 0
( , ) 36 mod[ ( , ) 1,36] 0

mod[ ( , ) 1,36] otherwise

code

code

if Ori i j
Ori i j if Ori i j M

Ori i j M

′ =
′′ ′= − + =
 ′ − +

 (7)

Where codeM  is the main orientation code before recording. 
Inspired by the HOG [16], taking a point on the foreground contour as the center, we first 

perform histogram statistics on non-zero magnitude and orientation of motion vector in a 9 × 9 
pixels block. We then assign two-dimensional Gaussian distribution weight (9 × 9 size, standard 
deviation of 5) to generate it. We finally obtain encoded motion vector magnitude distribution vector 

MagH  and orientation distribution vector OriH  of the center point and both of them are 36-
dimensional. Massive experiments demonstrate that under the planar condition, the speed of moving 
target in the scene is low, resulting in a smaller discrimination of motion vector magnitude 
distribution. When there are multiple targets moving in different directions in the scene, or when 
movements such as waving, turning, etc. occur, the distribution of motion vector orientation is more 
differentiated. Based on this, we add weight factor ω  ( 0.2ω =  in our algorithm) and combine these 
two histogram vectors to create motion vector distribution descriptors (72-dimensional) for 
foreground contour points (the total number is N): 

[ (1 ) ] 1, 2, ... ,Mag Ori
k k kMVD H H k Nω ω= − =  (8)

We randomly select some foreground contour points (in our algorithm, 10% of infrared contour 
point set each frame). For a selected infrared point, visible contour point with the smallest Euclidean 
distance between motion vector distribution descriptors is regarded as the corresponding point. The 
random sample consensus (RANSAC) algorithm [31] is adopted to calculate the optimal 
transformation matrix. Figure 3 shows the matching result of randomly selected foreground contour 
points. 

  
(a) (b) 

Figure 3. Matching result in the foreground contours (a) and in the original images (b) by using 
MVD descriptor. For the convenience of display, we only select 30 point pairs. 

There are some mismatches and inaccurate matched pairs, especially when targets in the scene 
are moving at a slower speed and the directions are almost consistent. RANSAC algorithm is able to 
calculate the optimal transformation matrix among all matched point pairs. Through coarse 
registration process, we can get coarse parameters of similarity transformation model: cσ , cθ , cyΔ  
and cxΔ . 

Figure 3. Matching result in the foreground contours (a) and in the original images (b) by using MVD
descriptor. For the convenience of display, we only select 30 point pairs.

There are some mismatches and inaccurate matched pairs, especially when targets in the scene
are moving at a slower speed and the directions are almost consistent. RANSAC algorithm is able to
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calculate the optimal transformation matrix among all matched point pairs. Through coarse registration
process, we can get coarse parameters of similarity transformation model: σc, θc, ∆yc and ∆xc.

3.4. Precise Registration

Coarse registration cannot obtain accurate registration parameters due to its randomness.
Importantly, it can roughly align targets in the scene for more accurate positioning of feature points.
In the following section, the proposed precise registration is introduced.

3.4.1. Relocation and Feature Point Extraction

We first relocate the floating image and foreground with coarse parameters (bilinear interpolation
method). Figure 4 shows the results of relocated original image and foreground.
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Since FAST corner detection algorithm [17] has low computational complexity and ensures
accurate positioning, we choose to extract FAST corners of moving targets and match them. Similar to
motion vector field filtering in coarse registration, corners that belong to the background and near the
image boundaries are abandoned. Figure 5 shows the detected FAST corners.
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3.4.2. Feature Points Description

In Reference [15], the number of targets in the scene needs to be consistent for homologous and
heterogeneous feature point matching. Besides, in the process of normalized location description
establishment, the centroid is obtained with all foregrounds. However, when moving targets just enter
or leave the scene, the number of them tends to be inconsistent. As shown in Figure 6, there is one
target entering or leaving the scene in the infrared while there are two in the visible. Reference [15] is
unable to deal with these specific moments and the centroid calculation is inaccurate.

