ﬂ SCNSors m\py

Article

Multi-Server Multi-User Multi-Task Computation
Offloading for Mobile Edge Computing Networks

Liang Huang *"*, Xu Feng, Luxin Zhang, Liping Qian ‘' and Yuan Wu

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
xfeng_zjut@163.com (X.E.); Ixzhang_zjut@163.com (L.Z.); lpqian@zjut.edu.cn (L.Q.); iewuy@zjut.edu.cn (Y.W.)
* Correspondence: lianghuang@zjut.edu.cn

check for
Received: 31 January 2019; Accepted: 21 March 2019; Published: 24 March 2019 updates

Abstract: This paper studies mobile edge computing (MEC) networks where multiple wireless devices
(WDs) offload their computation tasks to multiple edge servers and one cloud server. Considering
different real-time computation tasks at different WDs, every task is decided to be processed locally at
its WD or to be offloaded to and processed at one of the edge servers or the cloud server. In this paper,
we investigate low-complexity computation offloading policies to guarantee quality of service of the
MEC network and to minimize WDs’ energy consumption. Specifically, both a linear programing
relaxation-based (LR-based) algorithm and a distributed deep learning-based offloading (DDLO)
algorithm are independently studied for MEC networks. We further propose a heterogeneous DDLO
to achieve better convergence performance than DDLO. Extensive numerical results show that
the DDLO algorithms guarantee better performance than the LR-based algorithm. Furthermore,
the DDLO algorithm generates an offloading decision in less than 1 millisecond, which is several
orders faster than the LR-based algorithm.

Keywords: mobile edge computing; computation offloading; deep reinforcement learning

1. Introduction

The last decade has witnessed how mobile devices and mobile applications have become an
indispensable part of peoples’ lives. Mobile devices provide a wide range of digital services, such as
map navigation, language recognition, web browsing, and so on. Besides being a means of phone
calls and content consumption, mobile devices tend to be platforms that assist people to accomplish
more online tasks as a complement to desktop computers and laptops. These tasks require a large
amount of computing resources and stringent quality of service (QoS), e.g., Augmented Reality (AR)
applications [1], Vehicular ad-hoc networks (VANETs) [2], and cloud gaming [3]. Due to limited
computation resources and the size-constrained batteries of mobile devices, computationally intensive
tasks are offloaded to remote computational servers, which then transfer computing results back to
the mobile devices, known as cloud computing [4]. However, this approach suffers high latency and
unstable QoS due to data propagation and routing between mobile devices and remote cloud servers.
Although different wireless communication technologies [5-7] and data transmission scheduling
schemes [8-11] have been developed in the past decades, the QoS is slightly improved due to the
long-distance transmissions between mobile devices and remote cloud servers. Recently, mobile
edge computing (MEC) network is proposed to deploy multiple edge servers close to mobile devices.
Mobile devices in MEC networks can efficiently offload their tasks to nearby edge servers and receive
immediate feedback after processing, so as to improve the QoS. For example, after the emergence
of Internet of Things (IoT), more and more sensors are connected to MEC networks. The massive
measured data can be offloaded to edge servers with low processing latency, which can also extend
the computation power of IoT sensors [12]. In the coming fifth-generation (5G) mobile network,

Sensors 2019, 19, 1446; d0i:10.3390/s19061446 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6924-4466
https://orcid.org/0000-0001-6210-2617
https://orcid.org/0000-0002-2777-7915
http://dx.doi.org/10.3390/s19061446
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/6/1446?type=check_update&version=2

Sensors 2019, 19, 1446 2 0of 19

the deployment of ultra-dense small cell networks (UDNS) is envisaged [13]. There are going to be
multiple edge servers within the wireless communication range of each mobile device, so as to provide
sufficient edge servers and communication capacity for MEC networks. However, it is challenging to
make computation offloading decisions when multiple edge servers and mobile devices are available
in MEC networks. For example, whether a computing task should be offloaded to edge servers? Which edge
server should it be offloaded to? Different offloading decisions result in different QoS of the MEC networks.
Thus, it is important to carefully design computation offloading mechanism for MEC networks.

In MEC networks, computation offloading is challenged by limited computing resources and
real-time delay constraint. Different from large-scale cloud computing centers, edge servers are
small-scale with limited processing capacity. When lots of tasks being offloaded to the same edge
server it causes congestion, resulting in longer processing time delay for all tasks. Therefore, simply
offloading a task to its closest edge server may not be a good choice. An offloading decision depends
on available computing capacities at local mobile device, edge servers, and cloud servers, along
with communication capacity. Computation offloading in MEC networks is widely studied by using
convex optimization [14] and linear relaxation approximation [15,16], which takes too long time to
be employed in MEC networks with dynamic computation tasks and time-varying wireless channels.
An efficient and effective computation offloading policy for multi-server multi-use MEC networks is
still absent.

In this paper, we consider a MEC network with multiple edge servers and one remote cloud
server, where multiple wireless devices (WDs) offload their tasks to edge/cloud servers. We investigate
both a linear programing relaxation-based (LR-based) algorithm and a heterogeneous distributed
deep learning-based offloading (DDLO) algorithm to guarantee QoS of the MEC network and to
minimize WDs’ energy consumption. The heterogeneous DDLO algorithm takes advantage of deep
reinforcement learning and is insensitive to the number of WDs. It outperforms the LR-based algorithm
in terms of both system utility and computing delay.

Deep reinforcement learning has been applied in many aspects, e.g., natural language process [17],
gaming [18], and robot control [19]. It uses a deep neural network (DNN) to empirically solve
large-scale complex problems. There exist few recent works on deep reinforcement learning-based
computation offloading for MEC networks [20-23]. Huang et al. proposed a distributed computation
offloading algorithm based on deep reinforcement learning, DDLO [23], for MEC networks with
one edge server and multiple WDs. They take advantage of multiple DNNs with identical network
structure and show that the computation delay is independent of the number of DNNS. In this paper,
we apply DDLO to MEC networks with multiple servers and multiple WDs and further improve the
performance of DDLO by using heterogeneous DNN structures.

