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Abstract: The diversion of a driver’s attention from driving can be catastrophic. Given that
conventional button- and touch-based interfaces may distract the driver, developing novel
distraction-free interfaces for the various devices present in cars has becomes necessary. Hand
gesture recognition may provide an alternative interface inside cars. Given that cars are the targeted
application area, we determined the optimal location for the radar sensor, so that the signal reflected
from the driver’s hand during gesturing is unaffected by interference from the motion of the driver’s
body or other motions within the car. We implemented a Convolutional Neural Network-based
technique to recognize the finger-counting-based hand gestures using an Impulse Radio (IR) radar
sensor. The accuracy of the proposed method was sufficiently high for real-world applications.

Keywords: impulse radar sensor; gesture recognition; finger counting; deep learning classifier;
convolutional neural network

1. Introduction

During the last century, cars and other vehicles were merely considered a means of transportation.
However, of late, cars are becoming highly advanced machines that provide a lot of additional
benefits along with transportation. In fact, cars can now be referred to as “offices on the move” [1] or
“personal communication centers” [2] with additional controls and functionalities. Producing cars now
involves more than simply designing a space for transportation and delivery [3]. The development of
convenient user interfaces for drivers is very important because vehicular safety depends on ensuring
that the driver’s focus remains on the road. Currently, different conventional interfaces are used
within cars to control the various electrical and electronic devices present, such as button-based and
touch-based interfaces. The disadvantages of these conventional interfaces are that they distract the
driver from the primary job of monitoring the road and can thus cause car crashes. Speech recognition
is another solution. However, changes in the voice tone or speech clarity can cause glitches, as the
speech in this case would be translated as unrecognized words or acronyms [4]. Moreover, speech
recognition is also dependent on several operational and environmental factors, which may reduce the
speed and accuracy of recognition. Gesture-based interfaces can be useful as they do not distract the
driver from monitoring the road because they do not require visual attention. Further, radar-based
gesture recognition is not affected by environmental conditions such as the lighting, humidity, or
temperature [5].
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Gesture classification is a hot research topic these days. Finger-counting-based gestures may
provide an easy human-computer interface (HCI) that may be suitable for use in a range of applications
such as electronic device control within vehicles, television remote control, and indoor electrical device
control. Currently, some of the widely used sensors for gesture recognition include cameras [6,7],
radio-frequency identification systems [8], and data gloves [9]. Depth cameras have a high resolution,
which allows them to track and recognize finger movements. In fact, researchers have been able
to perform camera-based gesture recognition with an average recognition rate of 98.5% for finger
counting [10]. The drawback of using cameras for gesture recognition is their poor performance in dark
and highly lit environments. Another disadvantage of camera-based gesture recognition is related
to the privacy of the users. Another method for gesture recognition is to use glove-based sensors.
Data-glove-based methods use sensors for digitizing hand and finger motions into multi-parametric
data [9]. Although the use of additional sensors for glove-based gesture recognition makes it easy to
collect hand movement and configuration data, these sensors are not highly wearable and can cause
discomfort to the user [11]. In contrast to the gesture recognition technologies discussed above, gesture
recognition with radar has no privacy issues and is also convenient for the user because it is contactless.
Further, no additional wearable device is required. Impulse radio ultra-wideband (IR-UWB) radar
has the additional advantages of high-range resolution and robustness with respect to multiple paths
because of its high bandwidth and low power requirement [12]. IR-UWB radar has found use in
several applications such as people counting [13], the monitoring of vital signs [14], three-dimensional
positioning [15], and for sensing body movements such as head rotation [16] and chest movement [17].

One of the promising utilization of this sensor is the hand gesture recognition-based HCI
development. Ren et al. [18] have developed algorithms for gesture recognition using IR-UWB
radar. Although the gesture recognition accuracy of these algorithms is high, the gestures used were
simply based on the differences in the position of the hand and may not be useful in applications
requiring “small” hand gestures.

Recently, Ryu et al. [19] presented a features-based hand gesture recognition technique with
significantly high recognition accuracy. Wang et al. [20] developed a radar’s range and speed based
features for hand gesture recognition and developed a feature map that was fed as input to classifier.
However, the gestures in these studies were also “big”. In addition, all the above-mentioned studies
analyzed the input signal with one-dimensional signal-processing techniques for gesture classification;
these techniques may fail when attempting to classify micro-gestures because the gesture patterns
reside in the images of the reflected data, and it may be easier to classify these gestures using
image-processing algorithms. In this study, we used IR-UWB radar and convolutional neural network
(CNN)-based classifier to detect finger-counting gestures.

