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Abstract: This paper presents a color-based classification system for grading the ripeness of fruit
using a battery-less Near Field Communication (NFC) tag. The tag consists of a color sensor connected
to a low-power microcontroller that is connected to an NFC chip. The tag is powered by the energy
harvested from the magnetic field generated by a commercial smartphone used as a reader. The raw
RGB color data measured by the colorimeter is converted to HSV (hue, saturation, value) color space.
The hue angle and saturation are used as features for classification. Different classification algorithms
are compared for classifying the ripeness of different fruits in order to show the robustness of the
system. The low cost of NFC chips means that tags with sensing capability can be manufactured
economically. In addition, nowadays, most commercial smartphones have NFC capability and thus
a specific reader is not necessary. The measurement of different samples obtained on different days is
used to train the classification algorithms. The results of training the classifiers have been saved to the
cloud. A mobile application has been developed for the prediction based on a table-based method,
where the boundary decision is downloaded from a cloud service for each product. High accuracy,
between 80 and 93%, is obtained depending on the kind of fruit and the algorithm used.

Keywords: battery-less; color sensor; Near Field Communication; Radio Frequency Identification
(RFID); energy harvesting; food quality; classification; Support Vector Machine (SVM); machine
learning; Internet of Things (IoT)

1. Introduction

The surface color of food is the first element that the consumer observes and has a great influence
on the consumer’s selection [1]. It depends on various factors, including the temperature, humidity,
and biochemical changes that occur during growth, maturation, and postharvest handling and
processing [1]. In consequence, food color is an excellent indicator of its quality because it takes
into account these parameters and it is one of the most broadly measured product quality attributes in
postharvest handling and in food processing research and industry [1].

In recent years, the consumers’ interest in ecological food, the origin, and the traceability have
grown. Radio Frequency Identification (RFID) technology could play an important role in the following
years. With the long marketing chain for many fruits and vegetables that is currently operating,
the use-by-date or recommended date of consumption is difficult to establish for these products.
Surface color can be a good parameter to give an indication of the freshness and flavor quality of fresh
products. For example, the ripening process of tomatoes is clearly characterized by the color evolution
of the fruit surface. After harvesting, the fruit continues to ripen and its color turns from green to red.
Because of transportation time, some matured vegetables and fruits (for example red tomatoes) are sold
to local supermarkets and green fruits can be shipped to shoppers at higher distances [2]. Color has
been used to evaluate fruit maturity for tomatoes [3], bananas [4], apples [5], pears [6], oranges [7],
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and dates [8]. Some colors are associated with food products. For instance, yellow is associated with
ripe bananas in a good state and good tomatoes are associated with red instead of orange.

Food color measurements have been made using a large variety of instruments [1]—
colorimeters [9], spectrophotometers [10,11] and color measurement by computer vision with digital
cameras [3–8,12]. However, sometimes these instruments are expensive or the measurement setups
are not suitable for performing real-time measurements by a consumer in a supermarket or at home.

RFID (Radio Frequency Identification) technology [13] is a well-known wireless application for
traceability, logistics, and access control. It is recognized as a key technology for the development of
the Internet of Things (IoT). In recent years, RFID technology has spread greatly. Traditional barcodes
are progressively being replaced by low-cost RFID tags to track items. Food traceability systems are
currently supported by governments, consumers, and producers [14]. There are different types of
RFID technology (Low Frequency, High Frequency or Ultra High Frequency according to its frequency
band); one which has expanded greatly is the Near Field Communication (NFC) technology. NFC is
a short-range Radio Frequency Identification system (RFID) that allows communication between
devices using the industrial, scientific and medical (ISM ) 13.56 MHz RFID band [13]. Although the
first NFC devices appeared on the market more than a decade ago [15,16], they have not reached
maturity until the massive incorporation for payment systems. Today, NFC technology allows safe fast
data transfer between devices. A simple tap allows the consumers to fulfill contactless transactions
and access to digital content without the need of paring the devices. As a consequence, the presence of
the NFC technology is growing in the Internet of Things (IoT) framework and Industry 4.0 [17–19].
For this reason, smartphones incorporate an NFC reader [20]. This fact has aroused the interest of NFC
technology for the sensor market. NFC tags can integrate low-power and low-cost sensors that can
be read placing the smartphone or reader close to the tag, without the devices needing to be paired.
The data can be saved within the standard NFC message in NDEF (NFC Data Exchange Format) format
and can be read and processed by user-friendly mobile applications. Then, the data can be stored in
cloud services opening a large spectrum of new IoT applications. In addition, the most important
NFC integrated circuit (IC) manufacturers have commercialized NFC IC with an energy harvesting
capability that can provide energy to small sensors and microcontrollers [20].

