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Abstract: This paper proposes a method to detect humans in the image that is an important issue
for many applications, such as video surveillance in smart home and driving assistance systems.
A kind of local feature called the histogram of oriented gradients (HOGs) has been widely used in
describing the human appearance and its effectiveness has been proven in the literature. A learning
framework called boosting is adopted to select a set of classifiers based on HOGs for human detection.
However, in the case of a complex background or noise effect, the use of HOGs results in the problem
of false detection. To alleviate this, the proposed method imposes a classifier based on weighted
contour templates to the boosting framework. The way to combine the global contour templates
with local HOGs is by adjusting the bias of a support vector machine (SVM) for the local classifier.
The method proposed for feature combination is referred to as biased boosting. For covering the
human appearance in various poses, an expectation maximization algorithm is used which is a kind
of iterative algorithm is used to construct a set of representative weighted contour templates instead
of manual annotation. The encoding of different weights to the contour points gives the templates
more discriminative power in matching. The experiments provided exhibit the superiority of the
proposed method in detection accuracy.

Keywords: HOGs; global contour template; expectation maximization; boosting

1. Introduction

Detecting humans is an important topic in many applications, such as intelligent surveillance
and intelligent transportation systems (ITSs) and has received considerable attention. However,
vision-based human detection is still challenging due to factors including varied illumination
conditions, complex backgrounds, various types of clothes, the occlusion effect, and a broad range of
human poses and views. Compared to stereo vision, a monocular solution demands less computation
and eases the calibration process. Therefore, we present an approach for detecting humans based on
monocular vision. Since the camera is mounted on a moving platform, the background is not static
so that the background subtraction approaches widely used for identifying the regions of human
candidates are inapplicable in our work. The most common method of human detection in the
literature is to use the sliding window strategy which formulates the detection problem as binary
classification one. This scans an image pyramid by a fixed-sized window and bounding boxes around
humans are then determined from the use of non-maximum suppression process.

To mitigate the difficulty from intra-class variance, shape is a kind of effective feature in
representing the human appearance and determining the existence of a human in a single window or
not. A comprehensive survey of the use of the shape feature can found in [1]. In the human detection
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literature, the schemes of shape description or modeling can be generally classified into two categories:
global and local shape descriptors. In general, the description of a human shape can be achieved
by using a set of representative binary-contour templates that covers a wide range of human poses
and views. The presence of a human in a window is determined by comparing the extracted contour
with the constructed templates. In [2–4], the used templates are full-body binary contours in various
viewing angles and poses. In [5], only the edge points with orientation between [+45, –45] are used for
representing human contour. In general, the more templates are used for describing the human shapes,
the higher the accuracy in human detection that can be achieved. However, this would significantly
increase the computation complexity. The ways of reducing the computation burden at the expense
of little accuracy are either to extract a smaller set of representative templates [6] or to organize the
templates in a hierarchical structure [2,7]. In improving the discriminative ability of templates in
matching, the strategy of assigning different matching importance to contour point is proposed by [8]
and [9]. Besides, the contour magnitude [3] or orientation [10,11] are also imposed in the matching
stage to improve the matching accuracy. However, the global modeling approaches using contour
shape have a tendency to fail in detecting partially occluded humans and are generally less flexible in
dealing with shape articulations. Motivated by this, many approaches using a local shape descriptor
are proposed in the human detection literature.

In this category, a detection window is divided into thousands of patches, each of which is
described by local features. The modeling of the human shape using a local patch descriptor is
either through feature concatenation [12,13] or feature selection. One of the well-known local shape
descriptors for human detection is the histogram of oriented gradients (HOGs) firstly proposed by
Dalal and Triggs [14]. The effectiveness of HOGs for human detection has been proven and the
discussion of this point can be found in [15]. In order to further improve the representative capability
of HOGs, many methods have been proposed in the literature. Wang et al. [16] introduced a circular
type of blocks to represent head shape which is a salient human body part. In [17], they proposed
symmetry weighting function instead of Gaussian kernel in HOGs representation. Besides HOGs,
other local features, such as local binary pattern (LBP) [18], edgelets [19,20], shapelets [21] or combined
features [22–24] are well known in this category. Although the use of local shape descriptors can
effectively tackle the occlusion problem, they generally result in false detection in the case of complex
background and noise effect. This is because they lack in modeling shape in a global manner. To
complement the benefits of both local and global shape descriptors, this work aims at presenting an
approach that imposes the global contour feature to the HOGs-based boosting framework.

