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Abstract: Time-domain reflectometry (TDR) has been a powerful tool for measuring soil dielectric
properties. Initiating from apparent dielectric constant (Ka) measurement up until apparent and
complex dielectric spectroscopies, the embedded information in the TDR signal can be extracted to
inspire our understanding of the underlying dielectric behaviors. Multiple full waveform inversion
techniques have been developed to extract complex dielectric permittivity (CDP) spectrum, but most
of them involved prior knowledge of input function and tedious calibration. This rendered the
field dielectric spectroscopy challenging and expensive to conduct. Dual reflection analysis (DRA)
is proposed in this study to measure CDP spectrum from 10 MHz to 1 GHz. DRA is a simple,
robust, model-free, and source-function free algorithm which requires minimal calibration effort.
The theoretical framework of DRA is established and the necessary signal processing procedures
are elaborated in this study. Eight materials with different dielectric characteristics are selected to
evaluate DRA’s performance, by using both simulated and experimental signals. DRA is capable of
measuring non-dispersive materials very well, whereas dispersive materials require the assistance of
a long-time-window (LTW) extraction method to further extend the effective bandwidth. The DRA
approach is suitable for field applications that can only record a limited amount of data points and
in-situ dielectric spectroscopy.

Keywords: time-domain reflectometry (TDR); dielectric spectroscopy; dual reflection analysis

1. Introduction

Time-domain reflectometry (TDR) has been a robust tool for measuring soil dielectric properties,
ranging from apparent dielectric constant (Ka) measurement to both apparent and complex dielectric
spectroscopies. TDR has since provided accurate complex dielectric permittivity (CDP) estimation in
soil sciences [1–4] throughout the MHz to GHz frequency bands. Originally, implementation of TDR in
soil water content relied upon the empirical correlation between volumetric water content and Ka [5].
The Ka is typically estimated by analyzing time domain TDR signals with the tangent line method and
relies on major reflections from the head and end of probe sensing section. However, the corresponding
effective frequency band of the measured Ka is unclear, leading to potential dependency on electrical
conductivity, dielectric loss, measurement system configurations, and other factors [6–8]. Measurement
consistency and accuracy of data interpretation using tangent line methods may also vary due to
the practice of different data handlers and signal qualities. Lin et al. [9] proposed a phase velocity
analysis (PVA) method to extract the apparent dielectric permittivity (ADP) spectrum from TDR
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signals, introducing an apparent dielectric constant with frequency information from 10 MHz to
1 GHz. Time-domain signals of the probe head and the probe end are truncated and differentiated
into independent pulses. PVA measures the ADP spectrum by explicitly solving for the phase angle
difference in the frequency domain after applying a fast Fourier Transform (FFT) to the time domain
signals. PVA is shown to be capable of accurately determining the ADP of various liquids and soils
without any prior knowledge of system input function or leading transmission line setup [4,10].
Although PVA is a model-free and inversion-free algorithm, both real and imaginary parts of CDP
are yet to be decoupled in order to identify dielectric polarization behavior and energy dissipation
characteristics due to electrical conductivity and dielectric loss.

To extend the measurement capability of TDR, various literatures investigated the frequency
domain analysis approach of TDR signals, involving the inversion of the complex dielectric permittivity
(CDP) spectrum from input functions and scattering functions [2,3,11–13]. Relaxation models were
used in these inversions to characterize the material under test (MUT) with optimized model
parameters (Debye or Cole–Cole). This frequency domain approach is highly capable of measuring the
CDP spectrum within a laboratory environment and a short leading cable. Since the input function
and calibration of leading mismatched sections is required as a priori in CDP inversion, field dielectric
spectroscopy would become challenging as the measurement setup and calibration are tedious and
prone to in-situ disturbances. In-situ dielectric spectroscopy may reveal more embedded dielectric
information pertinent to soil moisture dynamics and soil contamination monitoring.

A vector network analyzer (VNA) is widely used to characterize the CDP spectrum of the MUT in
a laboratory environment [14,15]. Measurements from a VNA are very accurate and reliable, provided
that the system calibration is handled properly. A VNA requires a long calibration time and demands
specifically designed sample holders and short cables. If the VNA measurement system is moved or
restarted, system recalibration is often needed as the interface connections may slightly displace during
the instrument repositioning. This may render field dielectric spectroscopy and monitoring extremely
difficult and financially infeasible, as in-situ environments are typically harsher than laboratories.