1.1. Previous Work on Computation Offloading in MEC Networks

Considering a MEC network single edge server, Wei et al. [24] presented an architecture, MVR, to
enable the use of virtual resources in edge server to alleviate the resource burden and reduce energy
consumption of the WDs. You et al. [25] proposed a framework where a WD can harvest energy
from a base station or offload task to it. Mufioz et al. [26] jointly optimized the allocation of radio
and computational resource to minimize the WD’s energy consumption. For MEC networks with
multiple WDs, Huang et al. [23] proposed a distributed deep learning-based offloading algorithm,
which can effectively provide almost optimal offloading decisions for a MEC nework with multiple
WDs and single edge server. To get avoid of the curse of dimensionality problem, Huang et al. [27]
proposed a deep reinforcement learning-based online offloading (DROO) framework to instantly
generate offloading decisions. Chen et al. [28] proposed an efficient distributed computation offloading
algorithm which can be used to achieve a Nash equilibrium in multiple WDs scenario.

Considering a MEC network with multiple edge servers, Dinh et al. [16] considered a MEC
with multiple edges servers, and proposed two approach, linear relaxation-based approach,
and a semidefinite relaxation (SDR)-based approach to minimize both total tasks’ execution latency

Sensors 2019, 19, 1446 30of 19

and WDs’ energy consumption. Authors [29] also considered the case of multiple edge servers
and obtain the optimal computation distribution among servers. For multiple-server multiple-user
MEC networks, authors [30] proposed a model free reinforcement learning offloading mechanism
(Q-learning) to achieve the long-term utilities.

Considering a MEC network with both edge servers and a remote cloud server. Chen et al. [31]
studied a general multi-user mobile cloud computing system with a computing access point (CAP),
where each mobile user has multiple independent tasks that may be processed locally, at the CAP,
or at a remote cloud server. Liu et al. [12] studied an edge server and cloud server to reduce energy
consumption and enhance computation capability for resource-constrained IoT devices. Li et al. [32]
also studied a computation offloading management policy by jointly processing the heterogeneous
computation resources, latency requirements, power consumption at end devices, and channel states.
We further categorize all these related works with respect to the number of tasks, WDs, and servers in
Table 1.

Table 1. Related works on computation offloading in mobile edge computing (MEC) networks.

Task User Edge Server

Publication Remote Server

Single Multiple Single Multiple Single Multiple

Liu et al. [12] Vv Vv
Bietal. [14] Vv Vv
Dinh et al. [16]
Huang et al. [23] v
Wei et al. [24]
You et al. [25]
Munoz et al. [26]
Huang et al. [27]
Chen et al. [28]
Wang et al. [29]
Dinh et al. [30]
You et al. [33]
Chen et al. [31] vV
Li et al. [32]
Our Work N4

v
v

RO
L <
L
<<

D NG NG S SE N
<
<<

L <
<<
L

1.2. Our Approach and Contributions in This Paper

In this paper, we consider a network with multiple WDs, multiple edge servers, and one cloud
server. Each WD has multiple tasks, which can be offloaded to and processed at edge and cloud
servers. To guarantee the QoS of the network and minimize WDs’ energy consumption, we obtain the
following results:

1. We model the system utility as the weighted sum of task completion latency and WDs’
energy consumption. To minimize the system utility, we investigate a linear programming
relaxation-based (LR-based) algorithm to approximately optimize the offloading decisions for
each task of a WD.

2. We extend the DDLO algorithm to multiple-server MEC network. We further propose
a heterogeneous DDLO algorithm by generating offloading decisions through multiple DNNs
with heterogeneous network structure, which has better convergence performance than DDLO.

3. We provide extensive simulation results to evaluate LR-based algorithm, DDLO algorithm,
and heterogeneous DDLO algorithm. Extensive numerical results show that the DDLO algorithms
guarantee better performance than the LR-based algorithms.

The rest of the paper is organized as follows. In Section 2, we present the system model and
problem formulation. We present an LR-based algorithm in Section 3 and an heterogeneous DDLO

Sensors 2019, 19, 1446 4 0f 19

algorithm in Section 4. Numerical results are presented in Section 5, and a conclusion is provided in
Section 6.

2. System Model and Problem Formulation

2.1. MEC Network

In this work, we consider a MEC network composed by one cloud server, K edge servers, and N
wireless devices (WDs), as shown in Figure 1. Without loss of generality, we assume that each WD
has M independent tasks where each task can be computed by the WD itself or be offloaded to and
processed by the edge servers or the cloud server. We denote the set of WDs as N = {1,2,...,N},
the set of tasks as M = {1,2,..., M}, and the set of serversas K = {0,1,2,...,K, K+ 1}, where server
0 denotes the WD itself and server K 4 1 denotes the cloud server. Each WD must make decisions
on whether remotely processing or locally processing for each of its tasks. We denote a,,,,x € {0,1}
as the offloading decision that WD n’s m-th task is assigned to the server k, where n € N, m € M,
and k € K. Specifically, a,,0 = 1 means that WD n decides to locally execute its m-th task. Then, we
have a,,,,x = 0,Vk € K\{0}. Overall, every task must be processed by one of those servers (including
server 0), as Z,Ifiol aymx = 1, whose exact computing mode depends on

Anmo = 1, local computing,
YK i @uuk =1, edge computing,

Apmk+1 = 1, cloud computing,

forany n € N and m € M. The detailed operations of communication and computing are illustrated
as follows.

© Offloading

@ Local computation

Bl Edge server selected
[*] Edge server unselected
@ Cloud server selected
@ Cloud server unselected

. Wireless
Wired
Edge server 1 Edge server 2 Edge server K
©) @ ((i))
I ' T
\
\
O 0o | 0] L - E® o] D’\'
pv_/

L'_/ \ J Q'_/
M tasks Q@@ - @ M tasks Q@@ - @ M tasks@O@ - @ M tasksQOO® - @

WD 1 WD 2 WD 3 WD N
Figure 1. System Model of a multi-server multi-user multi-task mobile edge computing (MEC) network.

2.2. Communication Model

Here we study transmission latency and energy consumption due to communications between
WDs and servers. We set a tuple (&um, Bum, Ynm) to represent WD n’s m-th task, forn € N, m € M.
Specifically, a,,;;, is the data size, B, is the corresponding size back from the servers, and 7y, is the

Sensors 2019, 19, 1446 50f 19

required number of CPU cycles to complete the task. When one of WD n’s tasks is offloaded to the
edge server k € K\{0,k + 1}, the uplink and downlink transmission rates between the WD 1 and the
edge server k are quantified as

UL _ pUL PRy
an = Buk logz(l * wWotLieA\{n} P his Cone m ik). M)

P];rxhnk
wO+Ziel€\{k} PJTthj Ymem Anmj ’

Cor = B log, (1+ @)
where BUF and BDL are the uplink and downlink transmission channel bandwidths, P}X and P[X are
the transmission powers of the WD 7 and the edge server k, h, is the corresponding channel gain,
and wy is the white noise power.