The proposed method mainly consists of training and detection phases. Given a training dataset
consisting of positive (human) and negative (non-human) ones, the first step of the training phase
is to generate a set of weighted contour templates by an expectation maximization (EM) algorithm.
Then, we perform template matching to obtain a matching score for further distinguishing human
from non-human through a thresholding strategy. In order to alleviate the problem generally faced
by the HOGs-based approach, the classification result from the template-based classifier is imposed
to the HOGs-based boosting framework by adjusting the bias of the support vector machine (SVM)
hyper-plane at each boosting round. We refer to this framework that systematically integrates the
global contour and local HOGs features as biased boosting. At the detection stage, the template-based
classifier is firstly applied to determine the presence of a human. If the answer is yes, a set of learned
positive-biased weak classifiers that have the bias in favor of positive label is taken for further voting
to check the existence of a human in a scanning window. Otherwise, negative-biased weak classifiers
are used for voting.

The remainder of the paper is organized as follows. In Section 2, we present a way of forming
a human classifier based on a set of weighted contour templates learned from the EM algorithm.
Section 3 describes how to learn a human detector using the proposed biased boosting which
systematically integrates the global contour and local HOGs features. Section 4 demonstrates and
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discusses the experiments on three popular datasets. Finally, we conclude this paper in Section 5 with
some discussion.

2. Template-Based Classifier

Using a binary contour template to describe the human shape is popular in the literature. To
improve the discriminative ability of contour templates, we impose importance(s) on the contour
point(s) instead of considering them as equally weighted in the literature. The construction of the
weighted contour templates is through the use of EM [25].

2.1. Problem Formulation

A weighted contour human template θj =
{

p(j)
k , α

(j)
k

}|θj |

k=1
is a binary contour image, where p(j)

k

is the position of the kth contour point in θj, α
(j)
k indicates the matching importance of p(j)

k , and |θj|
denotes the number of contour points in the template θj. Figure 1a shows an example of a weighed

template. Every white block denotes a contour point p(j)
k and the number inside the block is its

associated weighting factor α
(j)
k . The matching difference between a binary edge image y composed of

a set of edge points and θj using Chamfer distance can be expressed as:

d(y, θj) =
1
|θj|

|θj |

∑
k=1

α
(j)
k DTy(p(j)

k ) (1)

DTy(p) is the distance transform of (DT) [26] of the binary edge image y and is defined as the distance
from the pixel p to its closest edge point in y.

DTy(p) = min
q∈y
||p− q|| (2)

where ||.||means the Euclidean distance. To cover a wide range of human postures, we construct a
set of representative weighted contour templates Θ =

{
λj, θj

}|Θ|
j=1, where |Θ| denotes the number of

representative weighted contour templates, λj is the weight of the template θj and
|Θ|
∑

j=1
λj=1.
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2.2. Expectation Maximization (EM)-Based Formulation

By formulating the template construction problem as the maximum likelihood one, an algorithm
called (EM) [25] is adopted to obtain Θ without human intervention. Let Y = {yi, ti}

|Y|
i=1 be a set

of |Y| training samples, where yi is the binary edge image of the ith sample and ti ∈ {+1,−1} is
the ground-truth label of yi. The binary edge images for training are all obtained by applying the
Canny edge detector. Figure 1b are some training examples including both positive and negative ones.
Based on the assumption that training samples are i.i.d (independent and identically distributed),
the likelihood probability of Y given Θ can be defined as Pr(Y|Θ) = ∏

|Y|
i=1 Pr(yi|Θ). Accordingly, the

maximization of Pr(Y|Θ) leads to the construction of a set of weighted contour templates which is
denoted as Θ̂. Since the sum operator is easier than product operator in implementation, it is often to
calculate the Θ̂ that maximizes the log-likelihood of Y, that is,

Θ̂ = argmax
Θ

log Pr(Y|Θ) = argmax
Θ

|Y|

∑
i=1

log Pr(yi|Θ) (3)

Therefore, a latent random variable Z = {zi}
|Y|
i=1 is thus introduced to model the relation between

Y and Θ, where zi ∈ {1, 2, ..., |Θ|} is a discrete random variable that defines which template the
observed image yi comes from. Given the observed data Y and currently estimated Θ(m), we make a
guess about Z and find the Θ(m+1) that maximizes the log-expectation of Pr(Y, Z|Θ), which is called
Q-function in the EM literature.