To register these special frames, we first use the two-pass algorithm to segment targets
(foregrounds) in the scene, and merge the nearby small connected blobs caused by foreground
extraction. In subsequent description, calculation of the centroid and establishment of the shape
context descriptor are only performed in the connected foreground blob to which the feature point
belongs. We then describe the feature point as follows:
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• Position of the feature point: P = [x, y].
• Location of the feature point relative to the centroid of the connected foreground blob to which it

belongs, calculated by:
L = [x− xc, y− yc] (9)

where [xc, yc] is the position of the centroid.
• The shape context descriptor [18] of the feature point. It reflects the spatial location distribution

of neighbored points around the center. Contour points of the connected foreground blob to
which the feature point belongs form the descriptor. In our algorithm, log-polar coordinate is
used to divide the distance into 5 bins and the angle into 8 bins. The shape context descriptor
(40-dimensional) of the feature point is established by:

SC = [sc(1, 1), sc(1, 2), . . . , sc(dis, ang)] dis ∈ [1, 5], ang ∈ [1, 8] (10)

where sc(dis, ang) is the distribution statistical histogram of joint distance and angle.
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3.4.3. Matching

Three similarity metrics are used for feature point matching:

• Euclidean distance between positions of the two feature points:

SP =
∣∣∣PIR − PVIS

∣∣∣ (11)

• Euclidean distance between locations of the two feature points relative to the centroids:

SL =
∣∣∣LIR − LVIS

∣∣∣ (12)

• Chi-square test statistic between two shape context descriptors:

Cs =
1
2

K

∑
k=1

[SCIR(k)− SCVIS(k)]2

SCIR(k) + SCVIS(k)
, K = 40 (13)
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Since coarse registration process has roughly aligned moving targets in the scene, we first treat
a point pair as potentially matched if SP < Sth1 and SL < Sth2; otherwise we just ignore it and consider
another point pair. Then we calculate chi-square test statistic between two shape descriptors. For an
infrared feature point, visible feature point with the smallest chi-square test statistic is regarded as its
matched point.

There may come situations in which more than one visible feature point is matched to the same
infrared feature point or mismatches happens. To solve them, as introduced in Algorithm 1, we create
bidirectional optimal maximum strategy to filter the point pairs. Figure 7 shows the matched point
pairs by using the proposed matching strategy.
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Algorithm 1: Bidirectional Optimal Maximum Matching Strategy

Input: Point sets {FPIR} and {FPVIS}; descriptions PIR, LIR, SCIR and PVIS, LVIS, SCVIS.
Output: Matched point set {MP}.
For each point in {FPIR}
Foreach {FPVIS}
If SP < Sth1 (Sth1 = 20 in our algorithm) & SL < Sth2 (Sth2 = 10 in our algorithm)

Calculate Cs using Equation (13); get the minimun Csmin and sub-minimum Cssubmin
If Csmin/Cssubmin < thresh (thresh = 0.8 in our algorithm)

Point with Csmin is regarded as the matched point
End if

End if
End if
For each point in {FPVIS}, adopt the same matching strategy
Preserve bidirectionally matched point pairs in {MP}

3.4.4. Reservoir Construction and Optimal Transformation Matrix Calculation

For image sequence registration, if we only use feature points of the current frame to compute the
transformation matrix, parameters may not be obtained since there may not be enough feature points
to be extracted, especially when moving targets enter or leave the scene. To solve this problem, we save
the matched point pairs from different frames in a reservoir. Many approaches to constructing and
updating reservoirs have been proposed, for example in reference [8], a 30 or 100 frame-wide reservoir
with First-In, First-Out (FIFO) update strategy is created. The disadvantage of this reservoir is that
there will not be enough matched point pairs if the targets disappear during the 30 or 100 frames.
And FIFO strategy may replace the better-matched point pair with worse-matched or even wrong
match. In reference [14], reservoir eliminates those pairs that are regarded as persistent outliers based
on the RANSAC algorithm and a proposed voting scheme. This reservoir is robust, but with the cost
of high computational complexity. In reference [15], a match whose HOE matching metric is greater
than the median value is considered as outliers. When a new match is generated, one of the outliers is



Sensors 2019, 19, 997 10 of 17

randomly selected and replaced. This reservoir is updated by the description of the feature points,
which is not applicable to our algorithm.