The proposed method consists of preprocessing the radar signal and then converting the
two-dimensional (2D) signal into an image. A greyscale image was saved for each sample. After
completing the image transformation process, recognition is tackled as an image-classification problem.
These images created against radar’s data matrix serves as an input to CNN algorithm. CNN based
classifiers have proven to be the state-of-the art classifier for image processing problems such as
ImageNet LSVRC-2010 contest [21]. Moreover, the CNN algorithm is capable of self-learning and can
deal with the input data without any prior information and its learning capacity can be controlled by
varying the depth network. Features extraction and classification is performed with CNN algorithm.
CNN algorithm takes the input data in form of images, learns the features by passing the input through
a serial structure of layers, and classify it based on the certain categorical information commonly
referred as ground-truth-information [22]. The features extraction task in this study was performed
with six hidden layered CNN architecture.

The main contribution of this work is that it is the first one to use IR-UWB radar and
radar-image-based classifier design for small gesture i.e., finger counting. To the best of our knowledge,
the existing work on IR-UWB radar-based hand gesture classification so far has considered big gestures
only. Further, we analyzed the radar signals as an images, contrary to the majority of the previous
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work [13,17–19], where the authors have analyzed one dimensional radar signals for feature extraction
and classification. We have implemented a CNN with optimized layers by experimentation so that the
optimized CCN result in maximum accuracy and minimum processing time for the defined training
dataset. Moreover, to make the algorithm more robust, we normalized the magnitude of the radar data
matrix using the mean and variance of the data. In this work, three volunteers were used for obtaining
the training and test gesture-related data, and the overall accuracy was approximately 97%.

The rest of the manuscript is organized as follows: Section 2 provides an overview of the theoretical
background of the proposed method. Next, in Section 3, the experimental setup used to implement the
proposed method is described. The obtained results are described and discussed in Section 4. Finally,
Section 5 presents the conclusions of the study.

2. Materials and Methods

2.1. System Overview

The block-diagram of the proposed method is shown in Figure 1. It primarily comprises
data acquisition, data preprocessing, and CNN based training and evaluation. We installed only
one IR-UWB radar within the car interior for data acquisition having a direction of propagation
perpendicular to the motion of the fingers.Sensors 2019, 19, x FOR PEER REVIEW 4 of 15 
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Figure 1. Proposed method for gesture recognition (i.e., finger counting) using convolutional
neural network.

2.2. Optimul Position of Sensor within Car

Given that the proposed gesture-based UI is intended for use by a driver inside a car, determining
the optimal location for the radar sensor is very important. Driver distraction may cause accidents
as well as a reduction in the vehicle speed [23,24]. Therefore, the optimal sensor location would be
one that allows for a highly accessible UI that can be used without causing the driver to be distracted
from the main task of monitoring the road. Moreover, the sensor should be placed at a location such
that data acquisition is not affected by the other in-car motions of the driver or the other passengers.
To this end, we performed simulations to evaluate three different locations within a car.

Figure 2 shows the three potential locations for the radar sensor labelled as P1, P2, and P3. Position
P2 provides a clear view, and the radar beam is projected directly towards the driver. However, it
was observed that, in this case, the movement of the driver’s head or upper torso created unwanted
artefacts. This problem can be overcome by placing the radar sensor at position P3. However, this
position is exposed to the random movements that occur whenever the gear is changed. These random
movements may distort the reflected signal and hence increase the probability of false detections.
On the other hand, location P1 provides ease of accessibility and is not susceptible to other types of
motions, making it suitable for data acquisition.
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2.3. Signal Preprocessing

Usually, in the case of wireless communication systems, the received signal contains echoes of
the transmitted signal, which is reflected and scattered by the different objects present in the physical
medium [25]. For impulse radio, the transmitted signal is an impulse of very short duration [26].
The impulse radio transmits a series of impulses, which are widely spread in the frequency domain.
These transmitted pulses, s[n], and the corresponding received signal, x[n], can be represented using
an impulse train [13], as shown below:

x[n] =
N

∑
m=1

s[n−mN] (1)

where ‘m’ is the delay between the transmitted pulses. The received wideband signal, x[n], contains
information about the objects within the radar beam width. In the raw form, x[n] contains reflections
from all the objects within the operational range. Some of these reflections are from the gestures of
interest, while a few are reflections from static objects. Undesired radar returns are termed “clutter” [27].
Here, the radar returns from static objects within the operational range of radar are considered as
clutter and need to be removed. Various filters and techniques exist for removing this information,
including the Kalman filter [28], the singular value decomposition method [29], and the loopback
filter [28], among others. The loopback filter is one of the most widely used filters for this purpose
because of its simple structure and low computational complexity [17,28,30]. Previously, the similar
filter has also been used for background subtraction in monitoring the respiratory activities using
UWB radars [17]. The structure of the loopback filter is shown in Figure 3, and the clutter signal c[n]
can be expressed as:

ck[n] = α ck−1[n] + (1− α)xk[n] (2)