When a task is offloaded to the cloud server, at least one of the edge servers is selected as a relay
node between the WD and the cloud server. We assume that the relay nodes for uplink and downlink
transmissions can be different. Then, the one with the greatest uplink (downlink) transmission rate is
selected as the uplink (downlink) relay node, as

CVL . = max CYt
L {0 k1) R
CPL . — max CPL
AL e\ foks1y

Moreover, there is neither uplink nor downlink transmission latency for local computing.
For completeness, we also denote C%L = CEOL = 0.
Denote TUL, TOL as the the uplink and downlink transmission latency for WD n’s m-th task,

respectively. Then, we have

UL Knm
Tow = Z CULanmk/
nk

ke

TDL _ Z ﬁ”m a

nm — CDL nmks
ke “nk

forn € N and m € M. Hence, the total communication delay for WD n’s m-th task can be expressed as
Tsnc;mm = Trlzjn% + Tr]z:)n]; + Tapmr+1, (5)

where T is constant representing the propagation delay between a edge server and the cloud server.
We also have the communication energy consumed by WD 7 for completing all M tasks as

g ¥ PNTUL ¢ pNTL ©
meM

where PRX is the corresponding reception power for WD 7.

2.3. Computation Model

We denote f; as the number of CPU cycles for the server k. In general, the computation hardware
at edge servers is more powerful than WDs, as fo < fx < fx41, for k € K\{0,K + 1}. We assume that
each server’s computational resources are equally shared among all tasks when two or more tasks
are offloaded to the same server. For example, when two tasks are offloaded to the same server k,

Sensors 2019, 19, 1446 6 of 19

the computational resources allocated to each task are f;/2. Then, the total number of CPU cycles
allocated to WD n’s m-th task can be expressed as

fnm _ 2 fkanmk (7)

kek YneN Lime M Anmk

Note that in real deployment of cloud computing systems, the allocated computational resources
are smaller than f,,,, due to I/O interference between tasks at the same server [34].
Hence, the computation latency for WD n’s m-th task is

TComp _ Ynm 8)

nm = fnm .
Meanwhile, the energy consumed by WD n for completing all its M tasks can be expressed as

Com 2 Comj
E, P = K'YnmfnomaXTnm paVlWIOI (9)
meM

where ¥ = 10~ is the effective switched capacitance [35].

2.4. Problem Formulation

For both edge and cloud servers in MEC networks, energy is consumed whenever the server
is turned on, which depends little on the number of tasks running on the servers. To reduce energy
consumption at edge or cloud [36], some servers are preferred to be turned off when idle. Therefore,
reducing communication energy or task processing energy at edge or cloud server is trivial. In this
paper, we only consider energy consumption at WDs. To jointly evaluate the task completion latency
and WDs’ energy consumption, we formulate the reward function as

Q(s,a) = & max (TSo™™ 4 TEo™P) +ge Y- (ESomm 4 ESOMP), (10)
neN,meM neN

where ¢, ¢ € [0,1] are two scalar weights representing latency and energy consumption, respectively.

We consider a MEC network where WDs’ task requirements are time-varying, denoted as
st = {(d¥L, bl dWh), | n € N,m € M}. Given a system state s;, we select an offloading action
ar = {(apur)t | n € N,m € M,k € K} from action space A following a policy 7t(a; | s;), and receive
a scalar reward r; = Q(s¢, a¢). This process continues with the increase of time indext =0,1,2,...,T.
We aim to design a policy 7t which can efficiently generate an offloading action a; for each system state
s to minimize the expectation of the reward r¢, as

1T
lim —) 7. 11
fim 7 L ay

In general, this problem relates to the multi-armed bandit problem with NM arms and K + 2
different options. Sometimes, it is referred as “trivial” [37] in the field of reinforcement learning since
the reward function Q(s, a) is present. For example, given a system state s, we would always select the
action with lowest value. However, searching for the optimal action within an action space with size
(K +2)NM is time-consuming. In the next section, we study a linear programing relaxation-based (LR)
approach to approximately generate the optimal action. Those important notations used throughout
this paper are listed in Table 2.

Sensors 2019, 19, 1446

7 of 19

Table 2. Notations used in this paper.

Notation Definition
Ak aymie = 11if WD n offloads its task m to the server k. Otherwise, 4, = 0
Xpm Input date size of the task m of WD n
Bum Output date size of the task m of WD n
Ynm The number of CPU cycles to process the task m of WD n
C;JkL, CPL Transmission rates between WD 1 and edge server k
B}leL, BnDkL Transmission channel bandwidths between WD # and edge server k
prx, PkT X Transmission powers of WD n and edge server k
hnU,},hE,} Transmission channel gains between WD n and edge server k
wo The white noise power level
Tlgjnl;k, TEJ;k Uplink and downlink transmission latency of the task m of WD n to server k
T Transmission latency between a edge server and the cloud server
TSomm Total transmission latency of WD n
ot Transmission power
ESomm Total transmission energy consumption of WD n
fx Clock frequency of CPU k

:l: ’z]r(np, szglp Computing latency of the task m of WD #n in edge server k or locally
TnC omp Total computing latency of WD n

Effective switched capacitance

ES,Z‘“P Computing energy consumption of WD n’s m-th task
ES"‘“P Total computing energy consumption of WD n
r§l Scalar weights of latency
¢ Scalar weights of energy consumption

3. Linear Programing Relaxation-Based Approach

In this section, we study a low-complexity algorithm to solve for the action with lowest reward
value Q. Specifically, it takes the system state s as static variables and minimizes Q(s, a) with respect
to the variables a, as

r = minQ(s, a).
aEAQ()

(12)

Since the algorithm does not use any previous state or action information, for brevity, we ignore
the subscript ¢ of all variables in this section. From (10), the action selection problem in (12) can be
formulated as a general multi-objective optimization problem, which is expressed as follows:

. C
(P1) : min ¢'max (T + Ton™) + 20 Y

42 ,Bnm
Y. Y | p s+ P)a '
UL n ~pL, | “nm

(C an

neN <m6/\/l kek nk

C
+ K"}’nmfy%o max Tmzmpanm0> (13a)
meM
subject to: a,,,x € {0,1}, (13b)
Z Ak = 1, (13¢)

kel
YneN,me M, ke K.

