
sensors

Article

Research on Lane a Compensation Method Based on
Multi-Sensor Fusion

Yushan Li 1, Wenbo Zhang 1, Xuewu Ji 2,* , Chuanxiang Ren 1 and Jian Wu 3

1 College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China;
skd992034@sdust.edu.cn (Y.L.); Zhangwb@sdust.edu.cn (W.Z.); renchx@sdust.edu.cn (C.R.)

2 State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
3 School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252059, China;

wujian@lcu.edu.cn
* Correspondence: jixw@tsinghua.edu.cn

Received: 10 January 2019; Accepted: 29 March 2019; Published: 2 April 2019
����������
�������

Abstract: The curvature of the lane output by the vision sensor caused by shadows, changes in
lighting and line breaking jumps over in a period of time, which leads to serious problems for
unmanned driving control. It is particularly important to predict or compensate the real lane
in real-time during sensor jumps. This paper presents a lane compensation method based on
multi-sensor fusion of global positioning system (GPS), inertial measurement unit (IMU) and vision
sensors. In order to compensate the lane, the cubic polynomial function of the longitudinal distance
is selected as the lane model. In this method, a Kalman filter is used to estimate vehicle velocity and
yaw angle by GPS and IMU measurements, and a vehicle kinematics model is established to describe
vehicle motion. It uses the geometric relationship between vehicle and relative lane motion at the
current moment to solve the coefficient of the lane polynomial at the next moment. The simulation
and vehicle test results show that the prediction information can compensate for the failure of the
vision sensor, and has good real-time, robustness and accuracy.

Keywords: sensor fusion; kinematics; lane detection; vision; virtual lane

1. Introduction

In recent years, intelligent driving vehicles have received widespread attention. The reason is that
intelligent driving vehicles can play a positive role in the daily traffic environment. The reliability of
intelligent driving control system with mature technology is higher than that of drivers with different
driving skills. Important functions of intelligent driving, such as lane keeping systems (LKAs) and lane
change systems (LCXs) have been widely studied. In order to ensure autonomous vehicles can drive
safely on the road, high-precision lane level location is required. Currently, lane-level location can be
realized through Lidar, GPS/INS or cameras. However, the cost of Lidar is higher than that of other
sensors. When GPS and INS are used for high-precision positioning, the absolute position information
is obtained, which must be matched with a high-precision map to obtain the relative road position
information. Therefore, high-efficiency and low-cost environmental perception based on vision will
become the main direction of future industrialization of intelligent driving vehicles [1].

Lane recognition [2,3] is an important part of lane-level location. At present, the mainstream
method is to obtain lane images through vision sensors installed on intelligent vehicles, and then
use the edge, color, texture or frequency domain features of lanes to separate lane lines from road
areas. According to the different image processing strategies of road conditions, existing methods can
generally be divided into model-based methods [4–8] and feature-based methods [9–13]. However, the
acquisition of lane information from vision sensors may fail due to complex shadows, missing lane
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markers, changes in lighting, different lane brightness or vision sensor failures [14]. In these abnormal
conditions, the sensor recognition algorithm automatically chooses to exit temporarily. Based on this
kind of problem, scholars have put forward two main solutions. One method is to compensate from
the level of image processing. A method using a fuzzy system and line segment detector algorithm to
overcome various lighting problems has been presented in [15]. References [16–21] respectively improve
the robustness of lane recognition in different environments from the aspects of clustering, feature
extraction and curve fitting. These methods based on image processing can improve the accuracy of
lane detection to a certain extent, but this kind of method is limited by the sensor accuracy. Another
method is to improve the robustness of vision sensors by using sensor fusion. A positioning system
combining global positioning system (GPS), inertial measurement unit (IMU), wheel speed sensor,
single front-facing camera and digital map was proposed in [22–29]. This kind of method relies on
digital maps and increases the computational burden of the computer. References [30,31] used a
kinematics model of the vehicle and the position information of the vehicle in front based on radar or
V2X to predict the lane. However, this method places high requirements on knowing the trajectory
of the vehicle in front. A vehicle kinematic lateral motion model and road constraints are used to
solve sensor failures in [32–35]. The kinematics model and dynamics model are combined for lane
prediction in the high speed range in [36]. Nevertheless, the above method requires high precision of
the model, and the accuracy of the model is related to the performance of the system. Therefore, how to
realize information compensation under the condition of discontinuous lane signals is still an important
technical problem. The importance of lane information stability to vehicle automatic control is verified
in [37–40]. A real-time vision sensor compensation algorithm will ensure that the movement trajectory
of the vehicles can remain stable when the positioning signal is lost, and a sufficient system response
time can be provide when the lane information continues to fail. Therefore, it can complete driver
wake-up and control transfer, and transfer the control of the vehicle to the driver smoothly and safely.