Lin et al. [16], therefore, proposed a robust and model-free multiple reflection analysis (MRA)
of TDR signals to measure the field CDP spectrum. The MRA approach decomposes the first main
reflection and the subsequent multiple reflections from sensing sections. Their spectral ratios were
compared and fitted with model-free inversion to generate CDP spectrums. Nevertheless, multiple
reflections may not be fully acquired up to the steady state condition, which may be attributable
to the instrumentation limitation and the necessity to seek balance between time resolution and
data point amounts. In light of this, this study proposed and evaluated a dual reflection analysis
(DRA) approach on TDR signals to measure both real and imaginary parts of the CDP spectrum,
from 10 MHz to 1 GHz, utilizing a more typical recording time window that does not include
higher order multiples. The theoretical framework of DRA is presented first, followed by the
experimental setup to generate laboratory TDR signals. DRA is examined next, using both simulated
and experimental signals of various MUTs, where the resulting CDP spectrum and measurement
findings in this study are discussed.

2. Materials and Methods

2.1. Theoretical Framework of DRA

In general, a TDR instrument sends a step pulse input into the transmission line, up until the end
of the probe sensing section. The propagating electromagnetic (EM) wave interacts with the particles
of the MUT at the sensing section that induces polarization, in which this effect would be reflected on
the reflection signal recorded by the oscilloscope of the TDR system. The first two major reflections of
interest come from the beginning and end of the probe sensing section, particularly for an open-ended
probe with an impedance-matched probe head (to the leading cable). These major reflections are
due to discontinuity in characteristic impedance (Zc) between the leading cable, the probe sensing
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section, and the open-ended section. Following the definition in Lin et al. [9], Figure 1 demonstrates
the propagation of the input signal X, propagating along the leading section up to the probe head,
where the system functions of this forward propagation and the returning backward propagation are
denoted as F and B. Interface I is the interface between the probe head and the probe sensing section,
in which the first major reflection signal (denoted as r1) reflects at this location and its spectral response
R1 (the lower case and the capital letter represent time domain and frequency domain variables,
respectively), which can be expressed as follows:

R1 = X · F · ρ1 · B, (1)

where ρ1 is the reflection coefficient at Interface I. The reflection coefficient, at any specific interface, is
a function of the characteristic impedance (Zc) of the prior and subsequent sections. Therefore, ρ1 can
be written as follows:

ρ1 =
Zcs − Zch
Zcs + Zch

, (2)

where Zch and Zcs are the Zc of the probe head and the probe sensing section. The value Zc can be
determined as the ratio of the geometric impedance (Zp, also the characteristic impedance in air) to the
square root of the material’s CDP. CDP is denoted by ε∗( f ), as follows:

ε∗( f ) = ε′( f ) + jε′′( f ), (3)

where f is the frequency, and ε′ and ε′′ are real parts and the imaginary parts of the
frequency-dependent CDP. ρ1 can be further arranged into the following:

ρ1 =
1− Zch

Zps

√
ε∗( f )

1 + Zch
Zps

√
ε∗( f )

, (4)

where Zch and Zps are the characteristic impedance of the probe head (leading cable) and the geometric
impedance of the probe sensing section, respectively.
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Figure 1. Illustration of the ray tracing diagram for the first two major reflections.

Apart from reflection r1, part of the EM wave propagates into the sensing section and the EM
wave is exposed to the MUT contained within the sensing region. Carrying the polarization influence
from surrounding material, this EM wave reaches the end of the open-ended coaxial probe (Interface II),
where the second main reflection, r2, occurred. For an open-ended interface, ρ2 is equal to 1 and the
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EM wave travels back from Interface II to Interface I again. Following the described wave propagation
path, the spectral response of r2 is expressed as the following:

R2 = X · F · (1 + ρ1) · H(2L, ε∗( f )) · (1− ρ1) · B, (5)

where L is the probe sensing length. The value H is the system function of the sensing section that
accounts for the phase change and the attenuation of the EM wave during its transmission, which is
denoted as follows:

H(x, ε∗( f )) = exp[−γ( f )x], (6)

where x is the propagation distance (x = 2L when the EM wave traveled back and forth along the
probe), whereas γ is the propagation constant, as follows:

γ( f ) =
j2π f

c

√
ε∗( f ), (7)

where j is
√
−1, and c is the speed of light.

