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Abstract: Owing to operating condition changing, physical mutation, and sudden shocks,
degradation trajectories usually exhibit multi-phase features, and the abrupt jump often appears at
the changing time, which makes the traditional methods of lifetime estimation unavailable. In this
paper, we mainly focus on how to estimate the lifetime of the multi-phase degradation process
with abrupt jumps at the change points under the concept of the first passage time (FPT). Firstly,
a multi-phase degradation model with jumps based on the Wiener process is formulated to describe
the multi-phase degradation pattern. Then, we attain the lifetime’s closed-form expression for the
two-phase model with fixed jump relying on the distribution of the degradation state at the change
point. Furthermore, we continue to investigate the lifetime estimation of the degradation process with
random effect caused by unit-to-unit variability and the multi-phase degradation process. We extend
the results of the two-phase case with fixed parameters to these two cases. For better implementation,
a model identification method with off-line and on-line parts based on Expectation Maximization
(EM) algorithm and Bayesian rule is proposed. Finally, a numerical case study and a practical example
of gyro are provided for illustration.

Keywords: life prognostics; reliability; multi-phase degradation; expectation maximization algorithm;
random jump

1. Introduction

With the rapid development of technology, prognostics and health management (PHM)
technique has gained increasing attention and been applied to industrial systems, military devices,
aerospace equipment, and so on [1,2]. As the key to PHM technique, the lifetime or remaining
useful lifetime (RUL) estimation approach can provide effective information for maintenance policy
decision, and thus it has attracted much attention in recent years [3–6]. Generally speaking, the
lifetime estimation approach can be classified into the categories of physics of failure, data-driven
and fusion [6]. However, it is not easy to make clear the degradation mechanism and build
the mechanism model for complex deteriorating systems. As such, the data-driven approach
has gained momentum owing to its good feasibility [3,6–9]. As discussed in [6], Jardine points
out that the stochastic data-driven approach can efficiently describe the degradation trajectories’
uncertainty and randomness, since it just relies on observed data and the statistical process model.
Nowadays, the stochastic data-driven approach has been widely investigated and attracted more
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attention, such as in the Wiener-process-based model [10,11], the Gamma-process-based model [12],
the Inverse-Gaussian-process-based model [13,14], and so on. In this paper, we mainly concentrate on
how to estimate the lifetime under the concept of the first passage time (FPT) based on the stochastic
data-driven model.

In practice engineering, due to operating condition changing, physical mutation, and sudden
shock, the degradation patterns of some systems cannot remain unchanged during their whole life
cycles, and their degradation process often exhibit multi-phase feature, such as plasma display panels
(PDPs) [15], light emitting diode (LED) [16], liquid crystal display (LCD) [17], battery [18], and so on.
For example, Burgess [19] pointed out that the battery’s capacity fade process should be divided into
two stages: a slowly fading process and a much more rapidly fading process. Therefore, the traditional
model with single phase may not be suitable for the multi-phase degradation process, and thus the
multi-phase model should be taken into account. So far, some multi-phase degradation models have
been proposed. In 2008, Ng [20] proposed an independent-increments stochastic mode based on
Poisson process with a change point for two-phase degradation trajectory. Bae et al., [15,21] proposed
a two-phase regression model and a change point detection approach to deal with the degradation
of plasma display. To predict bearing’s RUL, Wang et al., [22] proposed an adaptive RUL estimation
method for the two-phase degradation model based on enhanced Kalman filter and the EM algorithm.
Wang et al., [17] and Yan et al., [16] proposed a reliability evaluation method for LCD based on the
two-phase Wiener process. Recently, Wang et al., [23,24] utilized the Bayesian rule and change-point
Wiener process to model the degradation process of PDPs and LED, and Zhang et al., [25] attained
some analytical results of lifetime’s distribution based on the two-phase Wiener process.

To the best of our knowledge, most aforementioned research mainly focuses on the continuous
multi-phase degradation process ignoring the abrupt jump. However, the abrupt jump often appears
at the change point owing to the condition changing or physical mutation and only a few works
refers to this issue [26,27]. Kong et al. [26] utilized a two-phase Wiener process model with an abrupt
fixed jump to model the bearing’s degradation, and further proposed a method of lifetime estimation.
Unfortunately, the abrupt jump is defined as a fixed value and the diffusion coefficient does not change
at different phases, which may limit its application. In addition, the degradation feature of different
deteriorating systems (e.g., the degradation rate and the jump amplitude) may not be the same owing
to the heterogeneity. Therefore, if parameters of the degradation model are defined as the fixed value,
the heterogeneity of a batch of systems cannot be reflected. Besides, the degradation state at the
changing time is unknown until the change point appears due to the degradation’s randomness, and it
should be a random variable determined by both the time at the change point and the degradation
model of the first phase. To describe the randomness at the change point and reduce the calculation
complexity, some researchers used the mean of the state at the change point replacing its actual
distribution for lifetime estimation such as [17,28]. But it may lead to estimate bias.

We attempt to deal with these problems from the perspective of the stochastic process and statistic
analysis. The contributions of the paper can be summarized as follows: (1) We propose a two-phase
degradation model with the fixed jump at the change point governed by the Wiener process, and then
attain the analytical form of the lifetime under the concept of FPT with a predefined changing time
and fixed parameters. (2) We extend the results of the two-phase model with fixed parameters to
the multi-phase case and the case with random effect. In these two cases, we obtain the lifetime’s
expression with a multi-integral form. (3) We further provide a model identification method based on
the EM algorithm and Bayesian rule. (4) Finally, to illustrate the applicability and effectiveness of our
method, a numerical example and a practical case of the gyro are provided.

The remainder of the paper is organized as follows. In Section 2, the motivating example and
problem formulation are introduced, and a general multi-phase degradation model with random jumps
is formulated. Section 3 includes the main results of lifetime estimation. In Section 4, realization of
parameter identification is explained. Two illustrative examples are presented to illustrate the proposed
model in Section 5. This paper is concluded in Section 6.
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2. Motivation and Problem Formulation

It is well-known that gyro is a typical sensor used for measuring the speed and acceleration,
which has widely been applied into vessel, airplane, aircraft, and so on. However, its performance will
deteriorate over time, which may decrease the positioning accuracy. Figure 1 shows the degradation
data of three gyros collected from a step-stress accelerated degradation testing. The degradation data
are collected from many experiments, and the duration time is about one day for each experiment.
Therefore, the unit of X-axis is set as “day” rather than “times”. In Figure 1, it could be found that
there are obvious abrupt jumps in their degradation trajectories of three gyros’s drift, and they can be
classified into two stages with different rates. It is interesting to see that the changing time is also the
stress switch time, which means that the operating condition switch changes the degradation feature.
In addition, as discussed in [26,29], the degradation process of bearing also exhibits two-phase feature
and the abrupt jump exists at the change point. That is to say, the degradation trajectory could not
be described well by the traditional single-stage degradation model. Therefore, it is natural to model
these degradation processes based on the multi-phase model with an abrupt jump.
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Figure 1. The degradation trajectories of the gyros.

From Figure 1 and the bearing’s degradation process in [26,29], the degradation trajectories
are non-monotone. Thus, it is natural to adopt the Wiener process to describe these non-monotone
degradation. To simplify the problem, the following Assumption 1 is given,

Assumption 1. The abrupt jump at the change point is instantaneous. That is to say, if the changing time and
the jump are defined as τ and γ separately, the abrupt jump does not appear until t = τ, and the degradation
process will increase or decrease γ suddenly at the time t = τ.