Here, the term x[n] represents the received radar signal containing the series of received impulses,
and constant α represents the weighting value ranging between 0 and 1. The constant α is a tradeoff
between fast update and accuracy. For this paper, α was adjusted at 0.95, based on experimentation.
Usually, for small movements, alpha should be adjusted close to 1. It can be observed in Equation (2)
that the present clutter signal c[n], for the present input x[n] is estimated using both the input signal,
and the previously estimated clutter. After estimating the clutter, it needs to be removed from the
original signal. The final output signal y[n] of the clutter removal filter expressing the information of
moving objects within the beam-width of radar can be written as:
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y k[n] = x[n]− c k[n] (3)
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The average values of the fast-time indexes before and after clutter removal from one of the data
samples (gesture 5) are presented in Figure 4a,b, i.e., averaged value of gesture signals at the input and
the output of clutter removal filter respectively. A decrease in the output of the clutter-removed signal,
which can be amplified, can be observed in the Figure 4. If we compare Figure 4a with Figure 4b then
we can clearly notice that the clutter part of the signal, centered at sample 43 in Figure 4a is almost
removed in Figure 4b using the loopback filter. The cluttered removed signal in Figure 4b contains
only the gesture related part which is centered at sample 122.
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A sequence of short-duration pulses is transmitted by the radar, and the same sequence is repeated
after a certain period known as the pulse repetition interval or (PRI) [31]. These repetitions are gathered
in a 2D matrix, which can be represented as follows:

r[n, m] =
N

∑
n=1

y[n, k−m] + Noise (4)

where N denotes the noise vector and k is the delay between the transmitted and received signals. The
corresponding matrix form, known as the data matrix, can be written as follows:

→
R =

→
Y n, m + N (5)

Here, rows ‘n’ and columns ‘m’ are referred to as the “fast time” and “slow time”, respectively.
“Fast time” comprises a sequence of the pulses transmitted by the radar while “slow time” is the
repetition of these transmitted pulses, depending upon the PRI.

The clutter-removed signal was statistically normalized before further processing. The objective of
the statistical normalization process was to prepare a uniform set of data ranges for training purposes.
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Data normalization or feature scaling reduces the overall variance of the measurement data, making
classification easier. For the purpose of normalization, we used the following equation:

→
Rnormalized = abs

→R − u
δ

 (6)

where µ and δ are the mean and standard deviation of matrix
→
R. Here, we are subtracting the

mean value of
→
R from the original matrix and dividing the result by the overall standard deviation.

The absolute of the resultant is taken to obtained the final normalized matrix. The normalization
process was performed for each training sample.

2.4. Representation and Analysis of Gesture Data

The gesture vocabulary used for counting purpose is represented in Figure 5. The first column of
Figure 5 represents the dynamic gestures used for the purpose of counting whereas, second and third
columns represent the respective two dimensional data matrix and one dimensional absolute averaged
signal. The gestures are classified based on the “count” of the raised fingers. Data corresponding to
finger count “one” appears to be noisier in comparison to finger count “five”. For the case of data
matrix representation in second column, magnitude of received signal is represented as increasing
color from blue to yellow. The signal pattern in a single dimension (when averaged for a certain
slow time) is not as clearly distinguishable when compared to the variations between the patterns in
two dimensions.
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As depicted in Figure 5, it can be observed that there exist minute variations between all adjacent
gestures. Hence, it was difficult to classify these gestures using one dimensional features. Therefore,
we converted the signal representations into 2D images for further analysis.

As stated above, given that the signal statistics did not allow for robust classification, we converted
the signals into images using algorithm 1, for further analysis in two dimensions.

After normalization of the 2D data matrix, we transformed that matrix into an image with pixel
values ranging from 0–255 as can be seen from Figure 6. The black color show pixel value of 0 and
white color represent a value of 255.Sensors 2019, 19, x FOR PEER REVIEW 7 of 14 
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greyscale image.