In this paper, a lane prediction system based on sensor fusion for vision sensor failures has
been presented. First, a low-cost GPS, IMU and DR are integrated to obtain a high-precision vehicle
trajectory. Secondly, in the multi-sensor system, the relative position relation of the vehicle path is
used to predict the lane coefficient, and the prediction algorithm is synchronized with the control
sample time. Therefore, when the sensor does not fail, the method proposed in this paper can also
verify the lane information which is collected by visual sensors under normal circumstances. Finally,
the performance of the method is evaluated by a HIL simulation and vehicle tests at a test site.
The proposed method can effectively realize the compensation of vision sensors in the state of failure.
The method works effectively after 1 s. Even if the vision sensor breakdown occurs on a bend, this
time is enough for the driver to take over control.

The rest of this paper is organized as follows: in Section 2, a low-cost GPS and IMU are used to
estimate the vehicle state, and the vehicle trajectory is fitted by dead reckoning based on the vehicle
kinematics. The lane coefficient is predicted by using the relative position relationship between
the vehicle trajectory and the lane in the multi-rate system in Section 3. The simulation and the
experimental results are given in Section 4. Finally, Section 5 outlines the conclusions and discusses
the limitations of this method and possible future work.

2. Sensor Fusion and Lane Modeling

The GPS, IMU fusion algorithm, vehicle kinematics based on a dead reckoning method, and lane
polynomial function are described in this part. More accurate yaw angle and longitudinal velocity
values can be obtained through GPS and IMU information fusion, and errors generated by the IMU’s
long integration time can be corrected, and real-time vehicle pose can be calculated by combining the
track calculation method.
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2.1. Yaw Angle and Longitudinal Velocity Estimation

This section focuses on estimation of the vehicle trajectory using an IMU and a GPS receiver.
The vehicle velocity and yaw angle can be estimated by a sensor fusion algorithm using the data
obtained from an IMU and a GPS. The main source of inertial sensor error is drift caused by sensor
deviation and gravity effects. Therefore, the method in this paper aims to model these error sources
and ignore the influence of cross-coupling errors and sensor scale factor errors. The IMU offers six
degrees of freedom and consists of a three-axis gyroscope and a three-axis accelerometer which are
installed on the carrier. In this paper, only the z-axis of the gyro and x-axis of the accelerometer are
modeled as required.

2.1.1. Gyro Modeling

The output of the gyroscope can be expressed as the real vehicle yaw rate, with zero deviation
and white noise, as shown in Equation (1):

gr = r + br + ωgyro (1)

where, gr is the output of the gyro, r is the yaw rate of vehicle, br is the constant offset or bias of the
gyro, ωgyro is the zero mean white noise of sensor. Assuming that the sensor noise obeys normally

distributed, and the sampled covariance is E
[
ω2

gyro

]
= σ2

gyro.
The deviation of the gyroscope is represented by a first order Markov process:

.
br = −

1
Tg
· br + ωg_bias (2)

where, Tg is the correlation time. ωg_bias is the process driving noise of the gyro which is normally

distributed with zero mean and a sampled covariance of E
[
ω2

g_bias

]
= σ2

bg
.