Inspired by Kong’ method [26], we provide a two-phase Wiener process with random jump
as follows,

X(t) =

{
x0 + µ1t + σ1B(t), 0 < t < τ

xτ + µ2(t− τ) + σ2B(t− τ), t ≥ τ
(1)

where µ1 and µ2 are the drift coefficients reflecting the degradation rate, σ1 and σ2 are the diffusion
coefficients reflecting the uncertainty of the degradation process, x0 denotes the initial value of the
degradation process, τ is the changing time and τ− denotes its left limit, B(t) is the standard Brown
Motion, xτ = xτ− + γ is the initial value of the second phase degradation, and γ is the random jump.
Then, we can extend (1) to the multiple case simply.
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X(t) =



x0 + µ1t + σ1B(t), 0 < t < τ1
...
xτi + µi+1(t− τi) + σi+1B(t− τi),
...
xN + µN+1(t− τi) + σN+1B(t− τN),

τi−1 < t < τi

τN < t

(2)

where xτi denotes the initial of the (i + 1)-th phase, µ = [µ1,µ2,...,µN ] and σ = [σ1,σ2,...,σN ]

represent all drift and diffusion coefficients at each phase, and γ = [γ1,γ2,...,γN ] is the jump at
each change points.

In this paper, we concentrate on how to derive the lifetime distribution under the concept of first
passage time (FPT). Generally, the lifetime under the concept of FPT is a random variable and it is
usually defined as follows,

T := inf{t : X(t) ≥ ξ |X(0) ≤ ξ } (3)

where ξ represents the threshold which should be predefined in our method, T is FPT of the degradation
process and it also represents the lifetime with probability density function (PDF) fT(t) and cumulative
distribution function (CDF) FT(t) in this paper. Similar to the definition of lifetime, we can further
provide the expression of remaining useful life (RUL) under the concept of FPT as follows,

Lk := inf{lk : X(tk + lk) ≥ ξ |X(tk) ≤ ξ } (4)

where lk denotes the RUL with PDF flk (t) and CDF Flk (t) at the time tk.

3. Lifetime Estimation under the Concept of the FPT

3.1. Lifetime Estimation for Two-Phase Degradation Process without Random Effect

Firstly, we consider a simple case i.e., two-phase degradation model with fixed parameters as
shown in (1). As discussed in [16,25], if the abrupt jump is equal to 0 and xτ is given, the expression of
its lifetime distribution can be obtained as follows,

fT(t) =



ξ − x0√
2πσ2

1 t3
exp

[
−
(ξ − x0 − µ1t)2

2σ2
1 t

]
, 0 < t ≤ τ

ξ − xτ√
2πσ2

2 (t− τ)3
exp

[
−
(ξ − xτ − µ2 (t− τ))2

2σ2
2 (t− τ)

]
, t > τ

(5)

However, unlike the two-phase model without abrupt jump, the lifetime of the two-phase model
with jump is not continuous at the change point. It is noteworthy that we should first derive the form
of xτ− relying on xτ = xτ−+γ. Unfortunately, if the change point does not appear, the value of xτ−

should be a random variable rather a fixed value. Besides, it is determined by the degradation model
at the first phase and the time of the change point.

To obtain the lifetime under the concept of FPT, we should derive the expression of xτ− under
the concept of FPT, i.e., under the condition T > τ. It is defined that gτ−(xτ−) denotes the PDF of xτ−

under the concept of FPT. Based on the result of our previous work [25], gτ−(xτ−) has the following
analytical form,

gτ−(xτ−) =
1√

2πτ−σ2
1

{
exp

[
− (xτ− − µ1τ−)

2

2σ2
1 τ−

]
− exp

(
2µ1ξ

σ2
1

)
exp

[
− (xτ− − 2ξ − µ1τ−)

2

2σ2
1 τ−

]}
(6)
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where τ− = τ due to the continuity of time, and the range of xτ− is (−∞, ξ) owing to the definition
of FPT. Moreover, to facilitate calculation, the following Lemma 1 is provided,

Lemma 1. [25]: If y is a Gaussian random variable following N(µb, σ2
b ), then exp

[
− (y − µa)

2

2σ2
a

]
and

y exp
[
− (y − µa)

2

2σ2
a

]
hold the following forms,

∫ ξ

−∞
exp

[
−
(y− µa)

2

2σ2
a

]
1√

2πσ2
b

exp

[
−
(y− µb)

2

2σ2
b

]
dy

=

√
σ2

a(
σ2

a + σ2
b
) exp

(
−

(µa − µb)
2

2
(
σ2

a + σ2
b
))
1−Φ

− ξ(σ2
a + σ2

b )− µbσ2
a − µaσ2

b√
σ2

a σ2
b
(
σ2

a + σ2
b
)

 (7)

and,

∫ ξ

−∞
y exp

[
−
(y− µa)

2

2σ2
a

]
1√

2πσ2
b

exp

[
−
(y− µb)

2

2σ2
b

]
dy

=

√
σ2

a(
σ2

a + σ2
b
) exp

(
− (µa − µb)

2

2
(
σ2

a + σ2
b
))×µbσ2

a + µaσ2
b

σ2
a + σ2

b
Φ

 ξ(σ2
a + σ2

b )− µbσ2
a − µaσ2

b√
σ2

a σ2
b
(
σ2

a + σ2
b
)

−√ σ2
a σ2

b
σ2

a + σ2
b

φ

 ξ(σ2
a + σ2

b )− µbσ2
a − µaσ2

b√
σ2

a σ2
b
(
σ2

a + σ2
b
)


(8)

Then, we can obtain the lifetime’s distribution as shown in followings,

fT(t) =
ξ − x0√
2πσ2

1 t3
exp

[
−
(ξ − x0 − µ1t)2

2σ2
1 t

]
, 0 < t < τ (9)

fT(t) =

√
1

2π(t− τ)2 (σ2
a1 + σ2

b
) exp

[
− (µa1 − µb1)

2

2
(
σ2

a1 + σ2
b1

)]

×

µb1σ2
a1 + µa1σ2

b1
σ2

a1 + σ2
b1

Φ

 µb1σ2
a1 + µa1σ2

b1√
σ2

a1σ2
b1

(
σ2

a1 + σ2
b1

)
+

√
σ2

a1σ2
b1

σ2
a1 + σ2

b1
φ

 µb1σ2
a1 + µa1σ2

b1√
σ2

a1σ2
b1

(
σ2

a1 + σ2
b1

)


− exp

(
2µ1ξ

σ2
1

)√
1

2π(t− τ)2 (σ2
a1 + σ2

b1

) exp

[
− (µa1 − µc1)

2

2
(
σ2

a1 + σ2
b1

)]

×

µc1σ2
a1 + µa1σ2

b1
σ2

a1 + σ2
b1

Φ

 µc1σ2
a1 + µa1σ2

b1√
σ2

a1σ2
b1

(
σ2

a1 + σ2
b1

)
+

√
σ2

a1σ2
b1

σ2
a1 + σ2

b1
φ

 µc1σ2
a1 + µa1σ2

b1√
σ2

a1σ2
b1

(
σ2

a1 + σ2
b1

)


(10)

where
µa1 = µ2 (t− τ) , µb1 = ξ−µ1τ, µc1 = −ξ−µ1τ

σ2
a1 = σ2

2 (t− τ) , σ2
b1 = σ2

1 τ,
(11)

and

Pr{T = τ} =Pr{xτ = xτ− + γ ≥ ξ}

=I(γ ≤ 0) · 0 + I(γ > 0)

[
Φ

(
µ1t− ξ

σ
√

t

)
− exp

(
2ξµ1

σ

)
Φ

(
−µ1t− ξ

σ
√

t

)]

+ I(γ > 0)

[
−Φ

(
µ1t− ξ + γ

σ
√

t

)
+ exp

(
2(ξ − γ)− µ1

σ1

)
Φ

(
−µ1t− ξ + γ

σ1
√

t

)] (12)
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where I(·) is the indicator function. It is noteworthy that if the value of the abrupt jump is negative
(γ < 0), the failure probability at T = τ is 0, which means the degradation process will not pass the
given threshold suddenly at the changing time. On the contrary, the failure probability at T = τ is
larger than 0, which means that the degradation may pass the threshold and lead to sudden failure of
deteriorating device.