Sensors 2019, 19, 1446 8 of 19

Problem (P1) is a three-dimensional integer programing problem whose solution space is in the
size of 2NM(K+2) - Although solving for the optimal solution is computationally infeasible, lots of
low-complexity heuristic algorithms can obtain near-optimal solutions. Here, we study a well-known
LR-based algorithm [16,38] to solve (P1), which relaxes the binary variables a,,,x € {0,1} to real
number a,,, € [0,1]. We introduce two new variables y;,y» € R which are constrained by
v > max(TC‘m‘m + Tcomp) and yp > rrg}\)/i T,f,;imp. From (5) and (8), problem (P1) can be transformed

m

to be:
. w
(P2) : I;gﬂ glyl +¢¢ Zj:\/ (Z Z (PEX C};jn]/i + PRX ggﬁ)Amk + K'YnmanyZaan) (14a)
YR ne meMkel
. . Knm Bum Ynm
Sub]eCt tO. Z (UL nmk + DL anmk) + Tﬂan+1 + S ylr (14b)
kekk an C fnm
Tum o, (14c)
Sfum
Apmk € [0/ 1]/ (14d)
Z Ak = 1, (14e)
ke

YneN,me M, ke k.

Here we propose a LR-based algorithm to solve for a feasible solution for problem (P1). We first
solve problem (P2) via optimization tools for the optimal solution, denoted as a*. Then, we recover
binary characteristic of a* for a feasible solution for problem (P1). Considering the relaxed offloading
decision sequence for WD n’s m-th task, {a’ . | k € K}, let k};,, = argmaxici a;,, be the index of
the maximum value a; , among all K + 2 decisions. Then, we choose k;,,, as the offloading server
by setting a,,,,:, = 1 and a,,,,x = 0 for all those remaining k € IC\{k;;,, }. The procedure repeats till
we obtain all binary offloading decision for all WDs’ tasks, a. We show the LR-based algorithm in
Algorithm 1. Note that, in our simulation, (P2) is solved by a linear programming solver.

Algorithm 1 Linear Programming Relaxation Approach-based Offloading Algorithm

1: Input: N, M, K, &, Bum, Ynm, CoE, Cob,¥n € N,Vm € M, Vk € K
2: Output: a

3: Solve (P2) to achieve a*;

4: for n=1,2,...,Ndo

5 form=1,2,..., Mdo

6: Kim = argmaxgeic 45,10

7: Aymk = 0,Vk € ’C\{k } and Apmks,, =1

8: end for

9: end for

4. Deep Learning-Based Approach

In this section, we adopt a distributed deep learning-based offloading (DDLO) algorithm [23] to
approximately minimize the expectation of reward presented in (11). By taking advantage of a batch
of DNNSs, the DDLO algorithm generates one binary offloading action from each DNN in a parallel
way and chooses the action with the lowest reward as the output action.

The architecture of DDLO is illustrated in Figure 2, which is composed of B DNNs and a shared
finite-sized memory structure. At each time slot ¢, it takes system state s; as the input and outputs

a binary offloading decision a}. Specifically, each DNN generates one candidate offloading action a?, as

fef DS — a?, (15)

Sensors 2019, 19, 1446 9of 19

where b € B ={1,2,...,B} is the index of the DNN and fef is a parameterized function representing

the b-th DNN with parameters 87. Among all those generated B candidates, the offloading action with
the lowest reward is chosen as the output action, as

a; = argmin Q(s¢, a?). (16)
beB

St - — a;
—)
Train
Memory
Store <

Figure 2. Architecture of distributed deep learning-based offloading (DDLO) [23].

DDLO learns from its past experiences (s, a}) to generate optimal offloading actions. At the
beginning, all B DNNSs are initialized with random parameter values 98 and the memory is empty.
Since different DNNs have different parameter values 67, they will generate different offloading actions.
By storing past experiences (s, a;) in the memory, each DNN is trained and updated by randomly
sampling a batch of training data from the memory. A gradient descent algorithm is performed to
optimize parameter values 8 of each DNN by minimizing the cross-entropy loss, as

L(6]) = —a" log fp(s1) — (1= ar) T log(1 — fyp (s1))-

In [23], all those B DNN’s are assumed to be isomorphic. That is, they have the same number of
layers and nodes and use the same activation function, Relu, at each hidden layer. In this paper, we
further consider heterogeneous DDLO, where the hidden layers of all B DNNS are different. It is shown
in Section 5.2 that heterogeneous DDLO can achieve better convergence performance than DDLO.
We present our algorithm for multi-users, multi-tasks, multi-edges MEC networks in Algorithm 2.

Algorithm 2 Heterogeneous DDLO for MEC networks

: Input: all WDs’ task requirements s;

: Output: offloading decision a;

: Initialization:

Initialize all B DNNs with different random parameters Gf’ ,beB;
Initialize memory structure with size H;

fort=1,2,...,Gdo

Input the same s; to each DNN.
Generate B offloading action candidates from the DNNs {a!} = fef (st);
Select the offloading decision a;f = argmin Q(s;, u?) ;

beB
Store (s, af) into the memory structure;

Randomly Sample B batches of training data from the memory structure;
Train the DNNS;
end for

VRN AN

e
S

Sensors 2019, 19, 1446 10 of 19

5. Performance Evaluation

5.1. Experiment Profile

In this section, we numerically study the performance of LR-based algorithm, DDLO (The source
code of DDLO is available at https://github.com/revenol/DDLO.) algorithm, and heterogeneous
DDLO algorithm for the MEC network. In the following simulations, we consider the CPU frequencies
of each WD, each edge server, and the cloud server are 0.6 x 10° cycles/s, 10 x 107 cycles/s,
and 1 x 10'2 cycles/s, respectively [16]. Both the receiving power PRX and the transmitting power
PIX of all WDs n are 0.2 W. When the m-th task of WD # is selected for offloading, the output
data size after processing is assumed to be 20% of the input data size, B, = 0.204,,. We assume
that the number of computational cycles required for each task is proportional to the input data
size [35], as Yum = q&nm. Here the parameter g depends on different types of applications, whose
values are listed in Table 3. For example, the Gzip application is labeled as type A with 4 = 330
cycles/byte. In the following simulations, by default, we take type A application as an example to
study different offloading algorithms. We assume that different WDs and edge servers are randomly
distributed within a 30-by-30 (m2) region following a Poisson point distribution with probability
3/10,000 and 1/400 for WDs and edges, respectively. The channel gain between WD # and edge k is
calculated as h1,; = 103.8 +20.9 x log;(d,x) [13], where d,;; is the distance between WD 7 and edge k.
The round-trip propagation delay between edge servers and cloud server is T = 15 ms. The bandwidth
between WDs and edges is 10 M. The data size of each task is uniform distributed between 10 M
and 20 M. The following simulation results are averaged over 100 realizations running on a server
ThinkServer TD350 with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.1 Ghz processor.

