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Abstract: In this work, a dual-band printed planar antenna, operating at two ultra-high frequency
bands (2.5 GHz/4.5 GHz), is proposed for wireless power transfer for wearable applications.
The receiving antenna is printed on a Kapton polyimide-based flexible substrate, and the transmitting
antenna is on FR-4 substrate. The receiver antenna occupies 2.1 cm2 area. Antennas were simulated
using ANSYS HFSS software and the simulation results are compared with the measurement results.
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1. Introduction

Wearable devices have been of interest due to an increase in their applications, such as the Internet
of Things (IoT), biomedical sensors, and body area network. For these particular applications, a reliable
and suitable power source is required, especially a method of power transfer that does not rely on
batteries or wired power sources. Therefore, wireless power transfer (WPT) has been of interest for
recharging wearable devices.

Typically, the WPT systems are divided into two categories, far-field [1] and near-field [2,3]
systems. A WPT system requires a transmitting unit connected to the main source of power and the
transform the electrical power into an electromagnetic field. One or multiple receivers convert the
electromagnetic field to electrical power. WPT technology is also used for energy transfer in wireless
sensor networks (WSNs). In these applications, WSN is limited by the battery lifetime [2]. Flexible and
textile implementations of WPT have been proposed in literature [4,5]. In [6], the authors designed a
wireless power transfer system for a wearable and wireless neurotransmitter sensor recording system.
They used a multi-antenna system as a power transmitter to resolve lateral and angular misalignments
of the receiver antennas and claimed that it provided better effective coverage. In [7], the authors
designed a wearable resonant WPT system for biomedical applications. This system achieved a power
transfer efficiency (PTE) of 5.4% transferring at least 570 mW of power. Nonetheless, low power
transfer efficiency and poor received power stability are the main drawbacks of WPT systems used in
biomedical and wearable application [3]. A wearable textile antenna embroidered on fabric for wireless
power transfer systems is presented in [8]. The authors used a planar spiral coil generated with the
conductive thread on a cotton substrate. This system operates at 6.78 MHz, providing −5.51 dB
transfer efficiency and 12.75 mW power transmission at a distance of 15 cm. The authors in [9]
designed a single band antenna operating at 2.45 GHz intended for wearable and flexible applications.
They took advantage of a thermal deposition technique to fabricate antenna structures on a Kapton
Polyimide platform. In this case, thin-film deposition was obtained by evaporating a source material in
a vacuum allowing vapor particles to travel to the substrate covered with a mask outlining the desired
structure. In the work presented in [10], a low-cost inkjet printing method for antenna fabrication on a
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poly-ethylene terephthalate (PET) substrate is utilized. Their proposed co-planar waveguide (CPW)
fed Z-shape antenna that was operating at 2.45 GHz. The authors measured radiation efficiency of
62% and the gain of 1.44 dBi at 2.45 GHz. An office inkjet printer was used to print silver nanoparticle
ink on the PET substrate to fabricate the antenna prototypes. The authors in [11] fabricated a flexible
dual-band dipole antenna operating at 900 MHz/2.44 GHz. They printed their antenna on Kapton
through screen-printing technology using a polymer-silver conductor. This antenna is considered in its
receiving mode and is connected to a rectifier. This radio frequency (RF) energy harvester was tested
in a wireless power transfer scenario. In this dual-band configuration, the system provides 1 V DC
voltage for a power density of 0.7 mW

m2 at 900 MHz and 1.1 mW
m2 at 2.44 GHz. The efficiency of WPT

systems depends on different factors, such as the geometry of transmitting and receiving elements,
misalignment, bending, and the distance between transceivers. Some of these were investigated
in [12–18].