Proof. See Appendix A.

In this way, the lifetime distribution at 0 ≤ T < τ, T = τ, and T > τ, have been derived
i.e., (9), (12), and (10).

Remark 1. It is noteworthy that due to the effect of the abrupt jump at the change point, the degradation process
may pass the given failure threshold suddenly. That is to say, the distribution of the lifetime is not continuous
at the changing time. Thus, the lifetime’s distribution is described separately at three different cases as shown
in (9), (12), and (10).

3.2. Lifetime Estimation for Two-Phase Degradation Model with Random Effect

In practical engineering, the parameters of different deteriorating systems may be different,
which is caused by the unit-to-unit variability of the degradation systems. Inspired by the literature [30],
the random effect on the degradation process is adopted to describe the difference between the
different devices.

Assumption 2. To reflect such the random effect, we assume that the parameters are defined as the random
variable rather than deterministic parameters. Similar to the definitions in [16,20,30], in this subsection, it is
assumed that µ1, µ2, and γ follow Gaussian distribution with mean µ1p, µ2p, and µγ, and variance σ2

1p, σ2
2p,

and σ2
γ separately.

For simplifying later calculation, we provide the following Lemma 2,

Lemma 2. [30]: If Z ∼ N(µ, σ), and w, A, B, D ∈ R, C ∈ R+, then the following holds:

EZ

[
(A− Z) · exp

(
−(B− Z)2/2C

)]
=
∫ +∞

−∞
(A− Z) · exp

(
−(B− Z)2/2C

) 1√
2πσ2

exp
[
(A− µ)2

2σ2

]
dA

=

√
C

σ2 + C

[
A− σ2B + µC

σ2 + C

]
exp

[
− (B− µ)2

2 (σ2 + C)

] (13)

Similar to the derivation of the two-phase model with deterministic parameters, we try to conduct
the lifetime distribution with three cases, i.e., 0 ≤ T < τ, T = τ, and T > τ.

Based on the property of Lemma 1, the analytical form of lifetime at 0 ≤ T < τ can be calculated
as shown in following equation,

fT(t) =
ξ − x0√

2πt2(tσ2
1 + t2σ2

1p)
exp

[
−
(
ξ − x0 − µ1pt

)2

2(tσ2
1 + t2σ2

1p)

]
, 0 < t ≤ τ (14)

Proof. See Appendix B.

As discussed before, in order to derive the lifetime distribution at T = τ and T > τ, we should
first obtain the expression of xτ− under the concept of FPT. It is noted that the PDF of of xτ− will be
changed due to the randomness of the first phase model. Owing to µ1 ∼ N(µ1p, σ1p) and the property
of Gaussian distribution, we can obtain the following result,
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gτ− (xτ− |µ1p, σ1p) =

[
1− exp

(
−

4ξ2 − 4xτ−ξ

2σ2
1 τ

)]
1√

2π(τσ2
1 + τ2σ2

1p)
exp

− (xτ− − µ1pτ
)2

2(τσ2
1 + τ2σ2

1p)



=

exp

− (xτ− − µ1pτ
)2

2(τσ2
1 + τ2σ2

1p)

− exp

(
2µ1pξ

σ2
1

+
2(ξ2σ4

1pτ + ξ2σ2
1pσ2

1 )

(σ2
1 + τσ2

1p)σ
4
1

)
exp

−
(

xτ− − 2ξ − µ1pτ −
2ξσ2

1pτ

σ2
1

)2

2(τσ2
1 + τ2σ2

1p)


√

2π(τσ2
1 + τ2σ2

1p)

(15)

Next, we can obtain the PDF of xτ based on xτ = xτ−1 + γ as follows,

gτ(xτ) =

√
1

2π
(
σ2

a + σ2
b
) exp

(
−

(µa − µb)
2

2
(
σ2

a + σ2
b
))
1−Φ

− ξ(σ2
a + σ2

b )− µbσ2
a − µaσ2

b√
σ2

a σ2
b
(
σ2

a + σ2
b
)


− exp

(
2µ1pξ

σ2
1

+
2ξ2σ2

1p

σ4
1

)√
1

2π
(
σ2

a + σ2
c
) exp

(
− (µa − µc)

2

2
(
σ2

a + σ2
c
))

×

1−Φ

− ξ(σ2
a + σ2

c )− µcσ2
a − µaσ2

c√
σ2

a σ2
c
(
σ2

a + σ2
c
)


(16)

where
µa = xτ − µγ, µb = µ1pτ1, µc = µ1pτ1 + 2ξ +

σ2
1pτ

σ2
1

σa = σγ, σb = σc =
√

τ1σ2
1 + τ2

1 σ2
1p,

(17)

Proof. See Appendix C.

In this way, we can obtain the lifetime distribution at T = τ and T > τ separately based on the
law of total probability.

Pr(T = τ) = Pr(xτ = xτ− + γ ≥ ξ) =
∫ +∞

ξ
gτ(xτ)dxτ (18)

and,

fT(t) =
ξ∫

−∞

ξ − xτ√
2πσ2

2 (t− τ)3
exp

[
− (ξ − xτ − µ2 (t− τ))2

2σ2
2 (t− τ)

]
gτ(xτ)dxτ , T > τ (19)

However, it is worth mentioning that the analytical expression of the above integrals is difficult
to solve due to the complex form in (16), (18), and (19). Fortunately, there is only univariate integral,
and then (19) can be solve by some well-developed numerical calculation methods. In addition, if the
time of the change point is not given in advance, a common way is to define it as a random variable.
In this case, the lifetime’s distribution can be rewritten as,

fT(t) =
∫ +∞

0
fT(t|τ)p(τ)dτ (20)

where p(τ) is the PDF of the changing time.

3.3. Lifetime Estimation for Multi-Phase Degradation Model

As to the multi-phase model, we should classify its lifetime into several parts according to the
number of its degradation phase. It is assumed that the degradation model is defined as shown in (2).
Then, we firstly consider a simplest case i.e., lifetime belong to 0 < T < τ, the lifetime distribution is
just determined by the first phase and holds the following form,
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fT(t) =
ξ − x0√
2πσ2

1 t3
exp

[
− (ξ − x0 − µ1t)2

2σ2
1 t

]
, 0 < T < τ1 (21)

Similar to the two-phase model, the key to lifetime estimation is how to formulate the PDF of xτ−i
.

Under this consideration, we first try to build the relationship between xτ−i−1
and xτ−i

. Based on the
result in Section 3.1, we can attain the following result,

gτ−i
(xτ−i
|xτi−1 ) =

1√
2π∆τiσ

2
i

exp

−
(

xτ−i
− xτi−1 − µi∆τi

)2

2σ2
i ∆τi


− exp

(
2µi(ξ − xτi−1 )

σ2
i

)
exp

−
(

xτ−i
+ xτi−1 − 2ξ − µi∆τi

)2

2σ2
i ∆τi




(22)

where ∆τi = τi − τi−1. Then, according to xτi−1 = xτ−i−1
+ γi, we can further obtain,

gτ−i
(xτ−i
|xτ−i−1

) =
1√

2π∆τiσ
2
i

exp

−
(

xτ−i
− xτ−i−1

+ γi − µi∆τi

)2

2σ2
i ∆τi


− exp

2µi(ξ − xτ−i−1
− γi)

σ2
i

 exp

−
(

xτ−i
+ xτ−i−1

− γi − 2ξ − µi∆τi

)2

2σ2
i ∆τi




(23)

In this way, we can further obtain gτ−i
(xτ−i

) with a multi-integral form as follows,

gτ−i
(xτ−i

) =
∫ ξ̃i−1
−∞ ...