Table 3. Application complexity [30,35].

Application Labels Computation to Data Ratio g (Cycles Per Byte)
Gzip A 330

pdf2text(N900 data sheet) B 960

7264 CBR encode C 1900

html2text D 5900

pdf2text(E72 data sheet) E 8900

To evaluate different offloading algorithms, we have pre-generated 30, 000 input data according
to the MEC network configurations. For each input data, we find the optimal offloading action by
enumerating all 2NM(K+2) combinations of binary offloading actions. For better illustrations, we study

the reward ratio between the optimal offloading action and the ones generated from other algorithms,
. optimal action
1.€., Zction generated from algorithm "

The closer the ratio is to 1, the better the generated offloading action.

5.2. Convergence Properties of Heterogeneous DDLO

To study the convergence performance of heterogeneous DDLO, we find the global optimal policy
by enumerating all 2NM(K+2) combinations of binary offloading policies and plot the ratio of the global
optimal reward to the predicted results of heterogeneous DDLO. To restrict the enumerating space,
we set the number of WDs N = 3, the number of tasks for each user M = 2, and the number of edge
servers K = 2. For both DDLO and heterogeneous DDLO evaluated in the following simulations,
five fully connected DNNs are used in each algorithm. We study two-hidden-layer DNNs and
three-hidden-layer DNNs for both DDLO and heterogeneous DDLO, whose structures are listed in
Tables 4 and 5, respectively. For fair comparison, we keep the interconnection complexity of each DNN
in heterogeneous DDLO in the same scale of the one in DDLO. For example, in Table 4, the numbers of
interconnections between two hidden layers of DNN1 are 120x80 = 9600 = 30 x 320 for both algorithms.
In Figure 3, we compare the convergence performance of the heterogeneous DDLO algorithm with
the DDLO algorithm [23]. In general, heterogeneous DDLO convergences faster and generates better

https://github.com/revenol/DDLO

Sensors 2019, 19, 1446 11 of 19

offloading policy than DDLO. Intuitively, heterogeneous DDLO has higher degrees of exploration due
to different DNN structures.

Table 4. DNN structures used in DDLO and heterogeneous DDLO with 2 hidden layers.

DNNs Number of Neurons in DDLO Number of Neurons in Het. DDLO
Input 1st Hidden 2nd Hidden Output Input 1stHidden 2nd Hidden Output
DNN 1 6 120 80 24 6 30 320 24
DNN 2 6 120 80 24 6 60 160 24
DNN 3 6 120 80 24 6 120 80 24
DNN 4 6 120 80 24 6 240 40 24
DNN 5 6 120 80 24 6 480 20 24

Table 5. DNN structures used in DDLO and heterogeneous DDLO with 3 hidden layers.

DNNs Number of Neurons in DDLO Number of Neurons in Het. DDLO
Input 1st Hidden 2nd Hidden 3th Hidden Output Input 1st Hidden 2nd Hidden 3th Hidden Output

DNN1 6 80 60 40 24 6 320 60 10 24
DNN2 6 80 60 40 24 6 160 60 20 24
DNN3 6 80 60 40 24 6 80 60 40 24
DNN4 6 80 60 40 24 6 40 60 80 24
DNN5 6 80 60 40 24 6 20 60 160 24

1.00 1.00

0.99 0.99

0.98 0.98
3 2
T 0.97 T 097
Z z
& &

0.96 0.96

0.95 0.95

—— Het. DDLO —— Het. DDLO
—— DDLO —— DDLO
094 10000 20000 30000 40000 50000 60000 094 10000 20000 30000 40000 50000 60000
Learning Steps Learning Steps
(a) (b)

Figure 3. Convergence performance of DDLO and heterogeneous DDLO ((a) corresponds to the deep
neural network (DNN) structure with two-hidden layers shown in Table 4; (b) corresponds to the DNN
structure with three-hidden layers shown in Table 5).

In Figure 4, we study heterogeneous DDLO under different number of DNNs. The more DNNs
used, the faster heterogeneous DDLO converges, which requires more parallel computing resources.
A small number of DNN may converge to local optimum, e.g., when the number of DNNS equals to 2.
Note that, as reported in [23], DDLO cannot converge with a single DNN.

Sensors 2019, 19, 1446

Reward Ratio

0.88 —_—

0.86 —

12 0of 19

Number of DNNs=2
Number of DNNs=3
Number of DNNs=4
Number of DNNs=5
Number of DNNs=10

0 10000 20000 30000 40000 50000 60000

Learning Steps

Figure 4. Convergence performance under different number of DNNS.

In Figure 5, we study heterogeneous DDLO under different learning rates. The larger the learning
rate is, the faster the DNN convergence rate will be. However, it falls into the local optimal solution
when the learning rate is too large, e.g., the learning rate is 0.1. Therefore, it is necessary to select an
appropriate learning rate. In the following simulations, we set the learning rate as 0.01.

Reward Ratio

0.88 —

0.86 —

Learning rate=0.1

Learning rate=0.01
Learning rate=0.001
Learning rate=0.0001
Learning rate=0.00001

0 10000 20000 30000 40000 50000 60000

Learning Steps

Figure 5. Convergence performance under different learning rates.

In Figure 6, we study heterogeneous DDLO under different batch sizes. It refers to the number of
training samples extracted from the memory in each training interval. From the numerical studies,

we set the batch size as 32 in the following simulations.

Sensors 2019, 19, 1446 13 of 19

1.00

Reward Ratio

—— Batch size=32
Batch size=64
0.92 —— Batch size=128
— Batch size=512
—— Batch size=1024

0 10000 20000 30000 40000 50000 60000
Learning Steps

Figure 6. Convergence performance under different batch sizes.
In Figure 7, we study heterogeneous DDLO under different training intervals. As a matter of fact,

the training interval cannot be too small. In the following simulations, we set the training interval
as 10.