Q(Θ|Θ(m)) =
∫

Z
log(Y, Z|Θ)Pr(Z|Y, Θ(m))=

|Y|

∑
i=1

∫
zi

logPr(yi, zi|Θ)Pr(zi|yi, Θ(m)) (4)

The first term Pr(yi, zi = j|Θ) introduced in the right-hand site of (4) evaluates the possibility
of the training sample is from the zith template. Since the template used is the human contour,
the similarity evaluation between yi and zith template is utilized to define this term. Similar to the
definition of Normal distribution, Pr(yi, zi = j|Θ) is defined as:

Pr(yi, zi = j|Θ) = λj exp
{
−β× d(yi, θj)

}
(5)

where β is a parameter for controlling the effect of the matching distance and is set to 0.01. Remarkably,
this term Pr(yi, zi|Θ) is a function of unknown parameter Θ. The second term Pr(zi|yi, Θ(m)) denotes
the probability that the ith training image yi belongs to zith template based on the estimated Θ(m) and
can be evaluated as:

Pr(zi = j|yi, Θ(m)) =
λ
(m)
j exp

{
−β× d(yi, θ

(m)
j )

}
|Θ|
∑

l=1
λ
(m)
l exp

{
−β× d(yi, θ

(m)
l )

} (6)

For notation simplicity, let γ
(m)
ij = Pr(zi|yi, Θ(m)) which satisfies

|Θ|
∑

j=1
γ
(m)
ij = 1. The Q-function in

(4) can be accordingly becomes:

Q(Θ|Θ(m)) =
|Y|

∑
i=1

|Θ|

∑
j=1

γ
(m)
ij
(
−β× d(yi, θj) + log λj

)
(7)
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2.3. Template Construction Algorithm

After introducing the EM framework for formulating the problem of weighted template
construction, we further elaborate the implementation issues in this section. Initially, an incremental
clustering similar to [27] is firstly applied to generate a set of good initial templates. In this stage, all
contour points in a template are set as equally important and have the same weights. After obtaining
the initial templates, the E-Step and M-Step are performed iteratively until the convergence condition
is reached. At each round m, the E-Step is to calculate the possibilities of all training samples derived
from each weighted contour template at the current stage as the definition of γ

(m)
ij . According to the

estimated γ
(m)
ij , the M-Step updates all weighted contour templates at the current stage denoted as

Θ(m) to obtain a set of new weighted contour templates Θ(m+1) so that the Q-function is maximized.
For each θ

(m)
j ∈ Θ(m), the associated template weight λj is firstly updated as:

λ
(m)
j =

∑
|Y|
i=1 γ

(m)
ij

∑
|Θ|
j=1 ∑

|Y|
i=1 γ

(m)
ij

(8)

The update of template θ
(m)
j to θ

(m+1)
j starts from the determination of the number of contour

points in θ
(m+1)
j . It is defined as the weighted sum of point numbers in all positive samples with

respect to θ
(m)
j .

|θ(m+1)
j | =

∑yi∈Y+ γ
(m)
ij × |yi|

∑yi∈Y+ γ
(m)
ij

(9)

where |yi| is the number of contour points in the training image yi. The next step is to localize all
contour points. Let cj(m, n) denote the confidence value of the point (m, n) belonging to the contour
point. Here, cj(m, n) is defined as:

cj(m, n) = ∑
yi∈Y+

γ
(m)
ij × bi(m, n) (10)

where Y+ = {yi|ti = +1} is the set of the positive training images and bi(m, n) denotes whether the
point (m, n) of the training image yi is a contour point bi(m, n) = 1 or not bi(m, n) = 0. By sorting
the points in descending order according to their confidence values, we label the first |θ(m+1)

j | points
labelled as the contour ones.