∫ ξ̃2
−∞

∫ ξ̃1
−∞ gτ1(xτ−1

)gτ2(xτ−2
|xτ−1

)gτ3(xτ−3
|xτ−2

)...gτi (xτ−i
|xτ−i−1

)dxτ−1
dxτ−2

...dxτ−i−1
(24)

where ξ̃i−1 = ξ − I(γi ≤ 0) · γi . In this way, the multi-integral expression of gτ−i
(xτ−i

) has been
attained, and then the distribution of the lifetime at T = τi and τi−1 < T<τi can be calculated similar
to the method of two-phase model as shown in (18) and (19),

Pr(T = τi) = Pr(xτi = xτ−i
+ γi ≥ ξi) = I(γ ≤ 0) · 0 + I(γ > 0)

[∫ ξ
ξ−γi

gτ−i
(xτ−i

)dxτ−i

]
(25)

and,

fT(t) =
∫ ξ̃i−1

−∞

ξ − xτi−1√
2πσ2

i t3
exp

[
−
(
ξ − xτi−1 − µit

)2

2σ2
i (t− τi−1)

]
dxτi−1 , τi−1 < t < τi (26)

It is noted that the time of the change point is known in advance and it is defined as a fixed value in
this subsection. If the changing time is random, we can utilize the law of the total probability similar to (20).

Remark 2. For RUL estimation, RUL can be regard as the lifetime by letting the initial time t0 = tk according
to the definition as shown in (3) and (4). Thus, RUL can be derived directly based on the relationship between
lifetime and RUL. Take the two-phase model as an example, if the change point does not appear, i.e., τ > tk,
we can estimate the RUL based on the results of lifetime estimation by letting t0 = tk, x0 = xk, and τ = τ − tk.
On the other hand, if the change point has appeared, the degradation process become single-phase model, and RUL
can be easily obtained by traditional way. Due to the limited space, the detailed expression of RUL estimation is
omitted in this paper.

4. Parameter Identification

In this section, to the implementation of our method, we take the two-phase mode with random
effect for example.



Sensors 2019, 19, 1472 9 of 23

4.1. Off-Line Method

Firstly, we assume that there are n degradation devices from the same batch. That is to say, there are
n sets of degradation data separately, i.e., X = {X1, X2, ..., Xn}. In addition, we further define that
Xi = {xi,0, xi,1, ..., xi,mi} denotes the observation of the i-th device at time {ti,0, ti,1, ..., ti,mi}. For simplicity,
we only consider the case that the sampling interval is fixed i.e., ∆t = ti,j − ti,j−1 in this paper.

Then, based on the property of Wiener process the likelihood function of Xi can be formulated
as follows,

ln L(µi, σi, τ̃i, γi|Xi) =
τ̃i

∑
j=1

ln
1√

2πσ2
1 ∆t

exp

[
(xi,j − xi,j−1 − µ1,i∆t)2

2σ2
1 ∆t

]

+
mi

∑
j=τ̃i+2

ln
1√

2πσ2
2 ∆t

exp

[
(xi,j − xi,j−1 − µ2,i∆t)2

2σ2
2 ∆t

]

+ ln
1√

2π
[
σ2

1 (τi − τ̃i∆t) + σ2
2 (τ̃i∆t + ∆t− τi)

] exp

[
(xi,τ̃i+1 − xi,τ̃i − γi − µ1,i(τi − τ̃i∆t)− µ2,i(τ̃i∆t + ∆t− τi))

2

2σ2
1 (τi − τ̃i∆t) + 2σ2

2 (τ̃i∆t + ∆t− τi)

]
(27)

where τ̃i = bτi/∆tc, where bc is the round down operator, and γi, µ1,i, σ1,i, µ2,i, and σ2,i denote the
parameters of the two-phase model for the i-th device, and τi is the changing time, i.e., τ̃i ∈ 0, 1, 2, ..., mi.
So {xi,0, xi,1, ..., xi,τ̃i} is the observation at first phase, and {xi,τ̃i+1, xi,τ̃i+2, ..., xi,mi} is the observation at
the second phase.

It is found that the µ̂1,i and µ̂2,i can be seen as the observation of the random variables µ1 and µ2.
If the changing time is known, it is natural to regard µ1,i, and µ2,i as the latent variables and then the
EM algorithm is adopted for calculation. According to the EM algorithm, the completed likelihood can
be formulated as follows,

ln L(Ξ |X, Z ) = ln
n

∏
i=1

p(Xi, Zi|Ξ) =
n

∑
i=1

ln (p(Zi|Ξ)p(Xi|Zi, Ξ)) (28)

where Zi = {µ1,i, µ2,i} denotes the latent variables and Ξ = {σ1, σ2, µ1p, σ1p, µ2p, σ2p} represents all
parameters of the degradation model.

Let Ξ̂(k) = {σ̂(k)
1 , σ̂

(k)
2 , µ̂

(k)
1p , σ̂

(k)
1p , µ̂

(k)
2p , σ̂

(k)
2p } denote estimates in the k-th step, and then we can obtain

the next iteration Ξ̂(k+1) as follows according to the EM algorithm.

µ̂
(k+1)
1p =

1
n

n

∑
i=1

(xi,τ̃i − xi,0)∆tσ2,(k)
1p + σ

2,(k)
1,i ∆tµ(k)

1p

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1,i ∆t

σ̂
(k+1)
1p =

√
1
n

n

∑
i=1

(
E[µ2

1,i|Xi, Ξ̂(k)]−E2[µ1,i|Xi, Ξ̂(k)]
)

µ̂
(k+1)
2p =

1
n

n

∑
i=1

(xi,mi − xi,τ̃i+1)∆tσ2,(k)
2p + σ

2,(k)
2,i ∆tµ(k)

2p

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2,i ∆t

σ̂
(k+1)
2p =

√
1
n

n

∑
i=1

(
E[µ2

2,i|Xi, Ξ̂(k)]−E2[µ2,i|Xi, Ξ̂(k)]
)

σ̂
(k+1)
1 =

√√√√√√√√
n
∑

i=1

{
τ̃i

∑
j=1

(xi,j − xi,j−1)2 − 2E[µ1,i|Xi, Ξ̂(k)]
τ̃i

∑
j=1

(xi,j − xi,j−1) + τ̃iE[µ2
1,i|Xi, Ξ̂(k)]

}
n
∑

i=1
τ̃i∆t

σ̂
(k+1)
2 =

√√√√√√√√
n
∑

i=1

{
mi

∑
j=τ̃i+2

(xi,j − xi,j−1)2 − 2E[µ2,i|Xi, Ξ̂(k)]
mi

∑
j=τ̃i+2

(xi,j − xi,j−1) + (mi − τ̃i − 1)E[µ2
2,i|Xi, Ξ̂(k)]

}
n
∑

i=1
(mi − τ̃i − 1)∆t

(29)
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where

E[µ1,i|Xi, Ξ̂(k)] =
(xi,τ̃i − xi,0)∆tσ2,(k)

1p + σ
2,(k)
1 ∆tµ(k)

1p

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1 ∆t

E[µ2
1,i|Xi, Ξ̂(k)] =

σ
2,(k)
1p σ

2,(k)
1 ∆t

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1 ∆t

+

 (xi,τ̃i − xi,0)∆tσ2,(k)
1p + σ

2,(k)
1 ∆tµ(k)

1p

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1 ∆t

2

E[µ2,i|Xi, Ξ̂(k)] =
(xi,mi − xi,τ̃i+1)∆tσ2,(k)

2p + σ
2,(k)
2 ∆tµ(k)

2p

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2 ∆t

E[µ2
2,i|Xi, Ξ̂(k)] =

σ
2,(k)
2p σ

2,(k)
2 ∆t

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2 ∆t

+

 (xi,mi − xi,τ̃i+1)∆tσ2,(k)
2p + σ

2,(k)
2 ∆tµ(k)

2p

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2 ∆t

2

(30)

Proof. See Appendix D.