2.1.2. Accelerometer Modeling

The accelerometer is modeled in the same way as the gyro. The influence of Coriolis acceleration
and gravity acceleration were not considered in the modeling process:

a =
..
x + ba + ωaccel (3)

where, a is the output of accelerometer, ba is the constant offset or bias of the accelerometer. ωaccel is
the process driving noise of the accelerometer which is obeying normally distributed and the sampled
covariance is E

[
ω2

accel
]
= σ2

accel .
The accelerometer bias is also represented by a first order Markov process:

.
ba = −

1
Ta
· ba + ωa_bias (4)

where, Ta is the correlation time. ωa_bias is the process driving noise of the accelerometer which is

obeying normally distributed and the sampled covariance is E
[
ω2

a_bias

]
= σ2

ba
.

2.1.3. Kalman Filter Establishment

Velocity, gyro bias, yaw angle and accelerometer zero bias were selected as state variables

which are presented as x =
[

ψ br v ba

]T
. The longitudinal acceleration and yaw rate are

the measurements of IMU, expressed as u =
[

gr a
]T

. According to Equations (1) and (4), the
equation of state of the system is:
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.
x = Ax + Bu + ω (5)

where:

A =


0 −1 0 0
0 − 1/Tg 0 0
0 0 0 −1
0 0 0 − 1/Ta

 (6)

B =

[
1
0

0
0

0
1

0
0

]T

(7)

The velocity and yaw angle measured by GPS are selected as external observation parameters
and the system measurement equation is established as follows:

y = Cx + µ (8)

where, µ is the sensor noise, represented as µ =
[

µψ µv

]T
and it is satisfied that E

[
µ2

ψ

]
= σ2

ψ and

E
[
µ2

v
]
= σ2

v , respectively, where:

y =

[
ψGPS
vGPS

]
(9)

C =

[
1
0

0
0

0
1

0
0

]
(10)

The covariance matrices Q and R of the process noise and the measured noise are solved, and the
linear Kalman filter is used for the optimal estimation. Readers may refer to [41] for details.

2.2. Vehicle Kinematics

The sensor fusion information is used to build the vehicle kinematics model, so as to obtain
the vehicle trajectory. Firstly, the vehicle motion is simplified and described as a motion in a
two-dimensional plane, as shown in Figure 1. The kinematics model uses three parameters to describe
the motion of the vehicle, which represents the current abscissa X(t) of the vehicle, the current ordinate
Y(t) of the vehicle and the vehicle’s current yaw angle ψ(t). The global coordinate system and the
local coordinate system are respectively established at the center of mass of the vehicle. The horizontal
axis of the global coordinate system is X and the vertical axis is Y. The horizontal axis of the local
coordinate system is x and the vertical axis is y. In Figure 1, x0 and y0 are the local coordinate systems
established by the vehicle at time t0. ψ is the angle between the longitudinal axis of the vehicle and
the X-axis. V is the velocity at the center of mass of the vehicle. VX and VY are the projection of the
vehicle velocity on the X-axis and Y-axis in the global coordinate system. The kinematics equation of
the vehicle in the global coordinate system is:

.
X(t) = V cos(ψ(t)− β) (11)

.
Y(t) = V sin(ψ(t)− β) (12)

.
ψ(t) = γ (13)

From Equations (11)–(13), it can be seen that the vehicle’s motion position is determined by the
yaw rate, longitudinal acceleration of the center of mass and sideslip angle.
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Figure 1. Vehicle kinematics model. 
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2.3. Vehicle Trajectory and Lane Polynomial 

The vision sensor performs lane detection in a local coordinate system. Therefore, the vehicle 
trajectory and lane are defined in the local coordinate system of the vehicle. Lane curves and vehicle 
motion trajectories are shown in Figure 2. 
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Figure 1. Vehicle kinematics model.

In the global coordinate system, the vehicle position is described as
[

X Y ψ
]
. Assuming

that the vehicle’s position at initial time t0 is P(t0) =
[

X(t0) Y(t0) ψ(t0)
]T

, then the vehicle’s
position at time t1 can be expressed as follows:

P(t1) =

 X(t1)

Y(t1)

ψ(t1)

 =

 X(t0) +
∫ t1

t0 VX(τ)dτ

Y(t0) +
∫ t1

t0 VY(τ)dτ

ψ(t0) +
∫ t1

t0 γ(τ)dτ

 (14)

2.3. Vehicle Trajectory and Lane Polynomial

The vision sensor performs lane detection in a local coordinate system. Therefore, the vehicle
trajectory and lane are defined in the local coordinate system of the vehicle. Lane curves and vehicle
motion trajectories are shown in Figure 2.
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2.3. Vehicle Trajectory and Lane Polynomial 

The vision sensor performs lane detection in a local coordinate system. Therefore, the vehicle 
trajectory and lane are defined in the local coordinate system of the vehicle. Lane curves and vehicle 
motion trajectories are shown in Figure 2. 
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Figure 2. Vehicle trajceotry and lane polynomial.