The last step is to determine the weight (importance) α
(j)
k depending on its power in distinguishing

human from non-human. Let F+
(p(j)

k ) and F−(p(j)
k ) be the average matching distances of the positive

and negative training sets, Y+ and Y−, respectively, to the contour point p(j)
k . The formal definition of

F+
(p(j)

k ) and F−(p(j)
k ) is given in (11) and the illustration of weight evaluation in the schematic form is

shown in Figure 2a.

F+
(p(j)

k ) =
1
|Y+| ∑

yi∈Y+

γ
(m)
ij DTyi (p(j)

k )F−(p(j)
k ) =

1
|Y−| ∑

yi∈Y−
γ
(m)
ij DTyi (p(j)

k ) (11)

Here, the contrast value of F+
(p(j)

k ) and F−(p(j)
k ) is utilized to define the weight as:

α
(j)
k =

1

1 + exp
{

F+
(p(j)

k )−F−(p(j)
k )

F+
(p(j)

k )+F−(p(j)
k )

} (12)
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The larger α
(j)
k is, the more important the point p(j)

k is in human/non-human discrimination. When

F+
(p(j)

k ) >= F−(p(j)
k ), α

(j)
k is less than or equals 0.5 and the point p(j)

k has no matching contribution.
Algorithm 1 gives the pseudo code of detailed implementation.

Algorithm 1: Algorithm for Weighted Template Construction

Input: A set of training samples Y = {yi, ti}
|Y|
i=1

Output: A set of weighted templates Θ =
{

λj, θj

}|Θ|
j=1

• Apply the distance transform to all training samples.

• Take the samples in positive set Y+ to generate a set of |Θ| initial templates
{

θj

}|Θ|
j=1

by using

incremental clustering
• Set all template weights to λj =

1
|Θ| and m← 0

repeat

E-Step: Form log expected function

• Calculate γ
(m)
ij for 1 ≤ i ≤ |Y| and 1 ≤ j ≤ |Θ|

• Form the Q-function defined in (7)

M-Step: Update the parameters as follows to maximize the Q-function.

• for j = 1 to |Θ|

(1) Update λ
(m+1)
j according to (8)

(2) Determine the number of contour points θ
(m+1)
j and their positions

{
p(j)

k

}
according to (9) and

(10), respectively.

(3) Assign a weight
{

α
(j)
k

}
to each contour point according to (12)

• end for

m← m+1
Until

∣∣∣|Θ(m+1) −Θ(m)|
∣∣∣ < δ
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2.4. Classifier Formation and Analysis

In this section, we describe how to learn a classifier based on a set of weighted contour templates
and analyze the performance improvement in imposing the weight to every contour point. The dataset
used consists of 924 positive subjects from the MIT CBCL dataset [28] and 3342 negative ones from
the INIRA dataset [29]. First of all, a half of dataset is considered as training dataset and is used to
construct a set of weighted contour templates. The generated 10 weighted contour templates through
EM algorithm are shown in Figure 2b. The high-weight contour points are labelled in red color and
obviously locate at the salient body part, such as head or shoulder. The low-weight contour points
with green color are at the background edges or in the interior of body part. This exhibits that the
weighted contour templates constructed by the proposed EM algorithm are effective in representing
the contour of a human. A classifier HG(.) called global classifier based on the constructed weighted
contour templates Θ̂ to determine the existence of the human is thus defined as:

HG(y) =

 (+1) Human
(−1)Non−Human

i f
min
θj∈Θ

d(y, θj) < ThG

otherwise
(13)

where THG is a threshold and is set as the value that minimizes the training error. The learned
classifier HG(.) is thus applied to another half part of dataset, called testing dataset, for analysis. For
validating the effectiveness of imposing the weight to every contour point, HG(.) is compared with
the approach only using binary templates which considers the contour points as equally weighted.
Figure 3 exhibits the ROC (receiver operating characteristic) curves of proposed classifier HG(.) using
weighted contour templates and the one using binary templates. Obviously, the proposed classifier
HG(.) has superior performance.
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Figure 3. Performance comparison of the proposed global classifier HG(.) (green curve) with that (blue
curve) only using binary contour templates for human classification.

