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Abstract: In this paper, a simple and easy high-precision calibration method is proposed for the
LRF-camera combined measurement system which is widely used at present. This method can be
applied not only to mainstream 2D and 3D LRF-cameras, but also to calibrate newly developed
1D LRF-camera combined systems. It only needs a calibration board to record at least three sets
of data. First, the camera parameters and distortion coefficients are decoupled by the distortion
center. Then, the spatial coordinates of laser spots are solved using line and plane constraints, and the
estimation of LRF-camera extrinsic parameters is realized. In addition, we establish a cost function
for optimizing the system. Finally, the calibration accuracy and characteristics of the method are
analyzed through simulation experiments, and the validity of the method is verified through the
calibration of a real system.
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1. Introduction

In the field of measurements, a single sensor is seldom able to perform high-precision
measurements by itself. Combined multi-sensor measurement schemes can effectively combine
the characteristics of each sensor, leveraging the complementary advantages of sensors, and improving
the accuracy and robustness of the measurement system. As [1] shows, laser range finders (LRFs)
provide high-precision distance information, while camera can provide rich image information. The
combination of LRFs and cameras has attracted wide attention, with interesting applications in
navigation [2], human detection [3] and 3D texture reconstruction [4].

Compared with the current mainstream schemes combining scanning lasers and vision, the more
challenging combination of 1-D laser ranging and vision has attracted the attention of researchers
due to its low cost and wide applicability. The Shuttle Radar Topography Mission (SRTM) [5] realizes
high-precision measurements of Interferometric Synthetic Aperture Radar (IFSAR) on long-range
cooperative targets. Ordez [6] proposed a combination of camera and Laser Distance Meter (LDM) to
estimate the length of a line segment in an unknown plane. Wu [7] applied this method to a visual
odometry (VO) system and realized the application in a quasi-plane scene. In our previous work,
we further extended this method and constructed a complete SLAM method based on laser-vision
fusion [1].

Sensor calibration is the premise of data fusion, including the calibration of each sensor’s own
parameters and the relationship of relative data between each sensor [8]. However, as a necessary
prerequisite for high-precision measurements, the calibration technology of 1D laser-camera systems
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evolves seldom. The existing calibration algorithm based on scanning laser ranging has been unable
to apply, but the traditional one-dimensional laser calibration algorithms require a high-precision
manipulator laser interferometer and other complex equipment.

In this paper, a simple and feasible high-precision laser and visual calibration algorithm is
proposed, which can calibrate the parameters of laser and camera sensors through only simple
data processing. Firstly, the camera parameters and distortion coefficients are determined using
a non-iterative method. Then, the coordinates of the laser spot in the camera coordinate system
are obtained by inversion of the laser image points in the image, and the initial values of external
camera and laser ranging parameters are estimated. Finally, the parameters are optimized through the
parameterization of the rotation matrix [9] and the Gröbner basis method [10]. Compared with the
existing methods, the main contributions of this paper are as follows:

(1) The method proposed in this paper has wider applicability. It can be used for joint calibration of
vision sensors and LRF from 1D to 3D.

(2) Compared with existing 1D laser-vision calibration methods, the proposed method can be realized
using a simple chessboard lattice, without complicated customized targets and high-precision
mechanical structures.

(3) The accuracy and usability of the proposed method are verified by simulation and
observation experiments.

This paper is organized as follows: the existing methods related to our work are outlined in
the following section. Sections 3 and 4 describe the mathematical model and illustrate the proposed
algorithm. In Section 5, we evaluate the solution of the simulation and observation experiments.
Finally, conclusions and future are provided in Section 6.

2. Related Work

For the extrinsic parameters between LRF and vision sensors, it is helpful to combine the
high-precision distance information of laser ranging with the high lateral resolution of vision to
achieve high-precision pose estimation. However, this method is mostly used to calibrate 2D or 3D
LRFs and cameras.

Vasconcelos [11] calibrated the camera-laser extrinsic parameters by moving a checkerboard
freely. This method assumes that the internal parameters are known and accurate, and converts the
external parameter calibration problem into a plane-coplanar alignment problem to reach an exact
solution. Similar work includes Scaramuzza [12] and Ha [13]. Ranjith [14] realized the correlation
and calibration of 3D LiDAR data and image data through feature point retrieval. Zhang [15] uses
mobile LRF and visual camera to achieve self-calibration of their external parameters through motion
constraints. Viejo [16] realized the correlation of the two sets of data by arranging control points, and
calibrated the external parameters of 3D LiDAR and a monocular camera.