Based on the feature point description method in our algorithm, as introduced in Algorithm 2, we
create a new reservoir updated by BIWO strategy. Once the reservoir is full, a new match is allowed to
enter only when the similarity metrics meet the admission criteria.

Algorithm 2: Reservoir updated by BIWO strategy

Input: Reservoir Re = {(pIR
1 , pVIS

1 ), (pIR
2 , pVIS

2 ), . . . , (pIR
n , pVIS

n )}; new point pair (pIR
new, pVIS

new ) and its
similarity metrics SP

new, SL
new and Csnew.

Output: Updated reservoir Re′.
If n > 500
Calculate the means of SP and SL of Re

If SP
new and SL

new are smaller than the means & Csnew is smaller than the maximum
Abandon the point pair with maximal Cs and replace it with the new

End if
End if
Obtain the updated reservoir Re′

The proposed reservoir updates only when the new point pair is better matched, which prevents
worse-matched and wrong matches from entering it. Once the reservoir is filled with sufficient
matched point pairs, the best precise parameters σp, θp, ∆yp and ∆xp can be obtained by using
RANSAC algorithm and we can get the final optimal global parameters by inverting the Equation (1):

σ f = σc × σp

θ f = θc + θp

∆y f = σc × [cos(θc)× ∆yp + sin(θc)× ∆xp] + ∆yc

∆x f = σc × [cos(θc)× ∆xp − sin(θc)× ∆yp] + ∆xc

(14)

4. Experiments and Analysis

In this section, we test and analyze the performance of the proposed algorithm in the planar
image sequences.

4.1. Dataset

For comparison with other algorithms related to our work, we choose LITIV dataset provided
by reference [32] to test our algorithm. It contains nine image sequences and provides ground-truth
matrices by manually selecting notable matched point pairs of moving targets in the scene. The dataset
has a resolution of 240 × 320, a frame rate of 30 FPS, and lengths between 329 and 1238 frames.

4.2. Qualitative Results and Analysis

In the proposed algorithm, infrared image is the floating image and registered by the computed
transformation matrix, while visible image is used as the reference image. To visualize the effectiveness
of the proposed algorithm, in Figure 8, we show mosaic results incorporate transformed infrared
images, original visible images and the ground-truth matrices of each image sequence.
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Due to the existence of coarse registration process, when targets appear in the scene, the deviation
of two images is not very large, especially in LITIV-4, LITIV-6 and LITIV-9, targets have already been
roughly aligned. In LITIV-6, LITIV-7, LITIV-8, and LITIV-9, the final registration matrix does not
completely coincide with the ground-truth matrix. This does not mean that the proposed algorithm
is unable to achieve high registration accuracy. There are two reasons for this: (1) The ground-truth
matrix is obtained by manually selecting notable matched point pairs of targets, and there may be
errors. In the subsequent quantitative results, we can see that the registration evaluation metric can
exceed the ground-truth matrix in some frames. (2) The ground-truth matrix is unique and suitable for
registration of planar scenes, but LITIV dataset does not fully satisfy the planar condition, especially
in LITIV4, LITIV8, and LITIV9, moving targets in the scene are multiple, and each target has its own
depth of field. We cannot directly register all the targets in the scene with the same transformation
matrix. We will provide further detailed explanations for this in the following section.

4.3. Quantitative Results and Analysis

To quantitatively evaluate the proposed algorithm, we select two state-of-the-art algorithms for
registering planar image sequences [14,15] as comparisons. Charles et al. [14] creates a framework
based on shape matching, and introduces a voting scheme to define whether a matched point pair in
the reservoir is persistent outliers, and eliminating it to updates the reservoir. Sun et al. [15] creates
a framework combining motion and feature information. It uses motion vectors to calculate the scaling
and rotation factors in coarse registration and uses HOE descriptors to describe and match the feature
points in precise registration. A reservoir updated based on HOE matching metric is proposed.