Colorimeters and spectrophotometers are devices that can be used to measure the color of
a test sample. A spectrophotometer is an instrument with high precision and is adequate for more
complex color analyses because it can measure the spectral reflectance at each wavelength. However,
spectrophotometers are more expensive than colorimeters. Therefore, a colorimeter is the best choice
for quality inspection. In a recent previous work, the authors have presented a battery-less NFC tag
that integrates a colorimeter for PH measurement [21]. Based on this colorimeter another application is
presented here. In this work, a low-cost battery-less NFC tag is designed for food color measurement
and classification based on the measured color and using a smartphone. A simple tap is required
for the color measurement using the smartphone equipped with NFC to read the color measured
by a colorimeter integrated into the tag. This low-cost device can be used to classify different fresh
products in the supermarket or at home. Section 2 summarizes the design of the tag. Experimental
results of different fresh products are presented in Section 3. In order to obtain a robust method that
can be implemented easily in a mobile telephone, different classification methods are compared in
Section 3. Finally, the summary of the work and conclusions are provided in Section 4.

2. System Overview

A system overview is shown in Figure 1. The food being tested is placed over the aperture of the
colorimeter integrated into the NFC tag. Its color is a function of the temperature, humidity, and days
since it was harvested. When the user taps his smartphone equipped with an NFC reader, then the
NFC IC in the tag takes energy from the RF interrogating signal that is used to feed the circuitry and
returns the color measurement as an NFC message. The application in the smartphone reads the
message, classifies the quality of the food, and gives additional information about the origin or some
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other useful information. This information, as well as the parameters needed for food classification,
can be automatically downloaded from the cloud. 
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with an infrared (IR) radiation blocking filter that reduces the IR spectral components of the incoming 
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standard.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Block diagram of the system.

In this work, an NFC tag previously presented in Reference [21] has been modified and evolved.
A schema of the tag is shown in Figure 2. The tag designed consists of a color light-to-digital converter
TCS34725 (TAOS Inc., Plano, TX, USA) from TAOS [22], a white 4150 K LED used to illuminate
the sample, a low-power microcontroller Atmel Tiny 85 (Atmel Corporation, San Jose, CA, USA),
and an NFC chip from ST (M24LR04E-R, STMicroelectronics, Geneva, Switzerland). The TCS34725
has RGB and clear light sensing elements (Figure 2). The light-to-digital converter is performed using
a 3 × 4 photodiode array. This array consists of red-filtered, green-filtered, blue-filtered, and clear
(unfiltered) photodiodes. To improve the accuracy in the color measurement, the TCS34725 is
coated with an infrared (IR) radiation blocking filter that reduces the IR spectral components of
the incoming light. Figure 2b shows the spectral response curves of the four channels of the sensor
from the datasheet [22]. The amplified photodiode currents are simultaneously converted with
a 16-bit analog-to-digital converter (ADC). These three chips are interconnected through an I2C bus.
The NFC IC is connected to a PCB loop antenna, which works at 13.56 MHz, corresponding to the NFC
frequency standard.Sensors 2019, 19, x 2 of 20 
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improves the accuracy and repeatability of the measurements.  
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A photograph of the prototype is shown in Figure 3. A protection envelope has been designed
using a 3D printer. This case can be customized and has a window over the color sensor that is covered
by the fruit. The box is opaque and it is only illuminated by the internal white led. This fact improves
the accuracy and repeatability of the measurements.
Sensors 2019, 19, x 3 of 20 
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Figure 3. Photograph of the tag prototype: (a) Front side, (b) back side, (c) tag within the 3D
printed enclosure.