Algorithm 1. Transformation of radar signals into images

1. Receive input signal from radar sensor s(n).
2. Remove clutter from signal as described in Section 2.3.
3. Low-pass signals are combined into matrix of size m× n where “m” is slow-time index and “n” is

fast-time index.
4. Combine each one-dimensional signal from radar, as shown in Equation (5).
5. Normalize database, as described by Equation (6).
6. Convert normalized 2D matrices into RGB images and then convert it into greyscale images, as shown in

Figure 6.

Figure 7 shows the variations in the data generated using small finger movements. The boxed
portion represents the area with similar patterns and the red arrows denote the differences in the
patterns, which can be exploited using a sophisticated machine-learning-based classifier.
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2.5. CNN Architecture for Training and Classification

As is the case for any classification problem, the accuracy of classifying the desired patterns
depends on the availability of high-quality spectral and temporal features. However, in the case of
IR-UWB radar data, the features are usually time based as the frequency spectrum is broad [26]. Main
advantage of CNN for IR-UWB radar is that it doesn’t require pre-extracted features. The algorithm
extracts the features by itself.

The implemented CNN network is shown in Figure 8, which shows the different layers of the
CNN for our classification problem. In accordance with the size of the radar’s data matrix, the input
image dimensions for the CNN network were 173 × 100. For CNN, a smaller filter size is generally
capable of extracting more detailed features, therefore a ‘3 × 3’ filter was used at each convolutional
layer. To make all images have a balanced (normalized) distribution, zero-centered normalization
is generally performed for the input layer. After each convolution layer, batch normalization is
performed to speed up the training process [32]. Then a rectified linear unit (ReLU) layer serves as the
activation function. For CNN networks, the ReLU layer is normally added after convolutional and
batch normalization layers. Here at the output of ReLU, any value less than zero will be considered as
zero as shown in Equation (7):

h(x) =

{
x, x ≥ 0
0 x ≤ 0

(7)

Number of layers are increased linearly as a function of 2n and total six hidden layers were
created for training and evaluation. The order of operation for each layer was: convolution, batch
normalization, ReLu, and max pooling at the end. The high level and low level features were calculated
while performing the convolutional operation and at the end fully-connected (FC) layer was made.
Soft max function is performed after creating FC layer. Later cross-entropy based classification is
performed to predict the gesture. The combination of all these layers collectively makes a network that
mimics human brain up to some extent [33].
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In case of non-linearly separable data, the number of layers in he CNN architecture are normally
selected based on trial and error methods [34]. The number of hidden layers affects the accuracy as well
as processing time of training and evaluation. Fewer than the required hidden layers may provide an
undertrained classifier whereas, too many hidden layers will cause the network to learn unnecessary
details. We carefully performed a manual search process to optimize the CNN architecture, i.e., the
network was trained with different number of hidden layers. Note that the network optimization was
performed after selecting the preprocessing parameters and in case of any alteration in pre-processing
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block, the optimization process should be repeated again. Figure 9 represents the obtained test
accuracy for different architectures of CNN. The optimization was performed by considering accuracy
as a function of ‘number of hidden layers’. The layers were increased until we achieved maximum
classification accuracy and minimum processing time for the given training dataset. As seen in Figure 9,
the accuracy keeps on increasing with increase in number of layers. Even accuracy above 90% is
observed with four and five layers as well. Maximum classification accuracy was observed with six
hidden layers.Sensors 2019, 19, x FOR PEER REVIEW 9 of 14 
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3. Experimental Setup

Figure 10a shows the experimental setup used for acquiring data and evaluating the performance
of the proposed gesture system. The experiments were performed in laboratory environment; therefore,
the interior of a car equipped with an IR-UWB radar was recreated to test the feasibility of the proposed
system in a physical environment. Note that the radar was installed at point P1 in Figure 2.
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Figure 10b shows the radar sensor used for this experiment. A XeThru X4 (Novelda, Kviteseid,
Norway) radar with an inbuilt transmitter and receiver antenna was employed in this study.
The parameters of the radar transceiver are shown in Table 1. We used MatLab and the associated Deep
Learning Toolbox for data acquisition, processing, and CNN architecture implementation. The radar
sensor was connected to MatLab on the host computer via a serial protocol and the acquired data
was pre-processed and converted into images. Further, the CNN classifier was built using the Deep
Learning Toolbox of MatLab.
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Table 1. Radar transceiver parameters.