There are multiple challenges that should be addressed in using the wireless power transfer
method as a source of power for wearable devices. One of the challenges is managing and distributing
power between multiple wearable devices [19]. In [19], a WPT technique that distributes power from a
single or a few sources between items of clothing is proposed. The authors also studied the power
transfer between a pair of trousers and a shirt and provided three models of resonators attached to
fabric on the surface of the clothing. In [20], the authors utilized an RF-based wireless power transfer
method to transfer power to medical implanted devices, such as cardiac pacemakers. They designed a
novel wideband numerical model (WBNM) for implantable antennas to enable RF-powered leadless
pacing. The application of this model and the tissue simulating liquid (TSL) was demonstrated by
the design, development, manufacture, and measurement of a novel metamaterial-based conformal
antenna at 2.4 GHz.

Despite the recent progress in implantable electronic devices, there is still a need for a reliable
miniature power source. In [21] the authors studied the optimum frequency for power transfer to
implanted devices. They concluded that the optimal frequency is above 1 GHz for small receive coil
and typical transmit-receive separations. The author in [22] presented a wireless powering method
that overcomes the challenge of miniaturization of the power source by inducing spatially focused and
adaptive electromagnetic energy transport via propagating modes in tissue. This method has potential
application in a new generation of micro-implants microelectromechanical sensors and logic units.

In [23], WPT is used for wearable radio frequency identification (RFID). The authors of [23]
illustrated that their proposed wireless transmission structure can operate RFID tags built into
smartwatches and claimed that this technology can be adapted to various low-power chips to develop
other smart wearable devices, such as smartphones, glasses, and bracelets. In [24], the authors designed
a wearable motion sensor on a flexible substrate for mobile health applications. They proposed a
compact wireless skin conductance sensor used to monitor the body’s emotional regulation process.
This flexible substrate can conform to the shape of the user’s hand.

The major part of any wireless flexible electronic system is the antenna. The antenna has a direct
influence on the efficiency of the systems [4]. The size of the antenna is usually the limiting factor
in achieving a reasonable power transfer efficiency. Therefore, antennas that can operate at different
bands are desirable, since they can reduce the overall size of the system. In [25] we proposed a
dual-band antenna and analyzed the bending effects on its performance. The antenna operates at
two ultra-high frequency bands (1.6 GHz/3.6 GHz) [25]. The proposed antenna is for wireless power
transfer for biomedical applications. This antenna is considered to be printed on a flexible substrate
and be implanted inside human body tissue at 10 mm depth. The performance of the antenna under
various bending conditions was studied. It was concluded that the proposed antenna respects safety
standards to prevent dangerous effects in humans and the antenna’s performance remains stable under
bending conditions. Following the work in [25], in this paper, we present a flexible antenna, printed
on Kapton, with a total dimension of 15 mm × 14 mm × 0.17 mm, to be integrated with a WPT system.
The design, simulation, fabrication, and measurements of the antenna radiation characteristics are
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presented. A comparison of different types of flexible antennas in the literature and the proposed work
in this paper is shown in Table 1.

2. Design and Fabrication

It is important to choose a substrate material that is tested under bending conditions [26]. Bending,
twisting, and rolling tests of the fabricated antenna prototypes presented in [27] show that Kapton
is a robust material for designing wearable antenna. Kapton is prone to performance degradation
because it resists substrate deformation. In this work, the flexible antenna was designed to be printed
on Kapton. We chose Kapton because it has physical robustness, high flexibility, very high durability,
high mechanical strength, distortion resistance to harsh environments, thus, enhancing the reliability
of the antenna [4,28].

Table 1. Comparison of different types of flexible antennas.

Antenna
Parameter

Proposed
Flexible

Dual-Band
Antenna

Poly-Imide
Based Single

Band Antenna
[27]

Poly-Imide-Based
Dual Band

Antenna [27]

Textile
Antenna

[29]

Paper-Based
Antenna

[30]

Fluidic
Antenna

[31]

Flexible
Bow-Tie
Antenna

[32]

Size (mm2) 15 × 14 26.5 × 25 35 × 25 180 × 150 46 × 35 54 × 10 39 × 25
Thickness (mm) 0.17 0.05 0.05 4 0.25 1 0.13