In the prototype antenna, a square loop of 50 mm × 50 mm printed on FR4 PCB was designed
with the Keysight Momentum electromagnetic simulator. It consists of 6 loops with individual widths
of 0.6 mm. The tag’s antenna inductance (La) is measured with a Vector Network Analyzer (VNA) and
its value is 2.9 µH, in agreement with the simulations. A tuning capacitance (Ctun) of 15 pF is added to
the internal capacitance of the IC (CIC = 27.5 pF for M24LR04E-R) to adjust the resonance frequency (fr)
at 13.56 MHz according to the expression:

fr ≈
1

2π
√

La
(
CIC + Cp + Ctuning

) (1)

where Cp considers the layout parasitic capacitance, which includes the antenna capacitance and
the parasitic capacitance due to the interconnections between the antenna and the NFC IC. Finally,
the resonance frequency is checked with a Vector Network Analyzer (VNA), measuring the S11

parameter by using another loop antenna approached to the tag.
Due to the limitation on the power that the NFC IC can harvest from the RF signal, a low-power

microcontroller must be used to receive the data from the colorimeter IC and save the data in the
internal memory of the NFC IC. In the prototype designed in this work, the Atmel 8-bit AVR ATtiny85
microcontroller is chosen. Among its features, it stands out that this microcontroller can work down
to 1.8 V at 1 MHz. The clock speed has been chosen at 1 MHz to reduce the current consumption
to approximately 300 µA at 3.3 V. The current consumption of each component is shown in Table 1.
The total current consumption of the tag is around 3 mA, which is under the 5 mA that the NFC IC can
harvest from the RF. Part of this consumption is due to the white led used to illuminate the sample.

Table 1. Current consumption and components cost.

Component Current Consumption (µA) Approximate Cost for Large Quantities ($)

M24LR04E 400 0.3
TCS34725 235 1.5
LED 2000 0.03
ATTiny85 300 1.0
Case and other passive
components - 1.0

Total 2935 3.9
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For this power consumption, a read range up to 2 cm is obtained depending on the smartphone
used as a reader. For example, Figure 4a shows the measured output voltage of the NFC IC harvesting
output. It can be observed that it stays nearly constant at 3 V until the average magnetic field reaches
the minim value (Hmin). Below this value, the voltage at the input of NFC IC is not enough for the
right RF to DC conversion and the harvesting output quickly vanishes. The average magnetic field
(Hav) can be measured with an antenna with a known antenna factor. In our case, the same antenna
used in the tag is used as a test antenna. The tag is replaced by the test antenna and the input antenna
impedance (Zin) is measured with a VNA. The antenna factor (AF) is calculated using [20]:

AF =
Z0 + Zin

j2π f µ0Z0 A·N (2)

where Z0 is the reference impedance (50 Ω), f is the frequency, A is the loop area, N is the number of
turns of the loop and µ0 is the vacuum magnetic permeability.

After the antenna is known for each distance, the average magnetic field is obtained from the
Root-Mean-Square voltage (VRMS) calculated from the measured power at the carrier frequency with
a Spectrum Analyzer connected to the test antenna.

Hav(ARMS/m) = VRMS·|AF| (3)

Figure 4b shows that the antenna factor changes with the distance to the mobile due to the
presence of metal (a smartphone with metallic case is used). The current induced in the metal reduces
the effective magnetic flux and therefore the inductance and the antenna factor decrease when the
antenna is closer to the metal. The average magnetic field is shown in Figure 4c. This read range
corresponds to a measured minimum magnetic field of 1.1 A/m (Figure 4a) [20,21]. The bandwidth is
determined by the NFC standard (standard ISO15693 in this case).