However, the above algorithms are mostly used to calibrate the external parameters of 2D or
3D scanning laser and vision systems, and cannot be used for 1D laser ranging without a scanning
mechanism due to the lack of constraints. For the calibration of 1D LRF, the traditional method mostly
realizes the correlation between the two by means of complex a manipulator or specific calibration
target. For example, Zhu’s [17] calibration algorithm is used to calibrate the direction and position
parameters of a laser range finder based on spherical fitting. The calibration accuracy is high, but the
solution is highly customized and not universal. Lu [18] designed a multi-directional calibration block
to calibrate the laser beam direction of a point laser probe on the platform of a coordinate measuring
machine. Zhou [19] proposed a new calibration algorithm for serial coordinate measuring machines
(CMMs) with cylindrical and conical surfaces as calibration objects. Similar calibration methods are
used in the implementation of the LFR-camera slam method [1]. The relative rotation and translation
of the two sensors’ coordinate systems are estimated through a high-precision laser tracker.



Sensors 2019, 19, 1315 3 of 20

Although this method can achieve high accuracy, it requires the installation of sensors on precision
measuring equipment, which has high calibration cost and complex operation, and cannot meet the
needs of low-cost and fast landing scenarios such as existing robots. In 2010, Ordez [6] proposed
a set method of cameras and LRF to measure short distances in the plane. In another study [20],
the author introduces a preliminary calibration method for a digital camera and a laser rangefinder.
The experiment involves the artificial adjustment of the projection center of the laser pointer, and
only two laser projections are used. The accuracy and robustness of the calibration method are both
problematic. After that, Wu et al. [7] proposed a two-part calibration method based on the Ransac
scheme, and solved the corresponding linear equation in the image by creating the index table of laser
spot. However, this method cannot be well applied to the case where the laser light is close to the
optical axis of the camera, and the final accuracy evaluation criteria are not given.

Zhang [21] proposed a simple calibration method for camera intrinsic parameters, where the
parameters were determined using a non-linear method, and high accuracy was achieved. Afterwards,
based on Zhang’s framework, researchers improved accuracy and scene expansion by designing
different forms of targets [22–24] and improving the calibration of the algorithm [25–27]. Hartly [28]
introduced the distortion division model to correct the imaging distortion. On this basis, Hong [29]
further explored the calibration method of large distortion cameras.

Currently, the calibration of omnidirectional cameras has attracted wide attention in order to
improve the user’s degree of freedom and immersion in the virtual reality and autopilot. Li et al. [30]
proposed a multi-phase camera calibration scheme based on random pattern calibration board. Their
method supports the calibration of a camera system which comprise normal pinhole cameras. Gwon
Hwan [31] proposed a new intrinsic calibration and extrinsic calibration method of omnidirectional
cameras based on the Aruco marker and a Charuco board. The calibration structure and method can
solve the problem of suing overly complicated procedures to accurately calibrate multiple cameras.

At the same time, the calibration board also plays an important role in the other calibration
processs. Liu [32] studied different applications of lasers and cameras. The calibration method of
multiple non-common-view cameras by scanning a laser rangefinder is proposed. In the literature,
the correlation between laser distance information and camera images is established through a specific
calibration plate, so as to realize the relative pose estimation between cameras. Inspired by Liu’s
work [32], we establish a constraint of 1D laser and monocular vision by combining planar and
coplanar constraints, so as to determine related external parameters. Considering that the camera
imaging model has a direct impact on the calibration accuracy, we have improved Zhang‘s method [21]
used in camera calibration by replacing the traditional polynomial model with the division distortion
model, and solved the linear solution of the iterative optimization using variable least squares on the
basis of Hartly [28] and Hong [29]. Thus, the problem of falling into local optimal solutions is avoided,
and the calibration speed is greatly improved. Combining the above innovations, a convenient method
for calibrating the parameters of the camera-laser measurement system is realized, which can complete
the calibration of measurement systems, including camera internal parameters, distortion coefficients
and camera-laser external parameters, in one operation.

3. Measurement Model

Previous researchers established relatively mature camera imaging and laser measurement models.
We integrate the two mathematical models and construct a complete mathematical description of the
coordinate system.

As shown in the Figure 1, OC is the camera coordinate system,
→

OCZC is the optical axis direction
of the camera, O− uv is the image plane of the camera, OT is the coordinate system of the target itself,
point Pl is the spatial position of the laser spot, point Pw is the spatial coordinate of the target control
point and Ol represents the coordinate system of 1D laser ranging. We set the camera coordinate
system Oc as the measurement coordinate system OM of the system. In the next part, we introduce the
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imaging model of the monocular camera and the 1D laser ranging model, and convert and fuse the
data through extrinsic parameters [ Rl2C Tl2C ].

Figure 1. Measurement Model.

3.1. Camera Imaging Model

In order to describe the imaging process of a monocular camera more accurately, we combine
the lens distortion model with the aperture imaging model and introduce the shift of the distortion
center e relative to the image center OP [28]. In the camera coordinate system, Op − xy is the physical
coordinate system of the phase plane and O − uv represents the image coordinate system. Image
center Op denotes the intersection of the optical axis and the image plane.