The DRA ratio can now be computed by comparing the spectral ratios of r1 and r2 from
Equations (1) and (5), derived as follows:

DRA =
R2

R1
=

(1− ρ1)
2

ρ1
· H(2L, ε∗( f )). (8)

The DRA ratio above demonstrates that the input function forward and backward propagation system
functions are cancelled out, indicating that this approach is independent of the input function.

2.2. Signal Processing and Parameter Calibration for DRA Implementation

Prior to DRA matching for CDP measurement, signal processing is required to properly extract
the necessary waveforms from time-domain signals. As observed in Equation (8), R1 and R2 are
the required spectral components of time-domain components r1 and r2. Figure 2a shows a typical
recorded TDR step signal when the sensing probe is fully immersed in water. We can differentiate
this step pulse signal into a pulse signal, as shown in Figure 2b. Typically, selecting the time window
extraction range for r1 and r2 is rather straightforward, in which both step and impulse signals can be
compared to assist in their time window selection. The value r1 starts from the matched leading section
until the point before the first reflection arriving from probe end, denoted as tr1a and tr1b respectively
in Figure 2a,b. The value tr1b may be selected at the lowest point in the step signal and usually where
the differentiated signal passes through the zero point. As for r2, the selection range begins from
tr1b up to the point before the next multiple reflection, denoted as tr2a. For certain dispersive signals,
multiple reflections of the differentiated signal may not pass through zero point, so tr2a can be selected
at the lowest point prior to the next multiple reflection.

After truncating r1 and r2, following the aforementioned procedure, zero-padding is performed
on both signals to increase the frequency resolution while maintaining the original time resolution.
The amount of data points padded prior to and after the truncated signals depends on the acquired
time step and the desired frequency step. For example, a TDR signal of 5 ps resolution is padded to
40,000 data points in order to achieve frequency resolution of 5 MHz. A fast Fourier Transform is
performed on the padded r1 and r2 to generate their respective spectral domain, R1 and R2. For noisy
signals, a low-pass filter or a Tukey window can be applied to the extracted signal to prevent spectral
leakage during the fast Fourier Transform [16], as shown in Figure 2c,d. The DRA ratio is finally
generated from the TDR signal by comparing the spectral ratios as shown in Equation (8).
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Figure 2. DRA signal processing illustration: (a) TDR step signal in tap water; (b) Differentiated signal
of step signal (a); (c) Extracted signal r1; (d) Extracted signal r2.

The CDP spectrum of the MUT is measured by optimizing ε∗( f ) in Equation (8) to fit the measured
DRA ratio at each frequency step. Note that the ε∗( f ) of interest is in both ρ1 and H(2L, ε∗( f )). This can
be achieved by integrating both the optimization algorithm and the iterated initial guess approach
proposed by Lin et al. [16]. The latter approach introduces an initial guess for a higher frequency
step, based on the result from a lower frequency step. This is important for CDP inversion at higher
frequencies as the cost function structure of DRA at higher frequency ranges tend to form more
local minimums than lower frequencies. If an iterated initial guess approach is not implemented
in DRA optimization, the provided initial guess may become a critical issue for DRA to obtain the
CDP spectrum accurately. Therefore, an arbitrary initial guess is assigned to the lowest frequency
to optimize the correct CDP to fit the measured DRA ratio, frequency by frequency, until the whole
spectrum is fully generated from 10 MHz to 1 GHz.

As for system parameter calibration in the DRA approach, there are only two system parameters
to be calibrated once, the length (L) and geometric impedance (Zp1) of the sensing probe. The probe
length can be easily calibrated using any MUT with a known CDP spectrum, such as distilled water.
For coaxial probes, Zps can be calculated directly from the geometric impedance equation which
follows below [17]:

Zp =
1

2π

√
µ0

ε0
ln

D
d

, (9)

where µ0 is the vacuum permeability, ε0 is the vacuum permittivity, and D is the inner diameter of the
outer conductor while d is the outer diameter of the inner conductor. For sensing probes with irregular
cross sections, Zps can also be calibrated using a calibration material with a known CDP. Compared to
other methods that are capable of complex dielectric spectroscopy, system parameters to be calibrated
in DRA are way less and the calibration procedure simply requires one known material. The DRA
approach only requires system calibration once after the sensing section is assembled, without the
need of supplying short, open, and load (SOL) conditions during the calibration. The broadband
TDR reflectometer may also be replaced without recalibrating the DRA’s system parameters, as the
difference of source function is cancelled out in the DRA ratio. Other instruments, such as a VNA,
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require significantly longer system calibration time and require calibration whenever the measurement
system is moved or restarted.

