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Abstract: A highly sensitive and flexible hydrogen sensor based on organic nanofibers decorated
by Pd nanoparticles (NPs) was designed and fabricated for low-concentration hydrogen detection.
Pd NPs were deposited on organic nanofiber materials by DC magnetron sputtering. The temperature
dependence of the sensitivity at 25 ppm H2 was characterized and discussed, and the maximum
response of the sensor increased linearly with increasing measurement temperature. Performances
of the hydrogen sensor were investigated with hydrogen concentration ranging from 5 ppm to
50 ppm. This sensor exhibits high sensitivity, with the response up to 6.55% for H2 as low as 5 ppm,
and the output response of the hydrogen sensor increased linearly with the square root of hydrogen
concentration. A cycling test between pure nitrogen and 25 ppm hydrogen concentration was
performed, and the hydrogen sensor exhibited excellent consistency.

Keywords: hydrogen sensor; organic nanofibers; high sensitivity; sputtering; nanoparticles

1. Introduction

Hydrogen gas is one of the most promising cleaning energy sources due to its high combustion
efficiency and zero pollution to the environment. Meanwhile, hydrogen is also widely employed in
the aerospace industry, metallurgical industry, and other fields [1–3]. However, it has a great security
risk in practical applications since it is colorless, odorless, and explosive at concentrations above 4% in
atmosphere [4,5]. Therefore, highly sensitive hydrogen sensors are urgently demanded. In particular,
low concentration hydrogen detection is of great importance for the space exploration. By analyzing
the space distribution of the hydrogen element, the formation and evolution of the universe, the impact
of the space environment on the human living environment, and the origin of life could be evaluated
and studied [6,7]. Nevertheless, the density of hydrogen in the space is extremely low, with varied
temperature. So far, the hydrogen sensor with high sensitivity and repeatability, especially in the low
H2 concentration range, is still a challenge.

Generally, the hydrogen sensors can be classified into electrochemical, electrical, and optical
types [8]. The electrical sensor, as represented by metal-oxide or metal film-based sensors, are most
promising due to their advantages such as simple structure, low power consumption, and fast
response [8]. However, the operating temperature of the metal oxide-based sensors is usually
above 100 °C, and the sensitivity of the sensor drops dramatically with the decreasing operating
temperature [9,10]. In addition, metal oxides respond to reducing gases such as H2, H2S, and
CO. In order to overcome the shortcomings of poor hydrogen selectivity, new methods have to
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be adopted [11]. In contrast, the metal film-based sensors could work at low temperature; however, the
performance of the sensor at low H2 concentration is still unsatisfied [12–14]. In order to improve the
performance of the sensor, nanomaterials with large specific surface areas have been widely introduced
into the hydrogen sensor [15–18].

In this paper, a low H2 concentration sensor based on an organic nanofiber system was designed
and fabricated. The introduction of this nanosystem could increase the specific surface area and
improve the hydrogen response performance. Pd nanoparticles (NPs) were deposited on the organic
nanofibers by the sputtering technology, which is a fascinating method with convenience for the
fabrication of hydrogen sensors. The performances of the hydrogen sensor under different H2

concentrations and operating temperatures were characterized, and the repeatability of the sensor was
tested and discussed.

2. Experimental

2.1. Depositation of Pd NPs

The main component of nanofibers is polyacrylonitrile, which was fabricated on alumina foil
by the electrospin method. Pd NPs were deposited on the organic nanofibers by direct current (DC)
magnetron sputtering technology. High-purity Pd metal was used as the target, and the distance
between the target and substrate was fixed at 110 mm. The background pressure was 8 × 10−4 Pa,
and sputtering pressure was 0.4 Pa. Pd NPs were deposited on the nanofibers by 180 W, and the
sputtering time was 45 s.

The morphology and composition of Pd NPs/organic nanofibers were examined with scanning
electron microscopy (SEM, Inspect-F) and energy dispersive X-ray (EDX) mapping. The crystal
structure of the sample was identified with X-ray diffraction (XRD, DX-1000).