The ideal imaging process can be described as the process of transforming a point PT
i (XT

i =

[ XT
i YT

i ZT
i 1 ]

T
) in the world coordinate system to the image plane imaging point Pu

i (xu
i =

[ uu
i vu

i 1 ]
T

) through a projection relationship. The mathematical expression is as follows:

ρixu
i = ACTT2CXT

i =

 fu s u0

0 fv v0

0 0 1


 r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3




XT
i

YT
i

ZT
i

1

 (1)

where ρi is a named depth scale factor, the intrinsic matrix and AC is described by a five-parameter

model; fu, fv are the focal lengths,
[

u0 v0

]T
is the coordinate of the image center OP, and s is

the skew coefficient. TT2C is the transformation matrix relating OT to OC and it can be expressed as
a rotation matrix RT2C combined with the translation vector tT2C.

Due to lens design and processing, the actual imaging process is distorted. We introduce a division
distortion model to improve our imaging. The mathematical expressions are as follows:

xu
i − e =

xd
i − e

1 + λ1
[
rd

i
]2

+ λ2
[
rd

i
]4

+ . . .
(2)

xd
i represents the actual position of projection point PT

i , and its coordinates are xd
i = [ ud

i vd
i 1 ]

T
;

λ1 and λ2 are the distortion coefficients and rd represents the distance from point xd
i to the distortion

center e, expressed as rd
i =

√
(ud

i − du0)
2
+ (vd

i − dv0)
2.
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In order to illustrate the method more clearly, the most important parameters used in this paper
and their meaning are shown in Table 1.

Table 1. The parameter statement of the system.

Parameter Mean

Coordinats

OM/OT/OC/Ol measurement/target/camera/laser-ranging coordinate system
O− uv image plane coordinate system of camera
TT2C transformation matrix relating OT to OC

Rl2M, tl2M Extrinsic matrix of Ol to OC
RT2C, tT2C Extrinsic matrix of OT to OC

T
e2

^
e

transformation matrix relating the distortion center e to new

distortion center
^
e

Imaging
Geometry

AC intrinsic matrix
λ1, λ2 distortion coefficients

e distortion center, expressed as
[

du0 dv0
]T

ρi depth scale factor
H homography matrix
^
H transformed homography matrix H
FH fundamental matrix of distortion
^
FH

transformed fundamental matrix of distortion

Variable

XT
i position of the corner in the target coordinate system,

xu
i ideal position of projection point in image plane

xd
i actual position of projection point in image plane

^
x

d

i
transformed image coordinates xd

i

Q(XC, YC, ZC)/Q( RT2M, tT2M ) plane equation of the target in camera coordinate system
C(XC, YC, ZC) linear equation of the laser beam in the camera coordinate system

E(AC, λ1, λ2, RT2M, tT2M) objective functions to be optimized
Edr re-projection error

3.2. LRF Model

The mathematical model of the 1D laser ranging module is relatively simple. The laser ranging
module can output single point laser distance information by observing the reflected signal and
calculating the optical path using image coherence [33]. The mathematical determination of the origin
coordinate and laser direction of the laser ranging module allows the coordinate of the laser in the
measurement coordinate system. In order to better represent the measurement results in the system
measurement coordinate system OM, we set up the European three-dimensional coordinate system

Ol for the LRF module. The laser emission direction is
→

OlZl , the directions of
→

OlXl are perpendicular

and parallel to the OC − xy plane, and the directions of
→

OlYl are determined by the right-hand rule,
as shown in Figure 1. The measured distance information dl

i represents the distance from the origin Ol
to the laser spot Pl

i .
In the process of extrinsic parameter calibration, the coordinate origin Ol of the laser ranging

coordinate system and the laser emission direction
→

OlZl need to be calculated. Finally, the conversion
relations between camera measurement system OM and the LRF coordinate system Ol are estimated,
the rotation matrix Rl2M and the translation vector tl2M are determined.

4. Methodology

Calibration of the measurement system is the process of determining the model parameters of the
measurement system. For our system, through the measurement and imaging of a specific target, the
model parameters of the measurement system are determined using the corresponding relationship
between the coordinates of the control points and the image coordinates. The main parameters are the
intrinsic parameters of the camera and the extrinsic parameters of between LRF and camera.
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The specific calibration process is divided into three main steps: (1) the estimation of the camera
distortion center e; (2) the intrinsic parameters AC and distortion coefficients λ1λ2 are decoupled and
determined independently; (3) finding the extrinsic parameters

[
Rl2M tl2M

]
for translating the

laser-vision coordinate system to the measurement coordinate system; (4) determining the optimal
solution

(
AC, λ1, λ2,

[
Rl2M tl2M

])
using the Gröbner basis method. In this section, we elaborate

on the above.