3. Training Framework

HOGs proposed by [14] are an effective feature to represent the human appearance in a local
patch. The description of the human appearance is simply achieved by the concatenation of thousands
of local HOGs and a SVM classifier is trained for human and non-human discrimination in such
high-dimensional feature space. To reduce time complexity of detection process, the work in [30]
learns a SVM classifier for each patch representing by HOGs feature and uses boosting algorithm to
select a set of SVM classifiers to form a human detector. Boosting is a way to approach the solution
by iteratively reducing training error with a set of additive classifiers. However, HOGs as a kind of
local feature generally suffer from the false detection problem in case of complex background or noise
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effect. Motivated by [31], the way to alleviate this problem is by imposing the learned classifier HG(.)
to Zhu’s [30] boosting framework. This integrates the global contour and local HOGs features so that
the detection accuracy can be improved.

3.1. Biased Boosting

First of all, we briefly describe Zhu’s boosting framework for the learning of a human detector in
this section. Let H be a set of learned SVM classifiers in each of which h ∈ H is referred to as weak
classifier in the boosting literature. Initially, each training sample yi is assigned a weight D(0)

i which
represents a level of classification difficulty. Let ξ(m) be the error rate of h(m) at the round m over all
training samples and is defined as:

ξ(m) =
|Y|

∑
i=1

D(m)
i 1ti 6=h(m)(yi)

(14)

where 1. is an indicator function. The selected weak classifier h̃(m) is the one which has minimal
training error. The form of h̃(m) for human and non-human discrimination using SVM can be formally
expressed as:

h̃(m) =

 (+1)
(−1)

i f
φ
(m)
svm(y) ≥ 0

φ
(m)
svm(y) < 0

(15)

where φ
(m)
svm(.) is a SVM hyper-plane which makes decision based on a specific local HOGs patch of yi.

The confidence π(m) of the selected weak classifier h̃(m) is set as:

π(m) =
1
2

ln

(
1− ξ(m)

ξ(m)

)
(16)

The weight D(m)
i of each training sample yi is updated accordingly as:

D(m+1)
i = D(m)

i exp
(
−π(m) × ti h̃(m)(yi)

)
(17)

The integration of the global contour with local HOGs features is thus by adjusting the bias of
the SVM classifier at each round m. For the samples classified as human ones by HG(.), they are
generally with a human-like contour and have high possibility of the ground-true labels equal to
positive (human). To response this, we move the φ

(m)
svm(.) hyper-plane Th(m)

G+ towards negative margin
and result in a positive-biased weak classifier h̃+(m) for the samples G+ = {yi|HG(yi) = +1}. This
corrects the mis-classified ones to positive so as to improve the detection rate. By contrast, to remove
the false detections resulting from complex background and noise effect, we move φ

(m)
svm(.) hyper-plane

Th(m)
G− towards positive margin for the samples G− = {yi|HG(yi) = −1} to obtain a negative-based

classifier h̃−(m). Accordingly, the formal definitions of h̃+(m) and h̃−(m) can be expressed as:

h̃+(m)(y) =

{
(+1)
(−1)

i f
φ
(m)
svm(y) ≥ −Th(m)

G+

otherwise
h̃−(m)(y) =

{
(+1)
(−1)

i f
φ
(m)
svm(y) ≤ +Th(m)

G−

otherwise
(18)

In short, the weak classifier h̃(m) in the original boosting framework is decomposed to h̃+(m) and
h̃−(m), respectively, G+ and G−, as:

h̃(m)(y) =

{
h̃+(m)(y)
h̃−(m)(y)

i f
HG(y) ∈ +1
HG(y) ∈ −1

(19)
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Thus, the mis-classification ξ
(m)
bias over all training samples is re-expressed as:

ξ
(m)
bias = ∑

yi∈G+

D(m)
i × 1ti 6=h̃+(m)(yi)

+ ∑
yi∈G−

D(m)
i × 1ti 6=h̃−(m)(yi)

(20)

And each sample weight is updated as:

D(m+1)
bias,i. =

 D(m)
bias,i exp

(
−π(m) × ti h̃+(m)(yi)

)
D(m)

bias,i exp
(
−π(m) × ti h̃−(m)(yi)

) i f
yi ∈ G+

yi ∈ G−
(21)

Finally, we obtain the human detector consisting of HG(.) and
{

π(m), h̃(m), Th(m)
G+ , Th(m)

G−

}M

m=1
. The

pseudo code of the proposed biased boosting is given in Algorithm 2. Obviously, the two bias values
Th(m)

G+ and Th(m)
G− will significantly affect the detection performance of h̃(m) and their determination

will be deferred to the next section.