1.00
0.99
0.98
0.97
2
£ 0.96
=
S
£0.95
Y
&~
0.94 —— Training interval=5
Training interval=10
0.93 —— Training interval=20
0.92 —— Training interval=50
—— Training interval=100
0.91

0 10000 20000 30000 40000 50000 60000
Learning Steps

Figure 7. Convergence performance under different training intervals.

5.3. Performance of Different Offloading Policies

We study the reward performance of different policies under different weights ¢ and & in
Figures 8 and 9. Regarding to the weighted sum energy consumption and latency performance,
we also evaluate other four representative benchmarks:

e Edge Processing. All tasks are offloaded to and processed at edge servers, i.e., setting Yk ; a,x = 1,
neN,meM.

o Cloud Processing. All tasks are offloaded to and processed at could server, i.e., setting a,;,x+1 = 1,
neN,me M.

e Local Processing. All tasks are processed locally at WDs, i.e., setting a0 = 1,n € N, m € M.

e Random Assignment. Offloading decisions are generated randomly.

Sensors 2019, 19, 1446

800

|

7001 ¢ ¢

Il

600 -

)

500

Local Processing
Edge Processing
Cloud Processing
Rand. Assign.
LR based Alg.
DDLO

Het. DDLO

Reward

Figure 8. Algorithm comparison under different ¢'.

800

700 ¢ ¢

600 -

500 -

Local Processing
Edge Processing
Cloud Processing
Rand. Assign.
LR based Alg.
DDLO

Het. DDLO

Reward
s
>
>

@
=3
>

Figure 9. Algorithm comparison under different ¢°.

14 of 19

We set the energy scalar and latency scalars as constants & = 1 and & = 1 in Figures 8 and 9,
respectively. With the increase of delay scalar & and &, the reward values of all policies increase.
The Local Processing policy generates largest reward while both DDLO and heterogeneous DDLO
outperform other offloading policies. When ¢¢ = 0, the system reward only considers the latency,
and the Cloud Processing policy takes longer time than other integer offloading policies, e.g., LR-based
algorithm and heterogeneous DDLO.

5.4. Impacts of Different MEC Network Structures

In Figure 10, we study the performance of different policies under different number of WDs.
Heterogeneous DDLO outperforms LR-based algorithm. With the increasing number of WDs, the total
reward of Edge Processing policy grows faster than other offloading policies because more users will
jointly occupy one edge’s resources, resulting a low processing speed.

Sensors 2019, 19, 1446

1600

1400 |-

1200 -

1000 -

Reward

111

LN 4
TR

D

Local Processing
Edge Processing
Cloud Processing
Rand. Assign.
LR based Alg.
DDLO
Het.DDLO

Figure 10. Algorithm comparison under different number of WDs when & = 1 and ¢ = 0.4.

The number of WDs

15 0f 19

In Figure 11, we study the performance of different policies under different number of tasks. With
the increase of the number of tasks, the total reward of Edge Processing policy grows faster and faster.
Because when an edge server processes multiple tasks at the same time, its processing units are shared

among all tasks. DDLO and heterogeneous DDLO outperform other offloading policies.

2500 T T
B—a& Local Processing
¢ -0 Edge Processing

2000 &—a Cloud Processing
4—& Rand. Assign.

e - |R based Alg.

1500

Reward

1000

500

DDLO
Het. DDLO

Figure 11. Algorithm comparison under different number of tasks when & = 1 and & = 0.4.

The number of tasks

In Figure 12, we study the performance of different policies under different number of edges.
The Local Processing policy does not change with the number of edges. The reward of other policies
gradually decreases with the increase of edge servers due to more processing resources and likely

closer proximity to WDs.

Sensors 2019, 19, 1446 16 of 19

500

400 - ; o ; ~| =—a Local Processing

¢ - Edge Processing
a—a Cloud Processing

300N L _| & Rand. Assign.

o -¢ LR based Alg.

DDLO

Reward
»

Het. DDLO

The number of edges

Figure 12. Algorithm comparison under different number of edges when & = 1 and ¢¢ = 0.4.

5.5. Impacts of Different Types of Applications

In Figure 13, we study the performance of different policies under different types of applications.
Because there are plenty of computing resources at the cloud server, the total cost of all cloud computing
will not change when the application type is changed. Both local and edge computing need to consider
the computing delay, and the computing delay is directly positively correlated with g, while the
energy consumption is correlated with time delay. Therefore, when the application type changes and g
increases, the total cost of local and edge computing will also increase. The optimization algorithm
will choose cloud processing more, so its total cost grows very slowly.

10000 ;
=—a& Local Processing

¢ -0 Edge Processing
Cloud Processing
Rand. Assign.
LR based Alg.
DDLO

= - Het. DDLO

8000 -

[ill

6000 -

Reward

4000}

2000

Applications

Figure 13. Algorithm comparison under different types of applications when & = 1 and & = 0.4.

5.6. Computation Time

In Table 6, we compare the CPU computation time between heterogeneous DDLO algorithm and
LR-based algorithm under different number of WDs. Heterogeneous DDLO generates one offloading
decision within one millisecond (Note that the CPU computation time of heterogeneous DDLO in this
paper is much less than the one of DDLO presented in [23] since resource allocation is not considered
here.), which is several orders faster than LR-based algorithm. Furthermore, the computation time of

Sensors 2019, 19, 1446 17 of 19

heterogeneous DDLO algorithm is insensitive to the number of WDs. For example, it increases from
0.63 millisecond to 0.74 millisecond when the number of WDs increases from 1 to 7. In comparison,
the LR-based algorithm increases by 1641%, from 0.33 second to 5.8 seconds, which is inapplicable for
real-time applications.

Table 6. Average CPU computation time under various number of WDs.