4.1. The Center of Distortion

In many studies, it is usually assumed that the distortion center and the main point are in the
same position, but Hartley [28] determined experimentally that there is a certain deviation between
them. During the calibration process, we use a checkerboard as the calibration object, and extract
the corners PT

i of the checkerboard as the control points for camera calibration. Since the corners are
distributed on a plane, we set the ZT

i = 0 in the target coordinate system, in which case the imaging
model can be expressed as:

ρixu
i = PXT

i = A[ r1 r2 r3 t1 ]


XT

i
YT

i
0
1

 (3)

where
[

r1 r2 r3

]
is the column vector of rotation matrix RT2C. The above equation can be

simplified as:

ρixu
i = HXT

i = AC[ r1 r2 t ]

 XT
i

YT
i
1

 (4)

Matrix H called the homography matrix, and expresses the mapping relation between the
corner of the checkerboard and the image points. The coordinates of PT

i are abbreviated as

XT
i =

[
XT

i YT
i 1

]T
.

From the division model of Equation (2), we obtain:

xd
i = e + ki(xu

i − e), ki = 1 + λ1

[
rd

i

]2
+ λ2

[
rd

i

]4
+ . . . (5)

We multiply the left side of the equations by [e]× and combine it with Equation (4).
In consideration of [e]×e = 0:

[e]×xd
i = ki[e]×HXT

i , [e]× =

 0 −1 dv0

1 0 −du0

−dv0 du0 0

 (6)

We then multiply the left sides of the equations by
[
xd

i

]T
and obtain:

[
xd

i

]T
[e]×HXT

i = 0 (7)

Let FH = [e]×H. FH is called the fundamental matrix of distortion and is expressed as follows:

[
xd

i

]T
FHXT

i = 0, FH =

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 (8)
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We can solve the values of the fundamental matrix FH using 8 pairs of corresponding corner
points. The equation can be formulated as:

AfH= 0 (9)

where:

A =

 xd
1XT

1 xd
1YT

1 xd
1 yd

1XT
1 yd

1YT
1 yd

1 XT
1 YT

1 1
...

...
...

...
...

...
...

...
...

xd
nXT

n xd
nYT

n xd
n yd

nXT
n yd

nYT
n yd

n XT
n YT

n 1


fH = [ F11 F12 F13 F21 F22 F23 F31 F32 F33 ]

(10)

The corresponding equations are solvable using least square when the number of points is greater
than 8 points. The corresponding distortion center e is the left null vector of FH:

eT [e]× = 0⇔ eTFH = eT [e]×H = 0 (11)

So far, we have obtained the image coordinates of the distorted center e. The corresponding
homography matrix H can be obtained using the fundamental matrix FH.

4.2. Decoupling Camera Parameters

If the image coordinate origin OP is moved to the distortion center e, the new distortion center

after translation is expressed as
^
e =

[
0 0 1

]T
. In the new coordinate system, Equation (8) is

expressed as: [
^
x

d

i

]T ^
FHXT

i = 0 (12)

where
^
x

d

i and
^
FH represent the transformed image coordinates xd

i and the fundamental matrix FH.
The transformation relationship is as follows:

^
x

d

i = T
e2

^
e
xd

i ,
^
FH = T

e2
^
e
FH, where T

e2
^
e
=

 1 0 −du0

0 1 −dv0

0 0 1

 (13)

From the definition of
^
FH:

^
FH = [e]×

^
H =

 0 −1 0
1 0 0
0 0 0

 ^
H (14)

Let:

^
FH =


^
F1
^
F2
^
F3


 F̂11 F̂12 F̂13

F̂21 F̂22 F̂23

F̂31 F̂32 F̂33

 (15)

and:

^
H =


^
H1
^
H2
^
H3


 Ĥ11 Ĥ12 Ĥ13

F̂21 F̂22 Ĥ23

Ĥ31 Ĥ32 Ĥ33

 (16)
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Equations (15) and (16) are then introduced into Equation (14):

^
H1 =

^
F2,

^
H2 = −

^
F1 (17)

So far, the first two rows
^
H1

^
H2 of the homography matrix have been obtained. Referring to

Equations (2) and (4), the image distortion after translation can be expressed as follows:

ρi
xd

i

1 + λ1
[
rd

i
]2

+ λ2
[
rd

i
]4

+ . . .
= HXT

i (18)

An equation set can be obtained after sorting out:

 x̂d
i
[
XT

i
]T
[
−

^
F2XT

i

][ [
r̂d

i

]2 [
r̂d

i

]4
· · ·

]
ŷd

i
[
XT

i
]T
[

^
F1XT

i

][ [
r̂d

i

]2 [
r̂d

i

]4
· · ·

]



[
^
H3]

T

λ1

λ2
...