Band Dual Single Dual Dual Single Single Single
Frequency

(GHz) 2.5/4.5 2.4 2.5/5.2 2.2/3 2.4 1.85 7.6

Substrate Poly-imide Poly-imide Poly-imide Felt fabric Paper PDMS PEN film
Relative

Permittivity (εr) 3.4 3.4 3.4 1.5 3.4 2.67 3.2

Deformability Low Low Low High High High Low
Thermal
Stability High High High Low Low Low High

Fabrication
Complexity

Simple/
Printed Simple/Printed Simple/Printed Complex/

Non-Printed
Simple/
Printed

Complex/
Non-Printed

Simple/
Printed

The printing material and equipment are described as follows [33]:
PCB Printer, Voltera V-One: Voltera V-One shown in Figure 1 was used to fabricate the antenna.

The Gerber file of the antenna design was first imported to V-one software. After calibrating ink and
position, the device was set to dispense ink and solder paste onto the substrates.
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Conductive Ink: The conductive ink from Voltera was used for printing transmitting antenna on
the FR-4. After thermal curing the ink the antenna is ready for testing.
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Flexible Conductive Ink: For the flexible substrate, the flexible conductive ink (from Voltera) that
is compatible with Kapton (polyimide), polycarbonate, PET was used. This specific ink has a curing
temperature of 140 ◦C for 10 min or 120 ◦C for 30 min.

The proposed microstrip antenna design is based on split-ring elements and can be used at two
frequencies (2.5 GHz/4.5 GHz). The dimension of the transmitter (TX) and receiver (RX) antennas are
14 mm × 15 mm, occupying a small area.

In this design, a current-probe feeds the outer ring, and the inner ring is considered to provide
frequency tuning. The design procedure is presented in [34]. To verify the design, antennas were
simulated by ANSYS HFSS (High Frequency Structure Simulator) software [35]. Simulation results
were compared with empirical ones. Figure 2 illustrates the proposed antenna. While the overall
design of the TX and RX antennas is the same, the substrate materials and thicknesses are different.
A rigid substrate (FR-4) with a thickness of 1.56 mm, relative permittivity of 3.66 and dielectric loss
tangent of 0.004 was used for the TX. A flexible substrate (Kapton) with a thickness of 0.17 mm, relative
permittivity of 3.4 and conductivity of 0.00524 S

m was used for the RX. Since the substrate materials
and thicknesses are different, that resonance frequencies of the TX and RX are not exactly the same.
The antennas were simulated in the air and on the muscle tissue. The muscle tissue was assumed to
have the relative permittivity of 49.54, and the conductivity of 4.0448 S

m obtained from the Institute of
Applied Physics (IFAC) database [36].
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Figure 2. Transmitter (TX) and receiver (RX) antennas (a) antenna structure parameters, (b) TX and RX
fabricated prototypes.

3. Experimental and Simulation Results

The location of the receiving antenna while it was placed on a phantom body model is presented in
Figure 3a–c. The experimental setup is depicted in Figure 3d. As it is shown in Figure 4a the reflection
coefficient for the TX antenna (S11) is −19.50 dB at the first resonance frequency and −16.90 dB at
the second resonance frequency. The reflection coefficient for the RX antenna (S22) is −15 dB at the
first resonance frequency and −21.90 dB at the second resonance frequency. These values are taken
from the measurement in free-space. Similarly, Figure 4b presents the reflection coefficient for the TX
antenna (S11) is−17 dB at the first resonance frequency and−17.50 dB at the second one. The reflection
coefficient for the RX antenna (S22) is −23.60 dB at the first resonance frequency and −23.60 dB at
the second one, while it is placed on the muscle tissue. S21 in Figure 4a,b show the measured and
simulated transmission coefficients for free-space and on body phantom cases, respectively.
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It is expected to see a slight difference in resonance frequencies of the TX and RX, due to the
differences in the substrate’s materials. A slight shift in the measured resonant frequencies compared
to simulated ones were due to fabrication discrepancies. Scattering parameters of these antennas
at different resonance frequencies are shown in Table 2. In this paper, S11 represents the reflection
coefficient for the transmitting antenna (TX), S22 provides the reflection coefficient for the receiving
antenna (RX), and S21 is the transmission coefficient.