Assuming that the vehicle is moving at constant velocity Vx and yaw rate
.
ψ, the vehicle trajectory

can be approximated by a parabolic projection. The vehicle trajectory fv(x) is expressed as follows:

fv(x) =
ρv

2
· x2 =

.
ψ

2 ·Vx
· x2 (15)

At present, the general method is to describe the two-dimensional geometry of the lane through
the cyclotron lines model. Taking an expressway as an example, the radius of lanes is generally more
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than 100 m, so the curvature and curvature rate are usually small and the geometry of the lane can be
expressed by a cubic polynomial equation. Through the cubic polynomial, the left and right lanes can
be described as follows:

fL(x) = cL0 + cL1 · x + cL2 · x2 + cL3 · x3 (16)

fR(x) = cR0 + cR1 · x + cR2 · x2 + cR3 · x3 (17)

where, cL0 and cR0 represent the lateral offset between the vehicle and the left lane or right lane at the
current moment, respectively. The terms cL1 and cR1 represent the heading angle between the vehicle
and the left lane or right lane at the current moment, respectively, while cL2 and cR2 represent the
curvature of the left lane or right lane at the current moment, respectively and cL3 and cR3 represent
the curvature rate of the left lane or right lane at the current moment, respectively.

Taking the average value of the left and right lanes and then the polynomial of the road centerline
fM(x) is shown as follows:

fM(x) = c0 + c1 · x + c2 · x2 + c3 · x3 (18)

where, c0 = (cL0 + cR0)/2; c1 = (cL1 + cR1)/2; c2 = (cL2 + cR2)/2; c3 = (cL3 + cR3)/2.

3. Lane Parameters Estimation

The system is a multi-rate system. The visual sensor, IMU, GPS and vehicle controller operate at
different update rates, and the data can be obtained through the vehicle CAN bus. The information
transmission of sensors and controllers is shown in Figure 3.
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Figure 3. System block diagram.

In Figure 3, the update rate of vision sensor is Tcam, the update rate of IMU is Tc, and the update
rate of GPS is TG. The relationship between the three update rate is TG > Tcam > Tc. Since the
Kalman filter and IMU operate at the same rate, we only focus on the relationship between Tcam and
Tc. Assuming that there is an integer n(n > 1) that makes Tcam = n · Tc, according to the difference
of update rate between IMU and the camera sensor which shown in Figure 4, the time constant t is
defined as:

t =
(

k +
i
n

)
Tcam (19)

where, k(k = 0, 1, · · ·) and i(i = 0, 1, · · · n− 1) represent the update periods of the vision sensor and
IMU, respectively.

It is assumed that the vision sensor at time k can obtain stable lane information, and the
longitudinal velocity and yaw angle can be obtained after the fusion of IMU and GPS data. Based
on the difference in the sensor update rate, the vehicle trajectory can be continuously calculated
within the interval of the vision sensor update. Assuming that the initial vehicle position at time k is
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P(t0) =
[

0 0 0
]T

, the equation of vehicle position at time k + 1 can be expressed as follows after
discrete processing:

ψ̂(k|i) =
i

∑
j=0

ψ(k|j) (20)

x̂(k + 1|0) =
n−1

∑
i=0

Vx(k|i) · cos
(
ψ̂(k|i)

)
· Tc (21)

ŷ(k + 1|0) =
n−1

∑
i=0

Vx(k|i) · sin
(
ψ̂(k|i)

)
· Tc (22)

where Vx is the component of the speed V in the local coordinate system of the vehicle.
Vehicle position and trajectory equation are solved by using Equations (15) and (20)–(22).