 =

 ^
F2XT

i

−
^
F1XT

i

 (19)

For Equation (19) and the combined Equation (17), two equations can be obtained for each pair of
corner points. When the number of corresponding points N >= n + 3 (where n denotes the number of
distortion parameters), an overdetermined equation is obtained. This can be achieved by moving the

target, as shown in Figure 2. The homography matrix
^
H and the distortion coefficients λ1λ2 can be

obtained by using the least square method.

Figure 2. Changing of the azimuth and angle of the calibration plate and performing
multiple measurements.

4.3. Parameter Solution

From the perspective projection model, the imaging relationship of the translation sequence can
be expressed as follows:

ρixu
i = ρi

[
T

e2
^
e

]−1^
x

u

i =
[
T

e2
^
e

]−1 ^
HXT

i = HXT
i (20)
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It is known that:

H =
[
T

e2
^
e

]−1 ^
H =

 1 0 du0

0 1 dv0

0 0 1

 ^
H (21)

Equation (19) can been solved to obtain
^
H. The initial homography matrix H can be calculated by

substituting Equation (21). We set [ r1 r2 t ]H =
[

H1 H2 H3

]
= AC[ r1 r2 t ]. By using

the orthogonality and normality of rotation matrix [ r1 r2 r3 ], we obtain:{
r1r2 = 0

r1r1 = r2r2
⇔
{

[H1]
T [AC]

−T [AC]
−1H2 = 0

[H1]
T [AC]

−T [AC]
−1H1 = [H2]

T [AC]
−T [AC]

−1H2
(22)

Therefore, three images are needed to find five unknowns in the camera intrinsic parameter
matrix AC. If the camera collects n images from different directions for calibration, a set of linear
equations containing 2n constrained equations can be established, which can be written in matrix form
as follows:

Vb = 0 (23)

where V is the coefficient matrix and b is the variable to be solved, with:

b = [ B11 B12 B13 B22 B23 B33 ] (24)

B = [AC]
−T [AC]

−1 =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 (25)

The solvable camera intrinsic parameters are:

v0 = (B12B13 − B11B23)/(B11B22 − B2
12)

λ = B33 − [B2
13 + v0(B12B13 − B11B23)]/B11

fu =
√

λ/B11

fv =
√

λB11/(B11B22 − B2
12)

s = −B12 f 2
u fv/λ

u0 = kv0/ fv − B13 f 2
u /λ

(26)

Similarly, the camera parameters can be obtained:

[ r1 r2 r3 t1 ] =

[
[AC ]

−1H1∣∣∣[AC ]
−1H1

∣∣∣ [AC ]
−1H2∣∣∣[AC ]
−1H3

∣∣∣ r1 × r2
[AC ]

−1H3∣∣∣[AC ]
−1H3

∣∣∣
]

(27)

In the case of obtaining the parameters outside the target, the spatial coordinate XC
l =[

XC
l YC

l ZC
l 1

]T
of the laser spot Pl in the camera coordinate system can be found by solving the

known plane equation Q(XC, YC, ZC) in the direction obtained by connecting the ray and the target

from the camera optical center OC to the ideal image point coordinate xu
l =

[
uu

l vu
l 1

]T
. Moving

the calibration board along the laser direction, the spatial position of laser spot can be obtained at
different distances after multiple acquisitions. By processing the data, the laser beam can be straight in
the camera coordinate system.

Through data processing, the linear equation C(XC, YC, ZC) of the laser beam in the camera
coordinate system can be obtained in the form of Equation (29). By combining the distance information
DL obtained through laser ranging, the spatial coordinates of the laser origin in the camera coordinate
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system can be obtained, and the transformation relationship
[

Rl2M tl2M

]
between the laser system

and camera system can be estimated:

Q(XC, YC, ZC) :
[

AQ BQ CQ DQ

][
XC YC ZC 1

]T
= 0 (28)

C(XC, YC, ZC) :
XC

li − XC
l0

Al
=

YC
li −YC

l0
Bl

=
ZC

li − ZC
l0

Cl
(29)

where XC
l0 = 1

n ∑ XC
li , YC

l0 = 1
n ∑ YC

li , ZC
l0 = 1

n ∑ ZC
li . Combining with Equation (27), we have:

Q( RT2M, tT2M ) =
[

AQ BQ CQ DQ

]
[ r1 r2 r3 t1 ]

[
XT YT ZT 1

]T
(30)

By combining with the imaging model, the linear equation between laser spot and camera light
center can be expressed in two-point form:

XC

uu
l
=

YC

vu
l
=

2 · ZC

fu + fv
(31)

Equations (30) and (31) are solved simultaneously, the only solution of which XC
l =[

XC
l YC

l ZC
l 1

]T
is the coordinate of the laser spot on the target in the camera coordinate system.