Number of WDs DDLO (s) Het. DDLO (s) LR-based Alg. (s)

1 6.11 x 107* 6.28 x 1074 3.30 x 101
2 642 x 107% 647 x 1074 9.66 x 101
3 6.69 x 107% 6.67 x 1074 1.68
4 6.88 x 107% 6.82 x 1074 241
5 699 x 107% 7.02 x 1074 3.66
6 719 x 1074 720 x 1074 441
7 736 x 107% 739 x 1074 5.75

6. Conclusions

In this work, we studied multi-server multi-user multi-task computation offloading for MEC
networks, with the aim to guarantee the network’s quality of service and to minimize WDs’ energy
consumption. By formulating different real-time task offloading decisions as static optimization
problems, we investigated a LR-based algorithm to approximate the optimum. By taking advantage
of deep reinforcement learning, we further investigated the heterogeneous DDLO algorithm for
MEC networks. Numerical results show that both algorithms can achieve better performance than
other offloading decisions, e.g., Local Processing algorithm, Edge Processing algorithm, and Cloud
Processing algorithm. Furthermore, the heterogeneous DDLO outperforms the LR-based algorithm
by generating better performance and consuming several orders less computation time. Specifically,
the heterogeneous DDLO generates one offloading decision in less than 1 millisecond, which is
insensitive to the number of WDs.

Author Contributions: Conceptualization, L.H.; methodology, L.H. and X.E; software, X.F.; validation, X.F.
and L.Z.; formal analysis, L.H.; investigation, L.Q.; resources, L.Q.; data curation, Y.W.; writing—original draft

preparation, L.H. and X.F; writing-review and editing, L.Q.; visualization, L.Z.; supervision, Y.W.; project
administration, L.H.; funding acquisition, L.H..

Funding: This research was funded by the National Natural Science Foundation of China under Grants No.
61572440 and No. 61502428, and in part by the Zhejiang Provincial Natural Science Foundation of China under
Grants No. LR16F010003 and No. LY19F020033.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Billinghurst, M.; Clark, A.; Lee, G. A survey of augmented reality. Found. Trends Hum. Interact. 2015, 8, 73-272.
[CrossRef]

2. Cooper, C.; Franklin, D.; Ros, M.; Safaei, F.; Abolhasan, M. A comparative survey of VANET clustering
techniques. IEEE Commun. Surv. Tutor. 2017, 19, 657-681. [CrossRef]

3. Cai, W, Shea, R,; Huang, C.Y.; Chen, K.T,; Liu, J.; Leung, V.C.; Hsu, C.H. A Survey on Cloud Gaming: Future
of Computer Games. IEEE Access 2016, 4, 7605-7620. [CrossRef]

4. Sanaei, Z.; Abolfazli, S.; Gani, A.; Buyya, R. Heterogeneity in Mobile Cloud Computing: Taxonomy and
Open Challenges. IEEE Commun. Surv. Tutor. 2014, 16, 369-392. [CrossRef]

5. Wu, Y; Ni, K,; Zhang, C.; Qian, L.P; Tsang, D.H. NOMA-Assisted Multi-Access Mobile Edge Computing:
A Joint Optimization of Computation Offloading and Time Allocation. IEEE Trans. Veh. Technol.
2018, 67, 12244-12258. [CrossRef]

http://dx.doi.org/10.1561/1100000049
http://dx.doi.org/10.1109/COMST.2016.2611524
http://dx.doi.org/10.1109/ACCESS.2016.2590500
http://dx.doi.org/10.1109/SURV.2013.050113.00090
http://dx.doi.org/10.1109/TVT.2018.2875337

Sensors 2019, 19, 1446 18 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Qian, L.P; Wu, Y.; Zhou, H.; Shen, X. Joint uplink base station association and power control for small-cell
networks with non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 2017, 16, 5567-5582. [CrossRef]
Qian, L.P; Feng, A.; Huang, Y.; Wu, Y; Ji, B.; Shi, Z. Optimal SIC Ordering and Computation Resource
Allocation in MEC-aware NOMA NB-IoT Networks. IEEE Internet Things J. 2018. [CrossRef]

Chi, K.; Zhu, Y.H,; Li, Y.; Huang, L.; Xia, M. Minimization of transmission completion time in wireless
powered communication networks. IEEE Internet Things J. 2017, 4, 1671-1683. [CrossRef]

Wu, Y; Qian, L.P.; Mao, H.; Yang, X.; Zhou, H.; Shen, X.S. Optimal Power Allocation and Scheduling for
Non-Orthogonal Multiple Access Relay-Assisted Networks. IEEE Trans. Mob. Comput. 2018, 17, 2591-2606.
[CrossRef]

Lu, W,; Gong, Y.; Liu, X,; Wu,].; Peng, H. Collaborative Energy and Information Transfer in Green Wireless
Sensor Networks for Smart Cities. IEEE Trans. Ind. Inform. 2018, 14, 1585-1593. [CrossRef]

Huang, L.; Bi, S.; Qian, L.P; Xia, Z. Adaptive Scheduling in Energy Harvesting Sensor Networks for Green
Cities. IEEE Trans. Ind. Inform. 2018, 14, 1575-1584. [CrossRef]

Liu, F; Huang, Z.; Wang, L. Energy-Efficient Collaborative Task Computation Offloading in Cloud-Assisted
Edge Computing for IoT Sensors. Sensors 2019, 19, 1105. [CrossRef] [PubMed]

Ding, M.; Lopez-Perez, D.; Claussen, H.; Kaafar, M.A. On the Fundamental Characteristics of Ultra-Dense
Small Cell Networks. IEEE Netw. 2018, 32, 92-100. [CrossRef]

Bi, S.; Zhang, Y.J.A. Computation Rate Maximization for Wireless Powered Mobile-Edge Computing with
Binary Computation Offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177-4190. [CrossRef]

Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-efficient dynamic offloading and resource scheduling in mobile
cloud computing. In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), San Francisco, CA, USA, 10-14 April 2016; pp. 1-9. [CrossRef]

Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q.S. Offloading in Mobile Edge Computing: Task Allocation and
Computational Frequency Scaling. IEEE Trans. Commun. 2017, 65, 3571-3584. [CrossRef]

Sharma, A.R.; Kaushik, P. Literature survey of statistical, deep and reinforcement learning in natural
language processing. In Proceedings of the 2017 International Conference on Computing, Communication
and Automation (ICCCA), Greater Noida, India, 5-6 May 2017; pp. 350-354. [CrossRef]

Mnih, V.; Kavukcuoglu, K; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature
2015, 518, 529-533. [CrossRef] [PubMed]

Phaniteja, S.; Dewangan, P.; Guhan, P; Sarkar, A.; Krishna, KM. A deep reinforcement learning approach for
dynamically stable inverse kinematics of humanoid robots. In Proceedings of the 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5-8 December 2017; pp. 1818-1823.
[CrossRef]

He, Y;; Yu, ER,; Zhao, N.; Leung, V.C.; Yin, H. Software-defined networks with mobile edge computing
and caching for smart cities: A big data deep reinforcement learning approach. IEEE Commun. Mag.
2017, 55, 31-37. [CrossRef]

Min, M.; Xu, D.; Xiao, L.; Tang, Y.; Wu, D. Learning-Based Computation Offloading for IoT Devices with
Energy Harvesting. arXiv 2017, arXiv:1712.08768.