It is noted that when the changing time is unknown the change point should be detected.
The common way is to adopt the maximum likelihood estimation to obtain the estimates τ̂i and
γ̂i and then calculate the distribution of τ and γ according to these estimates, which can be found in
our pervious work [25]. For space limitation, it is omitted in this paper.

4.2. On-Line Updating Method

In this subsection, we concentrate on how to update the parameters online for a certain operating
equipment by using newly arriving degradation data, where the results in the off-line part are
regarded as the prior information. If the current time is tκ , we can obtain the degradation data
X0:κ = {x0, x1, ..., xκ}. It is worth mentioning that when the change point does not appear (i.e., tκ ≤ τ)
only the parameters at the first phase should be updated. On the contrary, if tκ > τ, we just update the
parameters at the second phase.

Let µ1p,0, σ1p,0, µ2p,0, and σ2p,0 denote the prior value of µ1p, σ1p, µ2p, and σ2p. As discussed before,
when tκ ≤ τ, all observations X0:k = {x0, x1, ..., xκ} could be used for updating. According to the
Bayesian rule, we can have the following results,

p(µ1|X0:κ) ∝ p(X0:κ |µ1)p(µ1) (31)

where

p(X0:κ |µ1) =
κ

∏
i=1

1√
2πσ2

1 ∆t
exp

[
− (xi − xi−1 − µ1∆t)2

2σ2
1 ∆t

]

p(µ1) =
1√

2πσ2
1p,0

exp

[
−
(µ1 − µ1p,0)

2

2σ2
1p,0

] (32)

Since p(X0:κ |µ1) and p(µ1) follow Gaussian distribution, then we can further attain the posterior
distribution,

p(µ1|X0:κ) =
1√

2πσ2
1p

exp

[
−
(µ1 − µ1p)

2

2σ2
1p

]
(33)

with

µ1p =
µ1p,0σ2

1 + (xκ − x0)σ
2
1p,0

(tκ − t0)σ
2
1p,0 + σ2

1
, σ1p =

√√√√ σ2
1 σ2

1p,0

(tκ − t0)σ
2
1p,0 + σ2

1

(34)
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On the other hand, when tκ > τ, we will update the posterior distribution of µ2 by using the
observation X0:k = {xτ+1, xτ+2, ..., xκ}.

p(µ2|X0:κ) =
1√

2πσ2
2p

exp

[
−
(µ2 − µ2p)

2

2σ2
2p

]
(35)

with

µ2p =
µ2p,0σ2

2 + (xκ − xτ̃+1)σ
2
2p,0

(tκ − tτ̃+1)σ
2
2p,0 + σ2

2
, σ2p =

√√√√ σ2
2 σ2

2p,0

(tκ − tτ̃+1)σ
2
2p,0 + σ2

2

(36)

In this way, the estimates of µ1p, σ1p, µ2p, and σ2p could be updated based on Bayesian rule.
In addition, if the change point is not given in advance, the change point detection method is the same
with the off-line approach, which is omitted in this subsection.

5. Case Study

In this section, two numerical examples are provided: (1) A numerical example is given to verify
the proposed approach; (2) A practical example of a gyro is provided for illustration.

5.1. Numerical Case

In this subsection, we attempt to verify the result of our method for lifetime estimation and
parameter identification.

Firstly, we compare the result of lifetime estimation based on our method with the result of
Monte Carlo (MC) method. In this paper, we consider four cases: fixed positive jump with a given
changing time, fixed negative jump with a given changing time, random jump with a given changing
time, and random jump with a random changing time. For the first case, the degradation model is
defined as (5) and its parameters are given as: µ1 = 0.4, σ1 = 0.2, µ2 = 0.2, σ2 = 0.1, τ = 10, γ = 0.5,
and ξ = 4; For the second case, the model form and the parameters are the same with the first case
expect γ = −0.5; For the third case, we further consider the degradation with random effect, where µ1,
µ2, and γ follow Gaussian distribution with µ1p = 0.4, µ2p = 0.2, and µγ = 0.5, and σ1p = 0.1,
σ2p = 0.05, and σγ = 1; For the forth case, distinguished with the third case, the changing time τ is
random, where we let 10× τ follow a gamma distribution with α = 50 and β = 2.

For a better illustration, we adopt the MC method to generate the 1,000,000 sets of degradation
paths and then collect their FPTs as the result of the lifetime, where the we set initial time and initial
degradation value as t0 = 0 and x0 = 0 for simplicity. In this way, we can obtain the lifetime’s
distribution of the given degradation model in a numerical way. Following Figure 2 shows that
the comparison between the simulation results and our results. By this comparison, it it noted
that our results can achieve accurate lifetime estimation, which can illustrate the effectiveness of
our method. In these four cases, since neither of the drift and diffusion coefficients at two phases
are the same, Kong’s method requiring the same diffusion coefficients at two phases cannot work.
In this way, it can be concluded that these comparisons can verify our approach in theory. It is
worth mentioning that some estimated bias is still existed due to the numerical integral, step size of
simulation, and simulation times.

Next, we will introduce how to identify the degradation model based on our approach. For better
illustration, we generate 50 degradation trajectories with random changing time, drift, and jump.
Figure 3a shows several typical degradation paths of them, which exhibits obvious two-phase-jump
feature similar to the practical cases in Figure 1. Figure 3b shows the statistical graph of the jump
amplitude. Based on the proposed model identification method we can obtain the parameters’
estimation as shown in following Table 1,
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Figure 2. The estimated lifetime PDFs under different conditions.
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Figure 3. The examples of the simulation degradation process.

Table 1. The parameters estimation with different sample size.

Sample Size µ1p σ1p σ1 µ2p σ2p σ2 µγ σγ α β

n = 5 0.379 0.095 0.199 0.211 0.0403 0.0098 2.0241 0.0776 27.258 3.6466
n = 10 0.420 0.113 0.200 0.189 0.0371 0.0101 2.0330 0.0641 32.312 3.0722
n = 50 0.395 0.104 0.200 0.192 0.0474 0.0102 2.0169 0.0931 39.090 2.6001

True value 0.400 0.100 0.200 0.200 0.0500 0.0100 2.0000 0.1000 50.000 2.0000
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From Table 1, we can find that the results of our method can approach the true value when more
samples are adopted to identify model parameter. It can verify the effectiveness of our off-line model
identification method. In this way, we have completed the off-line lifetime estimation and off-line
model identification. Next, we will introduce how to do RUL predicting and parameters’ updating.