Table 2. Resonance frequencies (GHz) (M: Measurement, S: Simulation).

Air
(First Resonance)

Air
(Second Resonance)

Phantom
(First Resonance)

Phantom
(Second Resonance)

Parameter M S M S M S M S

S11 2.50 2.32 4.53 4.39 2.50 2.31 4.65 4.44
S22 2.28 2.05 4.43 4.28 2.30 2.03 4.43 4.26
S21 2.48 2.32 4.45 4.28 2.51 2.31 4.68 4.26

The simulated radiation patterns describe how the antenna radiates/receives energy into space.
The antenna patterns are generally shown as plots in polar coordinates so the viewers have the
ability to easily visualize how the antenna radiates in all directions. The ratio of the power gain in
a given direction to the power gain of a reference antenna in the same direction defines the gain of
the antenna [37]. The maximum gain of the TX at 2.5 GHz and 4.5 GHz is −5.34 dBi and −4.49 dBi,
respectively, as shown in Figure 5. The radiation pattern was measured while the TX antenna is printed
on an FR-4 substrate and was compared to simulation ones, as shown in Figure 6. The measured and
simulated antenna specifications are listed in Table 3.

Please note that in this case antennas are not necessarily in the far-field of each other. The antenna
efficiency is not relevant in these applications. Instead, transmission efficiency is a good measure of
the antenna’s performance. We studied the effects of distance on the proposed dual-band antennas’
transmission efficiency. To calculate transmission efficiency, we used (1).

η = |S21|2 × 100 % (1)

where η is transmission efficiency and S21 is the transmission coefficient. The distance was changed
from 5 mm to 50 mm. The transmission efficiency variation was 3.94% for the first resonance frequency
and 2.29% for the second one, as shown in Figure 7. It is concluded that the antenna performance is
stable and does not change significantly due to this change of distance.
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Table 3. Antenna specifications (M: Measurement, S: Simulation).

First Resonance Second Resonance

Parameter E-Plane
M

E-Plane
S

H-Plane
M

H-Plane
S

E-Plane
M

E-Plane
S

H-Plane
M

H-Plane
S

Directivity (dBi) 4.57 3.98 2.94 3.59 4.45 5.21 3.61 4.19
Gain (dBi) −6.45 −5.34 −6.16 −5.34 −5.04 −4.49 −4.76 −4.49

Beam Width (◦) 34 35 24 20 48 55 38 30

The maximum permissible exposure (MPE) in uncontrolled environments for electromagnetic
field strengths is evaluated by the value of specific absorption rate (SAR). Based on IEEE Std. C95.1,
SAR should be below 0.08 W

kg as averaged over the whole body and the maximum SAR value should

be below 1.6 W
kg as averaged over any 1 g of the tissue. However, the maximum SAR value should be

below 4 W
kg as averaged over any 10 g of the tissue for the hands, feet, ankles, and wrists [38]. As it

is indicated in Figure 8, the maximum absorption rate is 0.21 W
kg at 2.5 GHz and 0.57 W

kg at 4.5 GHz.
The proposed antenna is within the safety standards.
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4. Conclusions

It is important to study flexible small antennas for the use of microwave power transfer (MPT)
in wearable applications. In this work, we proposed a dual-band antenna operating at ultra-high
frequency antenna (2.5 GHz/4.5 GHz) for MPT applications. The antennas were based on split ring
resonator. The shape of the antenna provides multiple dimensions that can be optimized for the desired
frequency. We proposed a small antenna with the area of 14 mm× 15 mm. The proposed design can be
modified for other frequency bands. The proposed antenna provides near omni-directional radiation
pattern that is desirable for wearable WPT. The transmission efficiency does not vary significantly
due to change of distance. The SAR values were also examined. In future, the effect of bending and
crumpling on the power efficiency will be investigated. The design will be optimized for various
bending conditions.
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