Parameter Value

Output power −12.6 dBm

Center frequency 8.748 GHz

Pulse repetition frequency 100 MHz

Bandwidth (−10 dB) 2.3 GHz

Sampling frequency 23 samples/s

Staggered PRF sequence length 220 cycles

Table 2 shows the details of the implemented CNN design.

Table 2. Hyper parameters values of implemented convolutional neural network.

Hyperparameter Description

Number of hidden layers in CNN 06

Convolution filter size 03

Learning rate 0.01

Epochs 10

4. Results

4.1. Results of Clutter Removal Filter

The acquired data matrix was first passed through a clutter-removal filter to remove unwanted
echoes. The input and corresponding output of the clutter-removal filter are shown in Figure 11a,b,
respectively. When the data passes through hidden layers, some spatial information is lost during the
whole process [22]. As a result, minute shift in the pattern within the designated image frame will
be negligible.
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4.2. Optimal Sensor Position

In order to confirm the suitability of the selected sensor position, data were collected for two
different radar positions. Figure 12a,b respectively show the input and output of the clutter-removal
filter when the radar was placed at the top of the wind screen, that is, near the head of the driver
(or position 2 in Figure 2). It was observed that, in this case, information related to the movements of
the head was present even after the use of the clutter-removal filter (as seen in Figure 12b). At this
location, signals related to the head movements get mixed with those related to the desired hand
movements, making gesture recognition difficult. On the other hand, the placement of the radar at the
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side of the steering wheel effectively removed the clutter, with the filtered data being related only to
the gestures (as seen in Figure 11b).
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4.3. Gesture Image Patterns

The images corresponding to the individual gestures are presented in Figure 13. Moving from
the right to the left, Figure 13a–e represent finger counts of one, two, three, four, and five respectively.
Here, the brightness indicates the presences of a highly reflective object in the path of the radar beam
width at the output of clutter removal filter. Figure 13e corresponding to gesture 5 contains a large
number of white pixels in comparison with images generated corresponding to other gestures.
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(e) five fingers.

4.4. Classification Results

Next, the above generated images were fed as an input to the CNN classifier for training and
evaluation purposes. In the interest of robustness, the experiment was repeated using three different
subjects, and 100 samples were gathered. We used 60% of the collected data for training purpose and
the remaining 40% was used to evaluate the trained network. The training and validation accuracies
are represented in Figure 14. The training accuracy is computed against each individual epoch and
validation accuracy is found using test data. The average accuracy, rounded off to the nearest double
digit, is listed in Table 3. As can be observed from the table, the CNN classifier distinguished 13%
of gestures four as five. On the other hand, the gestures one, two, three and five were distinguished
correctly. However, the classification accuracy can be increased by increasing the number of training
samples, as any classification algorithm can train itself more efficiently using a larger training data
set [21].
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Table 3. Confusion matrix for experimental results.

Predicted Gesture Class

O
ri

gi
na

lG
es

tu
re

C
la

ss Gesture
Class

One Two Three Four Five

One 1 0 0 0 0
Two 0 1 0 0 0

Three 0 0 1 0
Four 0 0 0 0.87 0.13
Five 0 0 0 0 1

5. Conclusions

In this study, we have developed an algorithm for counting fingers based on gestures with the
aim of controlling electronic devices in cars using these gestures. We used a single IR-UWB radar
for gesture recognition. We first determined the optimal location for the radar within the car such
that it would be convenient for the driver and the radar signal would not be subjected to interference
from the undesirable motions of the driver arising from various driving activities. We performed the
experiments in the area that is located in front of a driver which is at a short distance from the radar
sensor. The one dimensional averaged signal for each gesture was not clearly distinguishable, therefore,
we transformed the radar waveforms for a certain slow time into an image and then analyzed the
patterns using those images with an image processing technique. The demonstration of mapping radar
data into greyscale images was also demonstrated in this study. CNN algorithm was used for feature
extraction and classification. No feature set was provided as CNN algorithm extract features by itself.
The prediction accuracy was high for all five gestures. In the future, we aim to develop an algorithm
that can recognize the finger counts of two hands, so that a total of ten gestures can be recognized
using a single radar sensor.

Author Contributions: S.A. carried out the experiments and implementation of the algorithms. F.K. helped
in the design of experiments. A.G. and F.H. contributed to writing the paper. S.H.C. supervised the whole
experimentation and methodology process.

Funding: This research was supported by Bio & Medical Technology Development Program (Next Generation
Biotechnology) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT
& Future Planning (2017M3A9E2064626).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 1429 13 of 14

References
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