Following Figure 4 shows a degradation process chosen from the 50 generated degradation paths
for illustration, where the actual µ1 = 0.36 and µ2 = 0.24. Then if the new observed data are coming,
the parameters’ estimates can be updated based on the method in Section 4.2. If the degradation
process do not enter the second phase, only the parameters of the first phase model should be updated.
Otherwise, we just need to update the parameters of the second phase model. In this way, we can
obtain the parameters’ updating procedure as shown in following Figure 5, where the results of n = 10
samples are treated as the prior information. From Figure 5, we can find that σ1p and σ2p decrease
gradually, which reflects that the uncertainty of the parameters’ estimates is reduced.
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Figure 4. The single degradation process for illustration.
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Figure 5. The updating of estimated parameters based on Bayesian rule.
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Since the size of observed data is not large enough, µ1p and µ2p do not converge to their actual
value 0.36 and 0.24, and σ1p and σ2p do not approach 0 completely. Moreover, the estimated changing
time is 95 rather than the real changing time 98. These may lead to some estimated bias of RUL
estimation. Figure 6a shows the predicted RUL result, where the threshold ξ = 6 and the actual
lifetime is 12. Inspired by Saxena’s method [31], we further compare the mean and the confidence
interval of the estimated RUL with the actual RUL.

(a) The PDFs of the estiamted RUL
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Cone of  =10 %
Our method
The actual RUL

(b) The mean and confidence interval of estiamted RUL

Figure 6. The comparison of the estimated RUL.

From the numerical example, it could be concluded that our method cannot only reflect the
degradation trajectory but also achieve more accurate estimated result, which could illustrate the
advantage and effectiveness of our approach.

Remark 3. It is noteworthy that because the degradation data in this subsection are generated by numerical
simulation, and Figures 2–6 show the results of the numerically simulated data. Therefore, the units of these
figures are omitted in this subsection.
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5.2. Practical Case

In this subsection, we continue to utilize the practical case of gyro to illustration our method.
To better illustrate the application of our approach, we first introduce the following procedure to show
how to realize the RUL estimation for the degradation device as shown in Table 2.

Table 2. The implementation procedures of RUL estimation for the degradation device.

Algorithm Procedure:

Step 1. Identify the parameters by the historical data based on the method in Section 4.1.
Step 2. Collect the operating degradation data, and then detect the appearing of the change point if the

change time is not known.
Step 3. Update the parameters of the first phase model based on the method in Section 4.2 until the the

change point appears. Otherwise, update the parameters of the second phase model.
Step 4. Estimate the RUL online based on the result in Section 3 and Remark 2.
Step 5. Collect latest degradation data and then go to step 2 until degradation reaches the predefined

failure threshold.

According to the implementation procedures, we first use the two sets (i.e., blue line and yellow
line in Figure 1) for off-line training based on the method in Section 4.1, and then treat these results
as the prior information. Then we adopt the degradation processes of the other gyro (i.e., red line in
Figure 1) to illustrate RUL estimation. We update the parameters’ estimates based on the Bayesian
rule, and further obtain the estimated RUL’s distribution as shown in following Figure 7.

Figure 7. The PDFs of the estimated RUL based on our method.

In Figure 7, the black line denotes the actual RUL, and the blue lines reflect PDFs of estimated RUL
at several different time. It should be noted that the PDF is not continuous at discussed before, and the
failure probability at the change point is not shown in Figure 7. For a better illustration, Figure 8 shows
the PDFs of the estimated RUL at four given time. We can find that the actual RUL has been included
in the range of the estimated RUL’s PDF. Furthermore, we compare the obtained results based on our
method with the traditional way. Following Figure 9 show the mean and confidence interval of the
estimated RUL based on two methods, including our method and the traditional method of [30].
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Remark 4. It is interesting to see that the distribution of RUL looks unnatural in Figure 8, which is mainly
due to the change of degradation rate and the random jump. As discussion in Remark 2, the form of RUL’s
distribution is similar to the lifetime’s when the change point does not appear. In our example, since the change
time is τ = 97, the lifetime’ distribution is not continuous and looks unnatural until τ ≥ 97.
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(a) The estimated RUL at t = 0
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(b) The estimated RUL at t = 30
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(c) The estimated RUL at t = 60
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(d) The estimated RUL at t = 90

Figure 8. The estimated RUL based on our method at different time.

Figure 9. The comparison of estimated RUL between traditional method and our method.
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From the comparison, it is can be concluded that our method can model the two-phase degradation
process with random jump well and obtain the accurate result of the RUL estimation. In the traditional
way, the estimated bias is much large duo to the effect of the random jump and the multi-phase pattern.
That is to say, if we ignore the influence of the abrupt jump and the multi-phase pattern, the estimated
bias cannot be avoided, which may cause inaccurate RUL estimation and improper maintenance
arrangement. By comparison, our method can overcome this problem and obtain the more accurate
result. Besides, it is noteworthy that since the degradation feature of three gyros are much different
from each other, some estimated bias of RUL cannot be eliminated at all.

6. Conclusions

In this paper, we mainly concentrate on how to model the multi-phase degradation process with
random jumps and estimate its lifetime. We first propose a multi-phase degradation model with
abrupt jumps to describe this kind of degradation trajectories. Unlike existing work, we take a full
account of the uncertainties of the first phase degradation process and the abrupt jump. Then we
provide the method of lifetime estimation under the concept of FPT. In addition, an on-line and off-line
parameters’ identification methods are proposed for facilitating practical usage. Finally, a numerical
case and practical case are provided to illustrate our method.

However, although some effective results have been obtained in this paper, some challenging
problems are still needed to investigate in future: (1) How to determine the number of degradation
stage for some degradation process without obvious mechanism information; (2) How to derive the
analytical expression of the lifetime (or RUL) for mutli-phase nonlinear degradation process with
random jumps.

Author Contributions: Conceptualization, J.Z.; Data curation, X.S.; Formal analysis, D.D.; Methodology, J.Z.;
Project administration, X.S. and C.H. (Changhua Hu); Validation, C.H. (Chen Hu); Writing–original draft, J.Z. and
C.H. (Chen Hu); Writing–review & editing, X.S. and D.D.

Funding: This work is supported by the National Nature Science Foundation of China (Grant Nos. 61833016,
61573365, 61773386, 61673311, 61573366, 61573076, 61603024), the Young Elite Scientists Sponsorship Program of
China Association for Science and Technology (Grant No. 2016QNRC001), and National Key R&D Program of
China (Grant No. 2018YFB1306100).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RUL Remaining useful life
FPT First passage time
MLE Maximum Likelihood Estimation
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PHM Prognostic and health management
FPT First passage time
PDF Probability density function
CDF Cumulative distribution function
MC Monte Carlo

Appendix A

It is worth mentioning that the lifetime distribution at (0, τ) is just determined by the first phase
model. In this way, we can easily obtain the expression of lifetime at (0, τ) directly as shown in (9)
based on the property of the Wiener process.