Chen, X; Zhang, H.; Wu, C.; Mao, S.; Ji, Y.; Bennis, M. Performance Optimization in Mobile-Edge Computing
via Deep Reinforcement Learning. arXiv 2018, arXiv:1804.00514.

Huang, L.; Feng, X.; Feng, A.; Huang, Y.; Qian, L.P. Distributed Deep Learning-based Offloading for Mobile
Edge Computing Networks. Mobile Netw. Appl. 2018. [CrossRef]

Wei, X.; Wang, S.; Zhou, A.; Xu, J.; Su, S.; Kumar, S.; Yang, . MVR: An Architecture for Computation
Offloading in Mobile Edge Computing. In Proceedings of the 2017 IEEE International Conference on Edge
Computing (EDGE), Honolulu, HI, USA, 25-30 June 2017; pp. 232-235. [CrossRef]

You, C.; Huang, K.; Chae, H. Energy Efficient Mobile Cloud Computing Powered by Wireless Energy
Transfer. IEEE]. Sel. Areas Commun. 2016, 34, 1757-1771. [CrossRef]

Mufioz, O.; Pascual-Iserte, A.; Vidal, J. Optimization of Radio and Computational Resources for Energy
Efficiency in Latency-Constrained Application Offloading. IEEE Trans. Veh. Technol. 2015, 64, 4738—-4755.
[CrossRef]

Huang, L.; Bi, S.; Zhang, Y.A. Deep Reinforcement Learning for Online Offloading in Wireless Powered
Mobile-Edge Computing Networks. arXiv 2018, arXiv:1808.01977.

http://dx.doi.org/10.1109/TWC.2017.2664832
http://dx.doi.org/10.1109/JIOT.2018.2875046
http://dx.doi.org/10.1109/JIOT.2017.2689777
http://dx.doi.org/10.1109/TMC.2018.2812722
http://dx.doi.org/10.1109/TII.2017.2777846
http://dx.doi.org/10.1109/TII.2017.2780116
http://dx.doi.org/10.3390/s19051105
http://www.ncbi.nlm.nih.gov/pubmed/30836717
http://dx.doi.org/10.1109/MNET.2018.1700096
http://dx.doi.org/10.1109/TWC.2018.2821664
http://dx.doi.org/10.1109/INFOCOM.2016.7524497
http://dx.doi.org/10.1109/TCOMM.2017.2699660
http://dx.doi.org/10.1109/CCAA.2017.8229841
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1109/ROBIO.2017.8324682
http://dx.doi.org/10.1109/MCOM.2017.1700246
http://dx.doi.org/10.1007/s11036-018-1177-x
http://dx.doi.org/10.1109/IEEE.EDGE.2017.42
http://dx.doi.org/10.1109/JSAC.2016.2545382
http://dx.doi.org/10.1109/TVT.2014.2372852

Sensors 2019, 19, 1446 19 of 19

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

Chen, X,; Jiao, L.; Li, W,; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud
Computing. IEEE/ACM Trans. Netw. 2016, 24, 2795-2808. [CrossRef]

Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li,]. Mobile-Edge Computing: Partial Computation Offloading
Using Dynamic Voltage Scaling. IEEE Trans. Commun. 2016, 64, 4268-4282. [CrossRef]

Dinh, T.Q.; La, Q.D.; Quek, T.Q.S.; Shin, H. Distributed Learning for Computation Offloading in Mobile
Edge Computing. IEEE Trans. Commun. 2018, 1. [CrossRef]

Chen, M.; Liang, B.; Dong, M. Joint offloading and resource allocation for computation and communication
in mobile cloud with computing access point. In Proceedings of the IEEE INfocom 2017—IEEE Conference
on Computer Communications, Atlanta, GA, USA, 1-4 May 2017; pp. 1-9. [CrossRef]

Li, S.; Tao, Y,; Qin, X,; Liu, L.; Zhang, Z.; Zhang, P. Energy-Aware Mobile Edge Computation Offloading for
IoT Over Heterogenous Networks. IEEE Access 2019, 7, 13092-13105. [CrossRef]

You, C.; Huang, K.; Chae, H.; Kim, B. Energy-Efficient Resource Allocation for Mobile-Edge Computation
Offloading. IEEE Trans. Wirel. Commun. 2017, 16, 1397-1411. [CrossRef]

Bruneo, D. A stochastic model to investigate data center performance and QoS in IaaS cloud computing
systems. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 560-569. [CrossRef]

Miettinen, A.P.; Nurminen,] K. Energy efficiency of mobile clients in cloud computing. In Proceedings of
the 2nd USENIX Conference HotCloud, Boston, MA, USA, 22-25 June 2010.

Ataie, E.; Entezari-Maleki, R.; Etesami, S.E.; Egger, B.; Ardagna, D.; Movaghar, A. Power-aware performance
analysis of self-adaptive resource management in IaaS clouds. Future Gener. Comput. Syst. 2018, 86, 134-144.
[CrossRef]

Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
Liu, L.; Zhang, R.; Chua, K. Wireless Information and Power Transfer: A Dynamic Power Splitting Approach.
IEEE Trans. Commun. 2013, 61, 3990—4001. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TCOMM.2016.2599530
http://dx.doi.org/10.1109/TCOMM.2018.2866572
http://dx.doi.org/10.1109/INFOCOM.2017.8057150
http://dx.doi.org/10.1109/ACCESS.2019.2893118
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/TPDS.2013.67
http://dx.doi.org/10.1016/j.future.2018.02.042
http://dx.doi.org/10.1109/TCOMM.2013.071813.130105
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Work on Computation Offloading in MEC Networks
	Our Approach and Contributions in This Paper

	System Model and Problem Formulation
	MEC Network
	Communication Model
	Computation Model
	Problem Formulation

	Linear Programing Relaxation-Based Approach
	Deep Learning-Based Approach
	Performance Evaluation
	Experiment Profile
	Convergence Properties of Heterogeneous DDLO
	Performance of Different Offloading Policies
	Impacts of Different MEC Network Structures
	Impacts of Different Types of Applications
	Computation Time

	Conclusions
	References