2.3. Numerical Simulation Parameters

Simulated TDR signals were generated synthetically to compare the DRA results against the
experimental signals, in order to investigate the potential difference between simulated and experimental
signals. A transmission line model, consisting of three sections, was formulated to emulate experimental
results, including a 42 m coaxial cable with a characteristic impedance of 50 Ω, an impedance-matched
50 Ω probe head 10 cm in length, and a 17.2 cm sensing section with a geometrical impedance of 97 Ω.
Artificial TDR signals were simulated with the wave propagation model from Lin and Tang [18] and
using the Cole–Cole function [19] as the dielectric model of the simulated MUT. The Cole–Cole function
characterizes materials’ dielectric behavior using five parameters, denoted as follows:

ε∗( f ) = ε∞ +
εdc − ε∞

1 +
(

j f
frel

)1−β
− jσ

2π f ε0
, (10)

where ε∞ and εdc are the dielectric constant at infinite and direct current (0 Hz) frequencies, respectively,
frel is the relaxation frequency in Hz, β is the spectral symmetrical shape parameter of dielectric loss,
and σ is the electrical conductivity. The slight cable resistance effect was adopted in the forward
simulation and the cable resistance loss factor (αr) was set as 50, which is almost equivalent to a
P3-500 coaxial cable. Eight MUT with different dispersion characteristics and dielectric constants were
selected in this study for DRA evaluation, namely distilled water, tap water, acetone, air, methanol,
ethanol, isopropanol, and butanol. The TDR signals of the first four MUT are relatively non-dispersive
compared to the latter four alcohol type MUT. Distilled water and tap water were selected to investigate
the difference in electrical conductivity, while air was selected to evaluate the performance of DRA at
very low dielectric constant. Various alcohols were opted to assess the DRA against different dispersion
degrees. The Cole–Cole parameters of the eight MUT are tabulated in Table 1 and are used as the
dielectric models in the subsequent signal simulation.

Table 1. Cole–Cole parameters of MUT selected for DRA evaluation.

MUT ε∞ εdc frel β σ

Distilled water [2] 80.20 4.22 17.4 GHz 0.0125 0 µS/cm
Tap water [2] 78.54 4.22 17 GHz 0.0125 300 µS/cm
Acetone [20] 21.20 1.90 47.65 GHz 0 0 µS/cm

Air [16] 1.00 1.00 - 0 0 µS/cm
Methanol [20] 33.64 5.70 3.002 GHz 0 0 µS/cm
Ethanol [21] 25.50 4.25 0.782 GHz 0 0 µS/cm

Isopropanol [14] 19.34 2.48 0.448 GHz 0 0 µS/cm
Butanol [1] 17.70 3.30 0.274 GHz 0 0 µS/cm

2.4. Experimental Setup

A laboratory measurement system is used to evaluate the performance of DRA in eight
MUT with different dispersion degrees and dielectric characteristics, as shown in Figure 3.
This measurement system is comprised of a broadband TDR device, a 42 m 50 Ω coaxial leading
cable, a 10 cm 50 Ω-impedance matched modularized coaxial probe head, and a 17.2 cm coaxial
sensing section with a geometric impedance of 97 Ω. The 42 m long cable is not ideal for a laboratory
setup but was used on purpose to evaluate the applicability of the proposed approach in a field
setup. The broadband TDR device used in this study is a commercial TDR3000 device from Sympuls
Aachen (Aachen, Germany) with 3 GHz bandwidth and a risetime of approximately 97 ps. TDR signal
acquisition is not limited to this specific pulsing device and any readily available TDR device can
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be used to measure the experimental signals. Time-domain measurement is performed by utilizing
the TDR3000 to inject an EM step signal into the coaxial transmission line system and allowing the
EM wave to be exposed to the MUT within the coaxial sensing section. All time-domain TDR signals
were acquired with 5 ps sampling time and 10,000 data points, in a controlled room temperature of
20 ◦C (±0.2 ◦C), starting from approximately 1 m before the matched probe head.
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3. Results and Discussion