As discussed before, what should be noticed is that lifetime distribution at the change point is
not continuous, it can also be defined as the failure probability i.e., Pr {xτ−+γ ≥ ξ}. If the jump is
negative, the degradation process will not reach the threshold, i.e., failure probability at the change
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point is 0. In this way, we mainly focus on the positive case. On contrary, if the jump is not negative,
we can have,

Pr(T = τ) = Pr(xτ = xτ− + γ ≥ ξ)

=Pr(xτ− ≥ ξ − γ)

=
∫ +∞

ξ−γ
gτ−(xτ−)dxτ−

=
∫ ξ

ξ−γ
gτ−(xτ−)dxτ−

=
∫ ξ

ξ−γ

1√
2πτ−σ2

1

{
exp

[
− (xτ− − µ1τ−)

2

2σ2
1 τ−

]
− exp

(
2µ1ξ

σ2
1

)
exp

[
− (xτ− − 2ξ − µ1τ−)

2

2σ2
1 τ−

]}
dxτ−

(A1)

Since xτ− belongs to (−∞, ξ),
∫ +∞

ξ−γ gτ−(xτ−)dxτ− =
∫ ξ

ξ−γ gτ−(xτ−)dxτ− . Then, according to
property of truncated Gaussian distribution, we can solve the above integral with two parts,

Pr(T = τ) =Pr(xτ = xτ− + γ ≥ ξ)

=

[
Φ

(
µ1t− ξ

σ
√

t

)
− exp

(
2ξµ1

σ

)
Φ

(
−µ1t− ξ

σ
√

t

)]

+

[
−Φ

(
µ1t− ξ + γ

σ
√

t

)
+ exp

(
2(ξ − γ)− µ1

σ1

)
Φ

(
−µ1t− ξ + γ

σ1
√

t

)] (A2)

Next, we try to derive the lifetime distribution at (τ,+∞). The key to obtain the lifetime
distribution at (τ,+∞) is the expression of xτ . Since xτ=xτ−+γ, the PDF of xτ can have
gτ(xτ)=gτ−(xτ − γ), where xτ ∈ (−∞, ξ̃) and ξ̃=ξ − I(γ ≤ 0) · γ. Then according to the law of
total probability, the lifetime distribution at (τ,+∞) can be derived as,

fT(t) =
ξ̃∫

−∞

ξ − xτ√
2πσ2

2 (t− τ)3
exp

[
− (ξ − xτ − µ2 (t− τ))2

2σ2
2 (t− τ)

]
gτ(xτ)dxτ , t > τ (A3)

In this way, we have obtained the form of lifetime distribution at (τ,+∞) based on the property
of Lemma 1 as shown (10), and thus the expression of the lifetime’s distribution for two-phase model
with fixed parameters has been attained.

Appendix B

To conduct the lifetime distribution with random drift coefficient, we can utilize the property of
the law of total probability and linear Wiener process, and then its expression with single integral can
be written as,

fT(t) =
∫ +∞

−∞

ξ − x0√
2πσ2

1 t3
exp

[
−
(ξ − x0 − µ1t)2

2σ2
1 t

]
1√

2πσ2
1p

exp

[
−
(µ1 − µ1p)

2

2σ2
1p

]
dµ1, 0 < t ≤ τ (A4)

It is noteworthy that the above integral form is similar to the expression in Lemma 2, then we can
solve the above integral based on Lemma 2,

fT(t) =
ξ − x0√

2πt2(tσ2
1 + t2σ2

1p)
exp

[
−
(
ξ − x0 − µ1pt

)2

2(tσ2
1 + t2σ2

1p)

]
, 0 < t ≤ τ (A5)

In this way, the proof has been completed.
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Appendix C

Firstly, we should try to conduct the PDF of xτ− with random effect. Based on the law of total
probability, the PDF of xτ− with random effect can be rewritten by PDF of xτ− without random effect
as shown in following equation,

gτ−(xτ− |µ1p, σ1p) =
∫ +∞

−∞

gτ−(xτ− |µ1)√
2πσ2

1p

exp

[
−
(µ1 − µ1p)

2

2σ2
1p

]
dµ1

∫ ξ

ξ−γ

1√
2πτ−σ2

1

{
exp

[
− (xτ− − µ1τ−)

2

2σ2
1 τ−

]
− exp

(
2µ1ξ

σ2
1

)
exp

[
− (xτ− − 2ξ − µ1τ−)

2

2σ2
1 τ−

]}
dxτ−

=

[
1− exp

(
−

4ξ2 − 4xτ−ξ

2σ2
1 τ

)]
1√

2π(τσ2
1 + τ2σ2

1p)
exp

[
−
(

xτ− − µ1pτ
)2

2(τσ2
1 + τ2σ2

1p)

]

=

exp

[
−
(

xτ− − µ1pτ
)2

2(τσ2
1 + τ2σ2

1p)

]
− exp

(
2µ1pξ

σ2
1

+
2(ξ2σ4

1pτ+ξ2σ2
1pσ2

1 )

(σ2
1+τσ2

1p)σ
4
1

)
exp

−
(

xτ−−2ξ−µ1pτ−
2ξσ2

1pτ

σ2
1

)2

2(τσ2
1+τ2σ2

1p)


√

2π(τσ2
1 + τ2σ2

1p)

(A6)

Then because of xτ = xτ−1 + γ and γ ∼ N(µγ, σ2
γ), we can obtain,

gτ(xτ) =
∫

gτ−(xτ−γ|µ1p, σ1p)p(γ)dγ (A7)

where

p(γ) =
1√

2πσ2
γ

exp

[
(γ− µγ)2

2σ2
γ

]
(A8)

Then, according Lemma 1, the gτ(xτ) can be obtained,

gτ(xτ) =

√
1

2π
(
σ2

a + σ2
b
) exp

(
−

(µa − µb)
2

2
(
σ2

a + σ2
b
))
1−Φ

− ξ(σ2
a + σ2

b )− µbσ2
a − µaσ2

b√
σ2

a σ2
b
(
σ2

a + σ2
b
)


− exp

(
2µ1pξ

σ2
1

+
2ξ2σ2

1p

σ4
1

)√
1

2π (σ2
a + σ2

c )
exp

(
− (µa − µc)

2

2 (σ2
a + σ2

c )

)

×
[

1−Φ

(
− ξ(σ2

a + σ2
c )− µcσ2

a − µaσ2
c√

σ2
a σ2

c (σ
2
a + σ2

c )

)]
(A9)

where

µa = xτ − µγ, µb = µ1pτ1, µc = µ1pτ1 + 2ξ +
σ2

1pτ

σ2
1

σa = σγ, σb = σc =
√

τ1σ2
1 + τ2

1 σ2
1p,

(A10)

Appendix D

For simplicity, we ignore the information of xτ̃i+1 − xτ̃i for parameters estimation based on the
EM algorithm. Then, according to the EM algorithm, two steps should be included as follows,
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E-step:

Q(Ξ|Ξ̂(k)) = EZ|X,Ξ̂(k) [ln p(X, Z|Ξ)]

=EZ|X,Ξ̂(k)

n

∑
i=1

ln [p(Zi|Ξ)p(Xi|Zi, Ξ)]

=
n

∑
i=1

EZi |Xi ,Ξ̂(k) ln [p(Zi|Ξ)p(Xi|Zi, Ξ)]

=
n

∑
i=1

EZi |Xi ,Ξ̂(k) ln

 1√
2πσ2

1p

exp

[
−
(µ1,i − µ1p)

2

2σ2
1p

]
Πτ̃i

j=1
1√

2πσ2
1 ∆t

exp

[
−
(xi,j − xi,j−1 − µ1,i∆t)2

2σ2
1 ∆t

]

1√
2πσ2

2p

exp

[
−
(µ2,i − µ2p)

2

2σ2
2p

]
Πmi

j=τ̃i+2
1√

2πσ2
2 ∆t

exp

[
−
(xi,j − xi,j−1 − µ2,i∆t)2

2σ2
2 ∆t

]

(A11)

where Zi = {µ1,i, µ2,i}. To conduct the above equation, we firstly the following conditional probability
based on Bayesian rule.

p(Zi|Xi, Ξ(k)) =
p(Xi|Zi, Ξ(k))p(Zi|Ξ(k))∫

p(Xi|Zi, Ξ(k))p(Zi|Ξ(k))dZi
(A12)