After many measurements, the linear equation can be expressed as a series of spatial point sets{
XC

li

∣∣∣ XC
li =

[
XC

li YC
li ZC

li 1
]T

, i = 1, 2, 3, · · ·
}

, as shown in Figure 2. Constraints can be applied

using a point-line relationship to solve the linear equation C(XC, YC, ZC) corresponding to laser rays,
such as: [

YC
li −YC

l0 −
[
XC

li − XC
l0
]

0
0 −

[
ZC

li − ZC
l0
]

YC
li −YC

l0

] Al 0
Bl Bl
0 Cl

 = 0 (32)

A space point can provide two constraints, and we need at least two space points to solve
the equation and estimate the linear equation C(XC, YC, ZC). Finally, the laser origin position is
determined on the line by calculating the distance information obtained by ranging according to the
coordinate system established before and using the relative transformation matrix of laser-camera[

RT2M tT2M

]
.

4.4. Optimization of Solution

The above process does not involve any iteration. The camera internal parameters and
laser-camera external parameters can be found using least squares. The calculation speed is fast
and local minima can be effectively avoided effectively. If we want to obtain higher accuracy, we
can take the calculated value as the initial value, and further improve the calibration accuracy of the
system through the non-linear optimization method.

Given n calibrated images, each image has m corners xd
i and one laser projection point xd

l .
The following objective functions are then constructed:

E(AC, λ1, λ2, RT2M, tT2M) =
n

∑
i=1

(
m

∑
j=1

∣∣∣xd
i,j − Pro(XT

j )
∣∣∣+ γ

∣∣∣xd
l,j − Pro(dl

i)
∣∣∣) (33)

where Pro(XT
j ) and Pro(dl

i) represent the projection functions of corner points XT
j and laser spot XC

l
under the division distortion model, and γ is a named weight coefficient that denotes the contribution
of corner and laser points to errors, generally speaking γ = 5.
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Using Cayley-Gibbs-Rodriguez (CGR) [9] to parameterize the rotation matrix R, the latter can be
expressed as a function of the CGR parameters s =

[
s1 s2 s3

]
:

R =
1

1 + s1
2 + s22 + s32

 1 + s1
2 − s2

2 − s3
2 2s1s2 − 2s3 2s1s3 + 2s2

2s1s2 + 2s3 1− s1
2 + s2

2 − s3
2 2s2s3 − 2s1

2s1s3 − 2s2 2s2s3 + 2s1 1− s1
2 − s2

2 + s3
2

 (34)

The problem is then transformed into an unconstrained optimization problem. The
automatic Gröbner basis method [10] is used to solve Equation (32), and the minimum solution

Emin(
~
AC, λ̃1, λ̃2,

~
Rl2M,

~
t l2M) can be obtained. A nonlinear optimization method is used to further

improve the accuracy and stability of the solution.
In this part, we have completed the estimation of the optimal solution of all parameters, including

the camera intrinsic parameter matrix
~
AC, distortion coefficient λ̃1λ̃2 and laser-camera external

parameters
[ ~

Rl2M
~
t l2M

]
.

5. Experiment and Analysis

In this part, we evaluate the calibration methods of the camera internal parameters and
camera-laser external parameters. The effectiveness and influencing factors of the proposed system
calibration algorithm are analyzed through computer simulation experiments, while the measurement
system is calibrated through observation experiments. In order to better evaluate the calibration results,
we refer to the re-projection error [34] evaluation method in the camera calibration process, and unify
the laser spot and target corner to establish the following error evaluation function:

Edr =
1

m · n
n

∑
i=1

(
m

∑
j=1

∣∣∣xd
i,j − Pro(XT

j )
∣∣∣+ γ

∣∣∣xd
l,i − Pro(dl

i)
∣∣∣) (35)

The re-projection error Edr is an important metric of the calibration results: the smaller Edr is, the
better the calibration results are.

5.1. Simulation Result

For the simulation experiment, we used the MATLAB R2016a software for Windows 10. The
relevant parameters of the simulation system are shown in Table 2. In the measurement system, the

laser direction is parallel to the optical axis of the camera and a 50 mm offset in the
→

OMXM direction
is arranged.

Table 2. System parameters of simulation.

Parameter AC e (λ1, λ2) Rl2M tl2M

Set value

 850 s 512
0 850 384
0 0 1

 [
509
380

] (
6.15× 10−7

1.6× 10−13

)  1 0 0
0 1 0
0 0 1

  50
0
0


Unit pixel pixel

(
pixel−2

pixel−4

)
- mm

The target is shown in the Figure 3, where the blue dots represent the corners of the checkerboard
lattice, evenly distributed in the plane, and the adjacent corners are 15 mm apart. The relative position
between the target and the system is randomly generated by the system within a given range.
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Figure 3. The imaging illustration. (Left) Schematic diagram of a simulated scenario. (Right) The
generated image. The blue dots represent the ideal image points, the green dots represent the added
distortion points, the red X represents the ideal image point of laser and the red circle is the distorted
laser projection point.