3.1. DRA in Non-Dispersive MUTs

Simulated and experimental signals of the four non-dispersive MUT are shown in Figure 4a,b,
respectively. The noise degree of the experimental signal is higher than the simulated signal due to
ambient noise, in which this study has reduced the influence by waveform stacking using 12 sets
of data. These time-domain TDR signals are processed according to Section 2.3 using a fast Fourier
Transform to generate their measured DRA ratio. The DRA ratio of simulated and experimental signals
are marked in darker and lighter colors in Figure 5c. Only the DRA ratio of distilled water is shown in
Figure 5c for presentation conciseness. In general, the noise level in the experimental signal was much
higher than the simulated signal, leading to a higher oscillation error in the DRA ratio. The induced
noise caused the oscillation error of the optimized CDP spectrum to be relatively significant, as shown,
using distilled water as an example.
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The measured CDP spectrum of the four MUT are shown in Figures 5–8, where results from both
the simulated and experimental signals are stacked together to investigate the effects from a real-world
scenario. As presented in the four figures, the DRA is shown to be capable of accurately measuring and
decoupling the real and imaginary parts of the CDP spectrum for a certain frequency range, directly
from the time-domain signals. Even the resulting CDP spectrum for air, which has very low dielectric
constant and a short travel time, is shown to correctly follow the theoretical value in Figure 8.Sensors 2019, 19 9 

 

 
Figure 6. DRA in tap water. (a) Real CDP; (b) Imaginary CDP. 

 
Figure 7. DRA in acetone. (a) Real CDP; (b) Imaginary CDP. 

 
Figure 8. DRA in air. (a) Real CDP; (b) Imaginary CDP. 

3.2. DRA in Dispersive MUTs 

Apart from non-dispersive MUT, DRA was further evaluated using alcohols with high 
dispersion, where methanol, ethanol, isopropanol, and butanol were used. Their time-domain signals 
are presented in Figure 9, in which simulated and experimental signals are shown in subfigure (a) 
and (b) respectively. Some experimental signals differed from the simulated signals due to the input 
scaling consistency of the TDR pulser and no amplitude scaling was applied to the experimental 

Figure 6. DRA in tap water. (a) Real CDP; (b) Imaginary CDP.

The effective CDP spectrum bandwidth of the experimental signals is slightly narrower than
of the simulated signals. The effective bandwidth is influenced by several factors. The long leading
cable physically filters out the spectral content of higher frequencies. The existence of random noise
aggravates this condition, thus reducing the higher effective frequency region of the experimental
signals. As for the lower bound frequency, cable resistance effect increases the risetime of reflected
waves and causes tail leakage of r1 into the extracted r2. This signal leakage mainly affects the lower
frequency components, causing the estimation to gradually deviate from the theoretical value below
100 MHz. Similar problems are also observed in PVA and MRA approaches.
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3.2. DRA in Dispersive MUTs

Apart from non-dispersive MUT, DRA was further evaluated using alcohols with high dispersion,
where methanol, ethanol, isopropanol, and butanol were used. Their time-domain signals are presented
in Figure 9, in which simulated and experimental signals are shown in subfigure (a) and (b) respectively.
Some experimental signals differed from the simulated signals due to the input scaling consistency of
the TDR pulser and no amplitude scaling was applied to the experimental signals. Nevertheless, this is
not an issue for DRA as this input scaling effect would be eliminated through the spectral comparison
of r1 and r2.
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DRA generated CDP spectrums for the four dispersive MUT are shown from Figures 10–13.
Similar to the non-dispersive MUT, DRA can measure the CDP spectrum of the four dispersive
MUT within a certain effective frequency range. However, no matter if simulated or experimental
signals, the effective frequency range for the dispersive MUT were significantly narrower than the
non-dispersive MUT. The upper effective frequency bounds of dispersive MUT are located mostly
around the peak of imaginary CDP, which is near their corresponding relaxation frequencies. As alcohol
type MUT are highly dispersive, truncation of r2 could not be selected properly at the zero point,
instead the lowest point before the next multiple reflection was selected as tr2a. This extraction window
selection introduced a significant signal truncation effect, where a sudden drop occurred between tr2a
and the padded zeros, as demonstrated in Figure 14b.
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3.3. Long-Time-Window (LTW) Selection for Dispersive Signals