The prediction method is derived below to predict the coefficient of lane polynomial at time k + 1.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 17 

 

where, ( )0,1,k k =   and ( )0,1, 1i i n= −  represent the update periods of the vision sensor and 
IMU, respectively. 



 
Figure 4. Update periods of the IMU and camera sensor. 

It is assumed that the vision sensor at time k can obtain stable lane information, and the 
longitudinal velocity and yaw angle can be obtained after the fusion of IMU and GPS data. Based on 
the difference in the sensor update rate, the vehicle trajectory can be continuously calculated within 
the interval of the vision sensor update. Assuming that the initial vehicle position at time k  is 

( ) [ ]0 0 0 0 TP t = , the equation of vehicle position at time 1k +  can be expressed as follows after 
discrete processing: 

( ) ( )
0

ˆ | |
i

j
k i k jψ ψ

=

=  (20) 

( ) ( ) ( )( )
1

0

ˆˆ 1 | 0 | cos |
n

x c
i

x k V k i k i Tψ
−

=

+ = ⋅ ⋅  (21) 

( ) ( ) ( )( )
1

0

ˆˆ 1 | 0 | sin |
n

x c
i

y k V k i k i Tψ
−

=

+ = ⋅ ⋅  (22) 

where xV  is the component of the speed V  in the local coordinate system of the vehicle. 
Vehicle position and trajectory equation are solved by using equations (15) and (20)–(22). The 

prediction method is derived below to predict the coefficient of lane polynomial at time 1k + .  

3.1. Lateral Offset Estimation 

In the local coordinate system, the relationship between the vehicle center of mass and the lane 
is used to predict the lane coefficient, which is shown in Figure 5. 

( )1 , 0c k

kP

1+kP

kQ

1+kQ

( )1 1,0c k +

( )0,11 +kθ( )0,12 +kθ

( )0,1ˆ +kψ

( )xfL ( )xfv

( ) bxmxg +⋅=

x

y ( )0 ,0c k

( )0 1,0c k +

1x
1y

 
Figure 5. Relationship between vehicle’s trajectory and lane polynomial. 

The vertical line of the tangent line of the vehicle trajectory at point +1kP  intersects the lane at 
point 1kQ + . ( )g x  is the line passing through the point +1kP  and point 1kQ + : 

Figure 4. Update periods of the IMU and camera sensor.

3.1. Lateral Offset Estimation

In the local coordinate system, the relationship between the vehicle center of mass and the lane is
used to predict the lane coefficient, which is shown in Figure 5.
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The vertical line of the tangent line of the vehicle trajectory at point Pk+1 intersects the lane at
point Qk+1. g(x) is the line passing through the point Pk+1 and point Qk+1:

g(x) = ax + b (23)

In the plane rectangular coordinate system, the angle between g(x) and the x-axis is π
2 + ψ̂(k + 1),

and the slope and intercept are expressed as m and b, respectively:

a = tan
(π

2
+ ψ̂(k + 1|0)

)
(24)

b = ŷ(k + 1|0)−m · x̂(k + 1|0) (25)
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For simultaneous Equations (18) and (23):

c0 + c1 · x + c2 · x2 + c3 · x3 = ax + b (26)

The horizontal coordinate of point Qk+1 can be solved that using the secant method. Let’s define
the coordinates Qk+1

(
x̂Q(k + 1|0), fL

(
x̂Q(k + 1|0)

))
. Then, the Euclidean distance between Pk+1 and

Qk+1 can be obtained, namely, the lateral offset ĉ0(k + 1|0):

ĉ0(k + 1|0) = sgn
(

fL
(

x̂Q(k + 1|0)
))
·
√

Xe2 + Ye2 (27)

where:
Xe = x̂Q(k + 1|0)− x̂(k + 1|0) (28)

Ye = fL
(

x̂Q(k + 1|0)
)
− fv(x̂(k + 1|0)) (29)