2.2. Fabrication of the Sensor

This nanostructure composed of Pd NPs/organic nanofibers was cut to the size of 2 × 1 cm and
transferred onto the flexible printed circuit board (PCB). Silver paste was applied on both sides of the
synthesized nanostructure as the electrodes, and the distance between the electrodes was about 10 mm.
The whole fabrication process of the sensor is schematically illustrated in Figure 1, and the image of
the fabricated hydrogen sensor is shown in Figure 2.
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2.3. Hydrogen Sensing Measurement

The measurement of the hydrogen sensor was carried out with a self-developed measurement
system, as shown in Figure 3. This system is composed of mass flow controllers (MFC), a gas mix
chamber, a gas test chamber, a temperature controller, and a Keithley 2400 Source Meter. The hydrogen
sensor was put in the test chamber at atmospheric pressure, and the test chamber was placed in the
oven to control the temperature of the measurement. Before the measurement, the oven was heated
up to the desired temperature, and the chamber was purged with 99.999% pure nitrogen for 1 h.
After the base resistance of the sensor (the resistance of the sensor under nitrogen) was measured,
both nitrogen and 50 ppm hydrogen were introduced through the MFC into the gas mix chamber and
mixed. The flow rates of the two gases were automatically controlled by gas distribution software on
the computer to obtain H2 in different concentrations. After mixing, the gas mixture was delivered
to the test chamber with a constant flow rate of 80 sccm. The resistance of the hydrogen sensor was
acquired by a four-terminal method using a LabVIEW program (National Instruments) through a
Keithley 2400 Source Meter under constant current of 1 mA. The output response (Rs) is defined as
following:

RS(%) =
Ro − RH

Ro
× 100 =

∆R
Ro
× 100 (1)

where Ro and RH were the base resistance and the resistance in the gas of interest, respectively [19].
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3. Results and Discussion

Figure 4 is the SEM image of the synthesized nanostructure before and after the hydrogen test.
The Pd NPs/organic nanofibers are straight with the diameter of 200–300 nm, and they were randomly
oriented and overlapped with each other. The morphology of the synthesized nanostructure is well
kept after the test, except that the surface of the nanofibers was rougher after the hydrogen test.
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Figure 4. SEM image of the synthesized nanostructure (a) before and (b) after the H2 test.

The EDX mapping result of the synthesized nanostructure was shown in Figure 5a. The area
enclosed by the white rectangle was scanned, and the result was shown in the lower right corner,
where the yellow dots represented the palladium element. As can be seen from the picture, a large
number of Pd nanoparticles were concentrated in the middle of the scan image, corresponding to
the position of the nanofiber in the rectangular region. Furthermore, only a small fraction of Pd
nanoparticles appeared in the grayscale region where no nanofibers were present. The accumulation
of Pd NPs on the surface of the organic nanofibers could be identified. As we can see, the Pd NPs
were dispersed with each other, and no agglomeration occurred. The X-ray diffraction pattern of the
synthesized nanostructure was presented in Figure 5b; only four strong diffraction peaks at 2θ values
of 40.48◦, 47.42◦, 68.68◦, and 82.92◦ were identified, which represent the (111), (200), (220), and (311)
crystalline planes of Pd NPs, respectively. This result indicates that the Pd NPs are fully crystallized,
and the crystal size of Pd (calculated with the Scherrer equation) is about 22 nm.
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Figure 5. (a) Energy dispersive X-ray (EDX) mapping of the synthesized nanostructure, and (b) X-ray
diffraction pattern of the synthesized nanostructure.

Figure 6a shows the electrical resistance of the hydrogen sensor as a function of time when
exposed to 5 ppm H2. The resistance drops quickly in the initial period of contact with hydrogen at
70 °C until the equilibrium is reached. The schematic of the hydrogen sensor was shown in Figure 6b.
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The Pd NPs were deposited evenly on the organic nanofibers with magnetron sputtering. Since the
insulating organic nanofibers are randomly overlapped with each other, the electrically conductive
pathways might be formed in the synthesized nanostructure after the deposition of highly conductive
Pd NPs. When the hydrogen was introduced, the Pd NPs could react with H2 and form a Pd–H
compound:

1
2

H2 + Pdactive
k1
� PdH (2)

where Pdactive is the active sites of Pd NPs for hydrogen reaction. This reaction also leads to the lattice
expansion of the conductive Pd NPs [20], which is evidenced by the rougher surface of the nanofibers,
as demonstrated in the aforementioned SEM results. As a result, the distance between adjacent NPs is
reduced; the initially isolated Pd NPs could come into contact with each other, and the conductive
pathway with a shorter distance significantly increased [21]. This process is highly sensitive even under
low H2 concentrations, and results in the substantial reduction of the resistance of the synthesized
nanostructure, which well explains the high sensitivity of the sensor.
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Figure 7a shows the response of the hydrogen sensor exposed to 25 ppm hydrogen under
different test temperatures. After the inlet of the H2, the resistance of the synthesized nanostructure
decreases rapidly during the initial few minutes, and reaches the equilibrium after about 30 min.
The similar results of response and recover time have been reported previously in a Pd/reduced
graphene oxide-based sensor [22]. However, the sensor in our work exhibited higher sensitivity and
detection, with the response up to 12.2% for 25 ppm H2 [13,22]. Figure 7b shows the temperature
dependence of the maximum response of the hydrogen sensor exposed to 25 ppm H2. In sharp contrast
to a previous report [22], the maximum response of the sensor increased almost linearly with the
increasing test temperature. It is believed that the chemical adsorption of the hydrogen, which is more
dependent on the driving force other than the physical adsorption, could be significantly facilitated
with increasing temperature and lead to metal hydride formation with volume expansion [20,23].
Although the formation of the hydride would lead to the increase of the resistance, it is subordinate
compared with the increment and shortening of the conduction pathway inside the synthesized
nanostructure. The synergistic effects lead to evident decrement of the resistance of the synthesized
nanostructure with increasing measurement temperature.
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Figure 7. (a) The response of the sensor under 25 ppm H2 at different temperatures. (b) The maximum
response as a function of measurement temperature.

Figure 8a shows the response of the hydrogen sensor under different H2 concentrations from
5 ppm to 50 ppm. The response of the synthesized nanostructure increases quickly during the first
dozen of minutes of the exposure to H2, and reaches saturation after about 15 min. Since nitrogen was
used as the desorption gas, the recovery of the sensor is relatively slow [20,23]. The linear correlation
between the response and the square root of H2 concentration shown in Figure 8b might be related to
the adsorption process of Pd NPs according to the Sievert’s law [24].

(
H
Pd

)
at
= KS ×

√
pH2 (3)

where (H/Pd)at is the atom ratio of H and Pd components, Ks is the Sievert’s constant, and PH2 is
the H2 partial pressure in the environment. When the maximum response of the sensor is achieved,
the reaction for hydrogen sensing (Equation (2)) reaches the equilibrium, and the following relationship
can be easily deduced from equations (2) and (3):

[PdH] = k1[H2]
1
2 · Pdactive (4)

where [PdH] and [H2] is the amount of PdH compound and the concentration of hydrogen, respectively.
When the hydrogen concentration is low, there are plenty of Pd active sites, and the concentration of
them almost remains constant before and after the hydrogen sensing process. As a result, the amount
of PdH compound at low hydrogen concentration in inert gas is linearly related with the square root of
the hydrogen concentration, which sufficiently explains the experimental results in Figure 8b [13,20].
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A cycling test between pure nitrogen and 25 ppm hydrogen was performed at 343 K, and the
result is shown in Figure 9. The response of the sensor increased rapidly after the inlet of the hydrogen,
while it decreased slowly after purging with nitrogen. The maximum response of the sensor only
demonstrates a moderate decrement with increasing measurement cycles. This could be ascribed to the
not fully desorption of PdH. Since the organic nanofibers were randomly oriented and overlapped with
each other, a few Pd–H compounds might exist in the accumulation place even after the introduction
of nitrogen. However, it should be noted that even after three measurement cycles, the sensor still
maintains high sensitivity to low concentrations of hydrogen with the maximum response of 10.63%,
indicating the excellent sensitivity of the sensor [25,26].

1 
 

 

Figure 9. The response of the sensor under 25 ppm H2 in nitrogen.

4. Conclusions

A flexible and highly sensitive hydrogen sensor based on organic nanofibers was designed and
fabricated. Compared with a conventional electrical hydrogen sensor, the fabricated sensor exhibits
superior sensitivity to hydrogen with concentration as low as 5 ppm over a wide temperature range.
Since the chemical absorption is facilitated with increasing temperature, the maximum response of the
sensor increased linearly with the increasing measurement temperature, and the maximum response of
the sensor increased linearly with the square root of the hydrogen concentration. This hydrogen
sensor also demonstrates excellent durability under low hydrogen concentration over multiple
measurement cycles. Overall, this nanofiber-based hydrogen sensor demonstrates great potential for
low-concentration hydrogen detection in aerospace exploration.
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