We adopt a registration evaluation metric, which is overlapping error of the foreground,
defined as:

ξOE = 1− FVIS ∩ Γ(FIR, H)

FVIS ∪ Γ(FIR, H)
(15)

where FVIS and FIR are visible and infrared foregrounds respectively. Γ(FIR, H) represents that
infrared foreground is transformed by the transformation matrix H.

Overlapping error of the foreground can easily be influenced by the results of the foreground
extraction [14] proposed using binary polygons instead of foreground to calculate the overlapping
error. Binary polygons are formed by connecting the matched points of notable parts of moving targets
(heads, shoulders, palms, etc.). When the binary polygon in infrared is transformed, the overlapping
error of the two polygonal regions is calculated. Figure 9 shows the binary polygons in LITIV-1.
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Even if the occlusion or target overlap occurs, identical distribution of the motion vector can be used 

Figure 9. Manually connect the notable matched points of the infrared and visible targets (Frame 101,
LITIV-1) to construct binary polygons.

To globally show the performance of the optimal transformation matrix calculated for each frame,
we plot the overlapping error-time curves and compare them with the algorithms of [14,15]. Figure 10
shows the curves of nine image sequences in LITIV dataset.
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Figure 10. Overlapping error-time curves of nine image sequences in LITIV dataset. The red is our
algorithm, the green is the algorithm of [14], and the blue is the algorithm of [15]. The dotted black
represents the ground-truth matrix.

Except for LITIV-8, the overlapping error of our algorithm is lower than [14] in all image sequences,
and the convergence speed is faster. [14] registers targets based on direct shape matching, which is
susceptible to foreground detection results. When the moving targets in the scene enter and leave
the field of view, occlusion or overlap of the targets may happen and result in inaccurate shapes of
the foregrounds. Our algorithm contains coarse registration based on motion vector distribution.
Even if the occlusion or target overlap occurs, identical distribution of the motion vector can be used
to align the targets as long as the changes are simultaneous. LITIV-8 is special, where the spatial
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difference between the floating image and the reference image is large. Translation of horizontal
direction is more than 100 pixels given by ground-truth. [14] directly registers the moving targets
without relocation or distance constraints on feature points, so it performs better in this sequence.
Despite [14] being better for a specific problem, the overall performance (for most of the LITIV
dataset sequences) of our proposed algorithm is superior to [14]. For further quantitative evaluation,
we give the minimum overlapping errors of each image sequence in Table 1, which reflects the optimal
registration performance.

Table 1. Minimum overlapping errors of each image sequence in LITIV dataset (the red represents the
best results).

Sequence Pair Ground-Truth Ours Sun et al. Charles et al.

LITIV-1 0.1498 0.1297 0.1348 0.1868
LITIV-2 0.0777 0.0917 0.0825 0.1058
LITIV-3 0.0803 0.0886 0.1011 0.1083
LITIV-4 0.2213 0.0987 0.1094 0.1184
LITIV-5 0.1500 0.0956 0.1020 0.1721
LITIV-6 0.0875 0.0823 0.0831 0.0689
LITIV-7 0.1360 0.0448 0.0523 0.0909
LITIV-8 0.2596 0.1848 0.1763 0.1367
LITIV-9 0.1343 0.0954 0.0932 0.0950

And we give the average overlapping errors of each image sequence in Table 2, which reflects the
robustness of the algorithms.

Table 2. Average overlapping errors of each image sequence in LITIV dataset (the red represents the
best results).

Sequence Pair Ground-Truth Ours Sun et al. Charles et al.