3.2. Heading Angle Estimation

As shown in Figure 5, the heading angle is the angle between the tangent line of the vehicle
trajectory and the tangent line of the lane. Using geometric relations, the heading angle ĉ1 is calculated
by solving the slope of the tangent line at the points Pk+1 and Qk+1:

tan(θ1(k + 1|0)) = f ′v(x)
∣∣
x=x̂(k+1|0) (30)

tan(θ2(k + 1|0)) = f ′L(x)
∣∣
x=x̂Q(k+1|0) (31)

As shown in Figure 5, ĉ1(k + 1, 0) is the error between θ1(k + 1, 0) and θ2(k + 1, 0), and the tangent
value of the angle is presented as follows,

tan(ĉ1(k + 1|0)) = tan(θ1(k + 1|0)− θ2(k + 1|0)) = m1 −m2

1 + m1m2
(32)

where, m1 = tan(θ1(k + 1|0)), m2 = tan(θ2(k + 1|0)).
When the heading angle is small, ĉ1(k + 1|0) can be approximately equal to:

ĉ1(k + 1|0) = tan−1
(

m1 −m2

1 + m1m2

)
≈ m1 −m2

1 + m1m2
(33)

3.3. Curvature and Curvature Rate Estimation

According to the design characteristics of expressway, it is approximately considered that the
curvature rate of lane is constant in a single period. According to Equation (18), f ′′L (x) = 2c2 + 6c3 · x,
the vehicle position at the current moment is zero in the local coordinate system of the vehicle, so
f ′′L (0) = 2c2. Then we will calculate the curvature and curvature rate at time k + 1:

ĉ2(k + 1|0) =
..
f L(x)

∣∣∣x=x̂(k+1|0) = 2c2(k|0) + 6c3(k|0)x̂(k + 1|0) (34)

ĉ3(k + 1|0) = ĉ2(k + 1|0)− c2(k|0)
κ

(35)

where, κ is an tuning parameter related to vehicle speed, and the value is approximately equal to the
sampling time of the vision sensor.

If the sensor fails to provide lane information within several sampling cycles, the predictive
compensation method derived above is used for road compensation. However, when the sensor is
ineffective for a long time, the performance of lane prediction will decline due to the lack of road
information feedback.
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4. Experimental Results

The method is evaluated by hardware-in-the-loop simulation platform and vehicle experiments.

4.1. Simulation

In the hardware-in-the-loop simulation, Carsim software is used to simulate a A-class vehicle.
In the simulation process, the velocity is set to 25 m/s (i.e., 90 km/h). The expected path is a
third-order polynomial curve that conforms to cyclotron constraints. The parameters used in Carsim
are the nominal values of the test vehicle. The HIL platform is shown in Figure 6, and the HIL process
is shown in Figure 7.
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As shown in Figure 7, the 27-DOF nonlinear vehicle model of Carsim is used to simulate the
virtual vehicle. The state input of vehicle, feedback of steering controller and compensation algorithm
all run in AutoBox which from dSPACE. The communication between each part is realized by using
CAN bus.

The prediction performance of the method is verified based on the HIL platform, and the vehicle
steering change process caused by sensor failure during lane restore is simulated. In the process of
simulation, the following three scenarios were considered: (a) The vision sensor can detect the road
information normally; (b) the vision sensor fails every 10 s, and the failure time is variable; (c) when
the vision sensor fails, the compensation algorithm is used to restore the lane.
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Figure 8 shows the comparison of lateral offset, heading angle, curvature and curvature rate in
the three scenarios. The blue line shows the data measured by the virtual sensor. The red line shows
the measured data which contains the failure of the virtual sensor. The green line shows the data
predicted using the compensation algorithm. On the road, the failure occurred at 5, 15, 25, 35, 45 and
55 s, respectively. The first 50 s shown in the figure are a variable curvature road and the remaining
time is an approximately straight road. The results show that the method can achieve good results on
both straight and curved roads.
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Figure 8. Contrast in three scenarios

Figure 9 shows the errors between the measured data and the restored data. On the road, the
failure occurred in 5, 15, 25, 35, 45 and 55 s, respectively. The first 50 s shown in the figure are variable
curvature road and the remaining time is an approximately straight road. The results show that the
method can achieve good results on straight and curved roads. The statistical information of the errors
is shown in Table 1. The lateral displacement of the error is less than ±2 × 10−2 m, heading angle
error is less than ±4 × 10−4 rad, curvature of the error is less than ±1.2 × 10−5 m−1, the error of the
curvature change rate is less than 1.5 × 10−7 m−2. The RMSE of each variable is far less than the
magnitude of the error. This indicates that the predicted lane is very close to the compensated lane.
The steering angle error caused by the maximum prediction error is far less than 1◦, so the influence of
the prediction error on the control accuracy can be neglected.
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Table 1. Lane prediction results.