Throughout the experiment, we compare the estimated values from each calculation with the
real values set by simulation, and evaluate the accuracy of the algorithm by calculating the deviation
between the two. The error is expressed as follows:

E f u =
| f̃u− fu|

fu
, E f v =

| f̃v− fv|
fv

Eu0 = |ũ0−u0|
u0

, Eu0 = |ṽ0−v0|
v0

ER = max3
i=1

∣∣∣arccos
∣∣∣~ri · ri

∣∣∣∣∣∣
Et =

∣∣∣~t l2M − tl2M

∣∣∣
(36)

Kopparapu et al., confirmed [32] that noise has a significant impact on calibration accuracy.
We add ωnoise ∼ Gauss(0, Σnoise) Gaussian noise to the simulated projection image, where Σnoise
is the standard deviation of the Gaussian distribution. In the simulation, the standard deviation
Σnoise of noise increases gradually in the range of 0.1 to 1.5 pixel. For each ωnoise X distribution, we
performed 100 independent experiments, and obtained the average value of calibration error as the
statistical result.

The results are shown in Figure 4. It can be seen that with the increase of noise, the deviation
between the calibration parameters and the true value increases linearly. When the corner extraction
noise is 0.5 pixels, the system calibration error is about 0.2, the focal length deviation is 0.1%, and
the main point deviation is about 0.8%. In terms of extrinsic parameters, the translation error also
follows a linear distribution, but the fluctuation is more obvious. It can be seen that the system is
sensitive to the internal parameters. At the same time, under the corner extraction error of 0.5 pixels,
the translation error is about 1 mm and the rotation error is 0.02 degrees.

In addition, we analyzed the impact of the number of collected data on the calibration accuracy,
and set the calibration data to gradually increase from the minimum of three groups of image distance
data to 15 groups. The results are shown in the Figure 5. With the increase of calibration data,
the re-projection error remains almost stable, but the accuracy of the estimated system variables is
significantly improved. When the number of data increases to 8, the decline of the correlation error
slows down. Therefore, sufficient calibration data collected in a certain range can help to improve
the accuracy of system calibration. However, after reaching a certain number, the effect gradually
decreases, and so 8–10 groups of data are appropriate.
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Figure 4. Simulation results for different image noise levels. (a) The re-projection error Edr; (b) The
effects of noise on intrinsic parameters such as E f u, E f v, Eu0, Eu0; (c) mileage error Et for different noise
levels; (d) effects of noise on rotation error ER.

Figure 5. The simulation results for different numbers of collected data. (a) Re-projection error Edr;
(b) Effects of the number of data on intrinsic parameters such as E f u, E f v, Eu0, Eu0; (c) Mileage error Et

for different noise levels; (d) Effect of the number of data on rotation error ER.
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We also analyzed the influence of the measurement error of the laser ranging system on the
calibration accuracy. The Gaussian-distributed noise ωd ∼ Gauss(0, Σd) was added to the ranging
error, and the standard deviation Σd was changed gradually from 1 mm to 15 mm. We calculated the
calibration errors of the parameters of the system at each noise level. As shown in Figure 6, except
for the linear relationship between translation vector and distance error, the other parameters hardly
change with the increase of error.

Figure 6. Simulation results of different distance noise levels. (a) Re-projection error Edr; (b) Effects of
noise on intrinsic parameters such as E f u, E f v, Eu0, Eu0; (c) Mileage error Et with different noise; (d)
the effects of noise on rotation error ER.

5.2. Real Experiment

In the actual experiment, we built a measurement system with a 1D laser-camera combination,
and calibrated the system with the method proposed in this paper. As shown in Figure 7, the system is
composed of a MER-131-210U3C camera and a SKD-100 laser ranging system. The related parameters
are shown in Table 3.

Figure 7. Measurement system combining 1D LRF and camera.
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Table 3. The system parameters of 1D LRF and camera.

Sensors Parameter Value

MER-131-210U3C
(camera)

Sensor Size 1/2′′

Resolution 1280 (H) × 1024 (V)
Frame Rate 210 FPS
Pixel Size 4.8 µm× 4.8 µm
Focuses 5 mm

F (Relative Aperture) 1.4 ∼ 16

SKD-100
(LRF)

Wavelength 635 nm
Range 1 ∼ 1000 mm

Accuracy 2 mm

The system was calibrated using a calibration board composed of 11× 8 square chessboard lattices
with a distance of 15 mm between corners. The iterative Harris algorithm was used to extract the
checkerboard corner coordinates (red +) from the calibrated image accurately, and the centroid method
was used to extract the image coordinates (green ×) of the laser spot. The accuracy can reach sub-pixel
level. The results of 12 images collected at different distances from 150 mm to 1500 mm are shown in
Figure 8.