Since the signal truncation effect has a significant impact on the CDP spectrum of dispersive MUT,
the extraction time window of tr2a was investigated for potential improvements to DRA. Figure 14
uses the time-domain signal of isopropanol as an example. A long-time-window (LTW) approach is
adopted alongside with DRA to assist in the CDP inversion of dispersive MUT. As mentioned in a
previous section, dispersive materials often present a challenge to select a proper tr2a, in which the
sudden drop between r2 and the subsequent zero-padding should be minimized as little as possible.
Sudden drops after the selected tr2a for methanol and ethanol are relatively small than isopropanol
and butanol, as their relaxation frequency are higher than the latter two.

Using the experimental signal of isopropanol as an example (Figure 14b), the first zero crossing
point in the differentiated signal lies around the end of the recorded signal. As opposed to the normal
time window (NTW) selection of r2, this study attempted a LTW approach on isopropanol that included
the multiple reflections after r2 into the spectral component of r2 (R2). The r2 value of isopropanol was
extracted using NTW and LTW respectively, which were processed with the same DRA procedures
to produce the CDP spectrum shown in Figure 15. Although the LTW approach may violate the
formulation of R2 (i.e., the extracted r2 is contaminated by small higher order multiples), this approach
is beneficial towards reducing the signal truncation effect, as seen in Figure 15. Some oscillation and
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deviation presented in the LTW generated spectrum, but the overall effective frequency range was
significantly increased compared to the NTW. This is a side effect due to the contamination of multiples
in the extracted r2. As such, better characterization of highly dispersive MUT can be conducted by the
full MRA approach [16], which fully considers all multiple reflections in its formulations but requires
longer recording time to allow the TDR signal to fully reach the steady state.Sensors 2019, 19 13 
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4. Conclusions 

In this study, Dual reflection analysis (DRA) of TDR signals were proposed and evaluated to 
perform dielectric spectroscopy from 10 MHz to 1 GHz. The proposed DRA method is a simple, 
robust, model-free, and source-function free algorithm to measure the complex dielectric permittivity 
(CDP) spectrum with decoupled real and imaginary parts. DRA extracts the first two major 
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DRA ratios for CDP spectrum fitting. This approach is validated using eight materials with different 
dielectric characteristics and its performance is investigated through the comparison of simulated 
and experimental data. DRA is capable of measuring the CDP spectrum of non-dispersive materials 
very well, with satisfactory effective frequency bandwidth. As for dispersive alcohol type materials, 
DRA with long-time-window (LTW) extraction is recommended to suppress the significant signal 
truncation effect and extend the effective frequency range. The DRA approach is suitable for field 
applications that can only record a limited amount of data points and in-situ dielectric spectroscopy. 
This approach is potentially advantageous in geotechnical and geo-environment industries for soil 
moisture monitoring, groundwater and soil contamination monitoring, liquid quality detection, and 
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all multiple reflections in its formulations but requires longer recording time to allow the TDR signal 
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4. Conclusions

In this study, Dual reflection analysis (DRA) of TDR signals were proposed and evaluated to
perform dielectric spectroscopy from 10 MHz to 1 GHz. The proposed DRA method is a simple,
robust, model-free, and source-function free algorithm to measure the complex dielectric permittivity
(CDP) spectrum with decoupled real and imaginary parts. DRA extracts the first two major reflections
from the sensing section and fast Fourier Transforms the time-domain signal into spectral DRA
ratios for CDP spectrum fitting. This approach is validated using eight materials with different
dielectric characteristics and its performance is investigated through the comparison of simulated
and experimental data. DRA is capable of measuring the CDP spectrum of non-dispersive materials
very well, with satisfactory effective frequency bandwidth. As for dispersive alcohol type materials,
DRA with long-time-window (LTW) extraction is recommended to suppress the significant signal
truncation effect and extend the effective frequency range. The DRA approach is suitable for field
applications that can only record a limited amount of data points and in-situ dielectric spectroscopy.
This approach is potentially advantageous in geotechnical and geo-environment industries for soil
moisture monitoring, groundwater and soil contamination monitoring, liquid quality detection, and so
forth. This method can be extended to multiple reflection analysis (MRA), which fully considers all
multiple reflections in its formulations but requires longer recording time to allow the TDR signal to
fully reach the steady state.
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