Error Boundaries RMSE

Lateral offset [m] 1 × 10−2 3.9 × 10−3

Heading angle [rad] 4 × 10−4 1.18 × 10−4

Curvature [1/m] 1.2 × 10−5 4 × 10−6

Curvature rate [1/m2] 1.5 × 10−7 3.24 × 10−8

Considering the safety, HIL is used to verify the lane-keeping based on compensation method.
We design a lane keeping controller based on PID theory. In the program, bad points are set manually.
In Figure 10, the blue line indicates lane-keeping control with sudden bad points, while the red dotted
line represents lane-keeping control after compensation by the algorithm and the tracking effect is
represented by steering wheel angle. At 25 s, due to the appearance of bad points, the uncompensated
control produces the sudden change of steering wheel angle, which leads to the instability of the
controlled vehicle and easily causes accidents. After compensation, the control effect is stable, and the
vehicle smoothly transits to the sensor and returns to normal.
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Figure 10. Comparison of steering wheel angle.

4.2. Vehicle Test

Figure 11 shows the experimental vehicle and the experimental road section. The experimental
vehicle is equipped with sensors such as Mobileye, IMU and GPS. The update rate of each sensor is
shown in Table 2. The update periods of ECU controller, visual sensor, IMU and GPS are all different.
This is a typical multi-rate system. The ECU controller communicates with the sensors through the
CAN bus. The vehicle velocity is controlled between 60 km/h and 70 km/h. The prediction method is
compared with the measured data of the vision sensor. The characteristics of the experimental road
are as follows:

• Total length: 4000 m (straight line section: 1500 m; curve line section: 2500 m)
• Width: 2- lane (each lane width is 3.5 m)
• Curve radius: 250 m and 400 m.

Table 2. Update period of sensor.

Sensor/Parameters Update Period (ms)

ECU 10
Vision (Mobileye) 70

GPS (Trimble) 500
IMU (BOSCH) 10

Figure 12 shows the performance of the estimation method in a vehicle test. The red line shows the
measured data by the vision sensor. The blue dots line shows the estimated data by the compensation
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algorithm. In the test process, when one of the two lines cannot be detected, it is also considered a
failure. It can be seen that the compensation effect is good in straight and curve sections.
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Figure 13 shows the lane estimation between 20 s to 30 s in four frames. The blue lines represent
the lane measured by the camera. The black dot lines represent the center lane which calculated by the
left and right line. The green asterisk indicates that when the camera fails temporarily, the method
proposed in this paper can better predict the lane. The predicted lane meets the requirements of lane
keeping control.
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5. Conclusions

In this study, a lane compensation method based on sensor fusion is proposed to compensate for
the short-time failure of vision sensors. The method is divided into two parts. The first part is the
vehicle trajectory acquisition based on sensor fusion, and the second part is the lane prediction using
the relative position of the vehicle and road. The hardware-in-the-loop and vehicle experiments show
that the short-time failure of vision sensors can be compensated by this method.

The algorithm has two main contributions. Firstly, a lane compensation method based on sensor
fusion is proposed. That is, through the fusion of low-cost sensors, high-precision vehicle status
information can be obtained, and then the relative position of vehicles and roads can be used to
predict the road coefficient. Secondly, the simulation and vehicle experiments are used to verify
the effectiveness and real-time performance of the lane compensation algorithm. It validates the
applicability of the algorithm in the case of discontinuous bad points and short duration of bad points.

In the future, we will use more complex working conditions to verify the algorithm and consider
combining other sensors to extend the compensation time. Based on this, we will consider the impact
of speed on the algorithm to improve the compensation method. In addition, lane detection method
will also be focus of our research.
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