Thus, we can obtain the conditional probability p(µ1,i|Xi, Ξ(k)) and p(µ2,i|Xi, Ξ(k)) as follows,

p(µ1,i|Xi, Ξ(k)) =
1√

2π
σ

2,(k)
1p σ

2,(k)
1 ∆t

τ̃iσ
2,(k)
1p ∆t2+σ

2,(k)
1 ∆t

exp

−
(

µ1,i −
(xi,τ̃i−xi,0)∆tσ2,(k)

1p +σ
2,(k)
1 ∆tµ(k)

1p

τ̃iσ
2,(k)
1p ∆t2+σ

2,(k)
1 ∆t

)2

2σ
2,(k)
1p σ

2,(k)
1 ∆t

τ̃iσ
2,(k)
1p ∆t2+σ

2,(k)
1 ∆t

 (A13)

p(µ2,i|Xi, Ξ(k)) =
1√

2π
σ

2,(k)
2p σ

2,(k)
2 ∆t

(mi−τ̃i−1)σ2,(k)
2p ∆t2+σ

2,(k)
2 ∆t

exp

−
(

µ2,i −
(xi,mi−xi,τ̃i+1)∆tσ2,(k)

2p +σ
2,(k)
2 ∆tµ(k)

2p

(mi−τ̃i−1)σ2,(k)
2p ∆t2+σ

2,(k)
2 ∆t

)2

2σ
2,(k)
2p σ

2,(k)
2 ∆t

(mi−τ̃i−1)σ2,(k)
2p ∆t2+σ

2,(k)
2 ∆t

 (A14)

Then it is noted that p(µ1,i|Xi, Ξ(k)) and p(µ2,i|Xi, Ξ(k)) are the PDFs of Gaussian distribution.
Therefore, we can further attain the conditional expectation as show in (A11) based on the property of
Gaussian distribution.

Q(Ξ|Ξ̂(k)) =
n

∑
i=1

EZi |Xi ,Ξ̂(k) ln [p(Zi|Ξ)p(Xi|Zi, Ξ)]

=
n

∑
i=1

EZi |Xi ,Ξ̂(k) ln

 1√
2πσ2

1p

exp

[
−
(µ1,i − µ1p)

2

2σ2
1p

]
Πτ̃i

j=0
1√

2πσ2
1 ∆t

exp

[
−
(xi,j − xi,j−1 − µ1,i∆t)2

2σ2
1 ∆t

]

1√
2πσ2

2p

exp

[
−
(µ2,i − µ2p)

2

2σ2
2p

]
Πmi

j=τ̃i+2
1√

2πσ2
2 ∆t

exp

[
−
(xi,j − xi,j−1 − µ2,i∆t)2

2σ2
2 ∆t

]
=n ln

1√
2πσ2

1p

−

n
∑

i=1
E[µ2

1,i|Xi, Ξ̂(k)]− 2µ1p
n
∑

i=1
E[µ1,i|Xi, Ξ̂(k)] + nµ2

1p

2σ2
2p

+
n

∑
i=1

τ̃i ln
1√

2πσ2
1 ∆t

−
n

∑
i=1

τ̃i

∑
j=1

(xi,j − xi,j−1)
2 − 2E[µ1,i|Xi, Ξ̂(k)]

τ̃i

∑
j=1

(xi,j − xi,j−1) + τ̃iE[µ2
1,i|Xi, Ξ̂(k)]

2σ2
1 ∆t

n ln
1√

2πσ2
2p

−

n
∑

i=1
E[µ2

2,i|Xi, Ξ̂(k)]− 2µ2p
n
∑

i=1
E[µ2,i|Xi, Ξ̂(k)] + nµ2

2p

2σ2
2p

+
n

∑
i=1

(mi − τ̃i − 1) ln
1√

2πσ2
2 ∆t

−
n

∑
i=1

mi

∑
j=τ̃i+2

(xi,j − xi,j−1)
2 − 2E[µ2,i|Xi, Ξ̂(k)]

mi

∑
j=τ̃i+2

(xi,j − xi,j−1) + (mi − τ̃i − 1)E[µ2
2,i|Xi, Ξ̂(k)]

2σ2
2 ∆t

(A15)
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where

E[µ1,i|Xi, Ξ̂(k)] =
(xi,τ̃i − xi,0)∆tσ2,(k)

1p + σ
2,(k)
1 ∆tµ(k)

1p

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1 ∆t

E[µ2
1,i|Xi, Ξ̂(k)] =

σ
2,(k)
1p σ

2,(k)
1 ∆t

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1 ∆t

+

 (xi,τ̃i − xi,0)∆tσ2,(k)
1p + σ

2,(k)
1 ∆tµ(k)

1p

τ̃iσ
2,(k)
1p ∆t2 + σ

2,(k)
1 ∆t

2

E[µ2,i|Xi, Ξ̂(k)] =
(xi,mi − xi,τ̃i−1)∆tσ2,(k)

2p + σ
2,(k)
2 ∆tµ(k)

2p

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2 ∆t

E[µ2
2,i|Xi, Ξ̂(k)] =

σ
2,(k)
2p σ

2,(k)
2 ∆t

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2 ∆t

+

 (xi,mi − xi,τ̃i−1)∆tσ2,(k)
2p + σ

2,(k)
2 ∆tµ(k)

2p

(mi − τ̃i − 1)σ2,(k)
2p ∆t2 + σ

2,(k)
2 ∆t

2

(A16)

M-step: In order obtain the Ξ̂ = argmax
Ξ

Q(Ξ|Ξ̂(k)), we take the partial derivative of ∂Q(Ξ|Ξ̂(k))
∂Ξ

and let ∂Q(Ξ|Ξ̂(k))
∂Ξ = 0. Then solve such the equation ∂Q(Ξ|Ξ̂(k))

∂Ξ = 0, the (k + 1)-th step estimates of all
parameters can be derived as follows,

µ̂
(k+1)
1p =

1
n

n

∑
i=1

(xi,τ̃i − xi,0)∆tσ2,(k)
1p + σ

2,(k)
1,i ∆tµ(k)

1p

τ̃2
i σ

2,(k)
1p ∆t2 + σ

2,(k)
1,i ∆t

σ̂
(k+1)
1p =

√
1
n

n

∑
i=1

(
E[µ2

1,i|Xi, Ξ̂(k)]−E2[µ1,i|Xi, Ξ̂(k)]
)

µ̂
(k+1)
2p =

1
n

n

∑
i=1

(xi,mi − xi,τ̃i−1)∆tσ2,(k)
2p + σ

2,(k)
2,i ∆tµ(k)

2p

(mi − τ̃i − 1)2σ
2,(k)
2p ∆t2 + σ

2,(k)
2,i ∆t

σ̂
(k+1)
2p =

√
1
n

n

∑
i=1

(
E[µ2

2,i|Xi, Ξ̂(k)]−E2[µ2,i|Xi, Ξ̂(k)]
)

σ̂
(k+1)
1 =

√√√√√√√√
n
∑

i=1

{
τ̃i
∑

j=1
(xi,j − xi,j−1)2 − 2E[µ1,i|Xi, Ξ̂(k)]

τ̃i
∑

j=1
(xi,j − xi,j−1) + τ̃iE[µ2

1,i|Xi, Ξ̂(k)]

}
n
∑

i=1
τ̃i∆t

σ̂
(k+1)
2 =

√√√√√√√√
n
∑

i=1

{
mi
∑

j=τ̃i+2
(xi,j − xi,j−1)2 − 2E[µ2,i|Xi, Ξ̂(k)]

mi
∑

j=τ̃i+2
(xi,j − xi,j−1) + (mi − τ̃i − 1)E[µ2

2,i|Xi, Ξ̂(k)]

}
n
∑

i=1
(mi − τ̃i − 1)∆t

(A17)

Thus, the derivation process has been completed.
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