Algorithm 2: Biased Boosting Algorithm

Input: A set of training samples Y = {yi, ti}
|Y|
i=1

Output:
{

π(m), h̃(m), Th(m)
G+ , Th(m)

G−

}M

m=1

• Initialize the positive sample weight to 1
|Y+ | and negative sample weight to 1

|Y− |

• for j = 1 to M

(1) Find the classifier h̃(m) that has the minimal error defined in (14)

(2) Estimate two bias values Th(m)
G+ and Th(m)

G− using bias determination strategy discussed in
Section 3.2.

(3) Calculate the error rate ξ(m) in (20) over all samples and estimate the importance π(m) in (16).

(4) Update the sample weight D(m)
i according to (21)

(1) Update λ
(m+1)
j according to (8)

(2) Determine the number of contour points θ
(m+1)
j and their positions

{
p(j)

k

}
according to

(9) and (10), respectively.

(3) Assign a weight
{

α
(j)
k

}
to each contour point according to (12)

end for

3.2. Bias Determination

The main concept of boosting is to choose a weak classifier at each round m so as to maximally
reduce the error rate on the weighted training set. To conform to this, a strategy for searching
appropriate bias values is proposed and described as follows. We adjust ThG+ and ThG− to lower
down the total error rate ξ by increasing with interval 0.05. If the error of the biased weak classifier
exceeds in the initial error (obtained from the basis of ThG+ = ThG− = 0.0), the searching process should
be stopped. Thus, the value that derives the lowest error rate within the searching interval is taken as
the final bias. Figure 4 illustrates the proposed strategy for bias determination.
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3.3. Bias Determination

In this section, we describe how to determine the existence of the human of a scanning
window y in an image using the learned detector H(.). The first step is to check if the appearance
of y has a human-like contour. If the answer is yes, the set of positive-based weak classifiers{

π(m), h̃(m), Th(m)
G+

}M

m=1
is used for further classification; otherwise, the set of negative-based weak

classifiers
{

π(m), h̃(m), Th(m)
G−

}M

m=1
is used. The flow chart of the detection process is illustrated in

Figure 5. The formal definition of the final human detector can be expressed as:

D(m+1)
i =


sign

(
M
∑

m=1
π(m) h̃+(m)(y)

)
sign

(
M
∑

m=1
π(m) h̃−(m)(y)

) i f
HG(y) = +1
HG(y) = −1

(22)
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4. Experiment

To validate the effectiveness of the proposed method called WTM-Boost, we implement three
methods proposed in [14] (HOG-SVM), [3] (WTM), and [32] (TM-Boost) for comparison. We consider
these three algorithms for comparison because HOG-SVM uses HOG local features, WTM is based on
weighted templates which is a kind of global feature, TM-Boost combines local and global features
but only use binary contour templates instead of weighted contour ones. The templates in our work
and [32] are both learned from the EM algorithm but those used in the work [32] are binary contour
templates all the points of which are considered as equally weighted in matching. The templates
used in [3] are formed by using k-means clustering algorithm with k = 10 in order to obtain the same
number of templates used in our work and [32]. In [14], the human appearance is described by the
dense HOGs and a SVM classifier is learned for human detection. In implementation, the parameter
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settings in HOGs representation and SVM classifier learning for these three methods are all the same
in this work. The sizes of HOGs blocks used are 16, 24, 36, 48, and 60, and the aspect ratio for each
block can be one of the following choices: (1:1), (1:2), and (2:1).

The cost constant for training the SVM as the weak classifier for a block is 1.0 and the kernel
function is Gaussian radius basis one. The number of weak classifiers used in boosting framework is
40 in all methods. The white rectangles in Figure 6 shows the learned 40 weak classifiers from biased
boosting for TM-Boost and WTM-Boost, respectively. The aforementioned methods are implemented
in C programming language with the support of OpenCV library and are then run on a computer
with Intel i7 3.4GHz and 8GB RAM. In this work, no GPU is used for speeding up. Table 1 lists
the average processing time of all testing samples for the four implemented methods at different
stages, respectively. Since HOG-SVM describes human appearance in dense manner, it wastes more
time in HOGs computation than TM-Boost and WTM-Boost. However, HOG-SVM performs SVM
classification more efficiently than TM-Boost and WTM-Boost which have to 40 weak classifiers.
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Table 1. Processing time analysis for a testing sample (64 × 128).