LITIV-1 0.1498 0.1933 0.2264 0.2657
LITIV-2 0.0777 0.1474 0.1617 0.2049
LITIV-3 0.0803 0.1667 0.1872 0.1932
LITIV-4 0.2213 0.2454 0.1981 0.3116
LITIV-5 0.1500 0.1339 0.1512 0.2671
LITIV-6 0.0875 0.1543 0.1902 0.4125
LITIV-7 0.1360 0.1191 0.1358 0.2573
LITIV-8 0.2596 0.2213 0.2366 0.2038
LITIV-9 0.1343 0.1503 0.1726 0.1850

Combining the curves, the minimum and the average overlapping errors, our algorithm achieves
the best registration results compared to [14,15] in LITIV-1, LITIV-3, LITIV-4, LITIV-5 and LITIV-7.
It should be noted that in LITIV-4, our algorithm cannot achieve lower overlapping errors for a long
time. This happens because the number of connected blobs extracted by the foreground detection
method is inconsistent during these frames, where there is one blob in the infrared while there are two
blobs in the visible. In the feature matching process, our algorithm relies on the connected blobs to
which the feature points belong. However, when the number of connected blobs returns to the same,
the overlapping error begins to decrease.

Except for LITIV-4 and LITIV-8, our algorithm achieves the lowest average overlapping error
compared to [14,15]. This is because the coarse registration can roughly align the targets in the scene,
ensuring that the spatial deviation is not particularly large. We can see that in LITIV-1, LITIV-3, LITIV-6
and LITIV-9, our algorithm has already reached a low error at initial frames.

In all but LITIV-2 and LITIV-3 sequences, our algorithm obtains lower errors than the ground-truth,
which indicates that there are potential errors in manually selecting matched point pairs to calculate
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ground-truth matrices, and also explains that our final matrices do not completely coincide with the
ground-truth in the mosaic results.

LITIV-5, LITIV-6 and LITIV-7 fully reflect the superiority of our algorithm. In these image
sequences, we can see from the overlapping error-time curves that our algorithm keeps the lowest
level for most of the time, because these sequences share the common characteristics: moving targets
is far from the sensor in the scene, there is almost no overlap between moving targets and the moving
directions are quite distinguishable, which are more conducive for coarse registration based on the
distribution of motion vector. Figure 11 shows infrared motion vector diagram obtained from adjacent
frames in LITIV-5, which has obvious discrimination.
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Figure 11. (a) The left is the original infrared image (Frame 328, LITIV5) and (b) the right is the motion
vector diagram.

In LITIV-1, LITIV-5, LITIV-6, LITIV-7 and LITIV-9, our algorithm converges faster than [14,15]
and can achieve lower overlapping error (0.25) in a shorter time.

As for computational complexity, experiments are conducted on an Intel(R) Core (TM) i5-6500
CPU, 3.20 GHz, 16 GB RAM, Win 7 × 64, Matlab R2016a platform. Table 3 shows the average
computing time of single frame of each image sequence in LITIV dataset.

Table 3. Average computing time of single frame.

Sequence Pair LITIV-1 LITIV-2 LITIV-3 LITIV-4 LITIV-5 LITIV-6 LITIV-7 LITIV-8 LITIV-9

Time(s) 0.0615 0.1028 0.0638 0.0925 0.0781 0.0699 0.0633 0.0764 0.0733

In summary, the proposed registration algorithm is superior to the other two state-of-the-arts
in registering infrared-visible image sequences. When moving targets in the scene are small and the
motion states are distinguishable, the proposed algorithm can achieve higher registration accuracy
and faster convergence speed than the other two state-of-the-art algorithms.

5. Conclusions

In this paper, we propose an automatic and robust infrared-visible image sequence registration
algorithm through spatio-temporal association. In the coarse registration step, we use temporal motion
information of the foreground, establish MVD descriptors for foreground contour points and roughly
align the targets to eliminate inaccurate positioning of the feature points. In the precise registration
step, we use the spatial location distribution of connected contour points to describe the detected
feature points and match them under bidirectional optimal maximum strategy. BIWO strategy based
on similarity metrics is created to update the reservoir and low registration overlapping errors can be
obtained. Extensive evaluations well demonstrate the effectiveness of the proposed algorithm, which
outperforms the other two state-of-the-arts in registering infrared-visible image sequences.
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