Figure 8. Samples of images used for the real experiment.

In order to verify the accuracy of our calibration method, we compared the internal parameters
obtained with the classical Zhang [21] calibration method and the Li’s method [30]. In the calibration
process of Bo‘s method, we replaced the original random corner matching process by directly inputting
the coordinates of checkerboard lattices into the program, but still retain the complete algorithm for
camera parameter determination. The results are shown in Table 4, where the accuracy of the intrinsic
parameters obtained by the calibration methods are compared. The calibration accuracy is evaluated
using the re-projection error [34] and expressed as:

Erp =
1
m

m

∑
j=1

√∣∣∣xd
j − Pro(XT

j )
∣∣∣2 (37)
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Table 4. System parameters of simulation.

Method AC e (λ1, λ2) Mean Erp

Zhang [21]

 1053.3 0 643.5
0 1048.0 539.7
0 0 1

 pixel -
(

0.1348 mm−2

0.01661 mm−4

)
0.09337 pixel

Li [30]

 1059.7 0.1604 649.5
0 1058.9 539.2
0 0 1

 pixel -
(

0.1372 mm−2

0.1993 mm−4

)
0.07974 pixel

proposed

 1055.2 0 647.2
0 1054.9 538.1
0 0 1

 pixel
[

509
380

]
pixel

(
6.15× 10−7

1.6× 10−13
pixel−2

pixel−4

)
0.07725 pixel

From the calibration results in Figure 9 and Table 4, we see that our method and Zhang’s
method [21] have similar calibration results in camera intrinsic parameters. Because the distortion
models used by the two methods are different, the physical meanings of the distortion coefficients
are different, so it is meaningless to compare them. Judging from the re-projection error, our
method is slightly better than Zhang’s calibration algorithm. This proves the effectiveness of our
calibration algorithm.

Figure 9. Re-projection error distribution for different images marked as different colors: (a) Zhang’s
method [21]; (b) proposed method; (c) Li’s method [30].

At the same time, the extrinsic parameters
[ ~

Rl2M
~
t l2M

]
of the laser-camera combination of

the measurement system are also calculated and the calibration results were evaluated using the
evaluation function set Equation (37). The results are shown in Table 5 and Figure 10.
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Table 5. System extrinsic parameters and evaluation error.

Parameter Rl2M tl2M Edr

Set value

 0.9974 0.0052 −0.0715
−0.0052 0.9893 −0.1456
0.0715 0.1456 1

  0.5030
32.6479

1.859

 0.10173

Unit - mm pixel

Figure 10. Visualization of extrinsic parameters
[
Rl2M tl2M

]
.

Ferrara et al. [35] mentioned that the position of the checkerboard has an effect on the accuracy
of calibration. We supplemented a set of calibration data of checkerboard location on the edge of
the image to verify the effect of the change of checkerboard location on the accuracy of the proposed
method. The data are shown in Figure 11. The calibration results are shown in Table 6. When the
image is in the edge position, the calibration results are basically consistent with the internal and
external parameters obtained in Tables 3 and 4, and the re-projection errors of the internal and external
parameters are slightly increased, but the difference is small. It therefore shown that the method
proposed in this paper is also applicable when the collected data lie on the edge of the image.

Figure 11. Image sample when the checkerboard is close to the edge.
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Table 6. System parameters and evaluation error when checkerboard is close to edge.

Parameter AC e (λ1, λ2) Mean Erp

Value

 1057.9 0 646.9
0 1057.2 536.8
0 0 1

 pixel
[

507
379

]
pixel

(
6.21× 10−7

1.53× 10−13
pixel−2

pixel−4

)
0.08371 pixel

Parameter Rl2M tl2M Edr

Set value

 0.9962 0.0101 −0.0865
−0.0101 0.9902 −0.1381
0.0855 0.1388 0.9999

  0.8167
31.5531
1.6742

mm 0.1147 pixel

6. Conclusions

In this paper, we present a convenient and fast method for calibrating a combined 1D laser ranging
and monocular camera measurement system, aiming to realize an accurate measurement system fusing
laser and vision. The method is easy to implement and has high calibration accuracy. The fast robust
determination of the camera imaging model parameters is achieved by introducing a division distortion
model. Then, a linear-plane constraint is formulated to realize robust estimation of the initial value of
the laser-vision parameters. Finally, an unconstrained optimization problem is formulated using the
rotation matrix parameters, and the high precision calibration of the whole measurement system is
realized. The factors affecting the calibration accuracy are analyzed through simulation experiments,
and the effectiveness of the proposed method is verified through real scene experiments.
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