(ms) WTM HOG-SVM TM-Boost WTM-Boost

Distance Transform
Matching Process

15.6
15.3

x
x

15.6
14.5

15.6
15.4

HOG Descriptor
SVM Classification

x
x

24.1
0.5

11.1
2.9

10.9
3.1

Total Time 30.9 24.6 44.1 45.0

For performance validation, we use three popular human datasets including MIT CBCL, INRIA,
and CVC in our experiment. The statistics of images from the three datasets for training and testing is
listed in Table 2. Of all the training samples, all 924 human images in the CBCL dataset are provided
as positive samples, while the negative samples come from 3342 randomly-chosen images from the
INRIA dataset because there are no non-human images in CBCL dataset. The training dataset is used
for weighted template construction as well as detector boosting. For validating the trained detector
in experiments I and II at the testing stage, the positive and negative images are, respectively, from
the INRIA and CVC datasets. The ROC (receiver operating characteristics) curve which illustrates
the relation of detection rate and false positive rate is used for objective evaluation. The four curves,
respectively, shown in Figures 7 and 8 are those of the ROC for the INRIA and CVC datasets of the
four methods. Obviously, detectors learned by machine learning algorithm, such as boosting and
SVM, have superiority over the template-matching algorithm in both datasets. This is because a few of
used templates is hard to model the significant appearance variation in human pose. The curves of
the proposed WTM-Boost method for both datasets are closer to the top-left hand and exhibit better
performance. Imposing the contour template to the boosting framework makes the global contour
and local HOGs features complement each other in a mutually beneficial manner so that TM-Boost as
well as WTM-Boost methods outperforms the HOG-SVM one. Besides, using the weighted contour
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template to describe the human appearance in various poses is more effective than the binary one and
this is the reason why the proposed WTM-Boost has better accuracy than TM-Boost.

Table 2. Image statistics for training and testing.

Training Testing

Positive Negative Positive Negative

Exp I CBCL (924) INRIA (3342) INRIA (2416) INRIA (5561)

Exp II CBCL (924) INRIA (3342) CVC (3356) INRIA (8823)
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To further validate this point, we replace the training samples from the MIT CBCL dataset with
those from the INRIA and CVC datasets, respectively, for experiments I and II, to construct the
templates for matching in the TM-Boost method. The resulting templates are for global classifier
learning followed by boosting the human detector, as mentioned. The ROC curves of the human
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detector learned using TM-Boost for INRIA and CVC datasets are shown in Figures 7 and 8, respectively.
Obviously, the accuracy is almost the same as to WTM-Boost. This indicates that the performance
difference between TM-Boost and WTM-Boost is from the representation ability of their used templates.
In other word, the proposed WTM-boost method can alleviate the overfitting problem because it uses
the weight(s) assigning to the contour point(s).

5. Conclusions

The main contribution of our work lies in two aspects. Firstly, we propose a method based on
the EM algorithm to automatically construct a set of representatively weighted contour templates By
formulating the problem of template construction as a maximum likelihood one, the contour template
as well as contour point weight are determined in the M-Step according to the estimated likelihood
probabilities of all training samples in the E-Step. The assignment of different weights to the contour
points gives the constructed templates more discriminative power.

Secondly, we systematically integrate the global contour and local HOGs features in the proposed
biased boosting framework. The determination of bias values, respectively, for those with contours
similar to and different from the pedestrian templates, is by finding the values minimizing the error rate.
By comparing the other two approaches, the experimental results exhibit that the trained pedestrian
detector increases the detection rate and reduces the false positive rate as well. Given the effectiveness
and power of deep learning, the use of deep learning is the trend in the detection area [33,34]. One of
the main advantages of deep learning is to extract the semantic features through the convolution and
pooling layers. Since our proposed boosting framework is to integrate various features, it could be
used to fuse the extracted feature from deep learning in our future work.
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