Theoretically, as the data rate between sensor and reader is not excessively high, the bandwidth
could be reduced. Consequently, coils with high-quality factors to increase energy transfer efficiency
can be designed. However, the loaded quality factor of the tag is low [20,21] and it is determined
by the low IC equivalent resistance. Nevertheless, this low-Q factor has an advantage because the
system is more robust to the detuning due to the proximity of metals (metallic case of the modern
smartphones) or high permittivity materials (for example the body).
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Figure 4. (a) Voltage of the harvesting NFC IC output in (V) as a function of the distance to the mobile
reader; (b) Measured antenna factor as a function of distance to the mobile reader; (c) Measured
magnetic field in ARMS/m as a function of the distance to the mobile reader.
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The battery-less system presented is based on low-cost commercial integrated circuits. Due to
the wide diffusion of NFC systems, the cost of NFC IC and the low-power microcontroller are smaller
than 1 $. The price of the colorimeter IC is around 1.5 $. Thus the overall cost of the tag including
the envelope can be under 5 $ considering large volumes of production (see estimation in Table 1).
This cost is noticeably lower than professional colorimeters or spectrometers that are typically starting
from 600–1000 $. In addition, the presented system is easy to use and is highly customizable depending
on the final application. The lack of battery is another advantage because it avoids the need to replace
or recharge the batteries whereas, enlarging the durability of the devices and avoiding the component
with higher cost. In addition, the batteries contain toxic components that can contaminate the food in
addition to generate non-recyclable waste.

3. Experimental Results

In order to test the system, different typical fruits (bananas, and red and golden apples) were
measured with the NFC colorimeter. Several samples on different days at room temperature and
within the fridge were tested. The objective was to classify the quality of the pieces of fruit depending
on the number of days outside the fridge and using the color information. A fruit is considered to
belong to the good class if the days at room temperature outside the fridge are equal to or less than
six. The aim is to find a simple but accurate method that, after a training process performed by the
product manufacturer, the consumer can apply using a smartphone without sophisticated tools like
Matlab. The calibration was done by a different colorimeter (same model but a different one) but
connected directly to the computer, through the programing connector. The data is transferred to
the database to perform the training of the classifiers. The samples are taken in different positions to
consider the variations of color on the surface. It is important to note that the samples have been kept
considering typical conditions (typical range of temperatures and humidity) that the end user will
find. To ensure these steps it is preferable that the calibration is carried out by the manufacturer in
a qualified laboratory.

The color of an object can be described by several color coordinate systems (called color spaces).
Figure 5 shows the representation of the RGB, HSV, and CIELab color spaces. The first decision is
to choose the color space. The most popular is RGB (red, green, and blue), which is used in video
monitors. The raw RGB information given by the colorimeter is rarely used in the literature on food
classification. HSV [23] and Lab [24] are alternative representations of the RGB color model designed
to be more closely aligned to the way human vision perceives color-making attributes. HSV and Lab
color spaces are the most used in the literature for this application [25–27]. The most frequently used is
the CIELab color space, due to its uniform color distribution and because its color perception is closest
to that of the human eye. The color in the CIELab color space is determined by three values: L* is the
lightness, and a* and b* are the green-red and blue-yellow color components, respectively. Humans
identify a colored object through its chromaticity and brightness [3]. The chromaticity can be further
divided into two parts: Hue and saturation [3]. HSV is a cylindrical representation where the angle
represents the hue, starting at 0◦ for red, the height is the value and the saturation is given by the
distance to the cylinder axis (see Figure 5b).

The ratio a/b was used as a color index in apples, tomatoes, citrus, and carambola fruit [1]. A high
correlation between peel color related to maturity and Hunter’s a/b ratio for mangos has been found
in Reference [28]. However, this ratio is a function of the hue, which is the angle that can be computed
from ratio atan(a/b). Therefore, we decided to use the HSV model in this work.
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Colorimeters have been used in other applications with good accuracy compared to other color
measurement systems such as spectrometers [29,30]. However, it is needed to check the repeatability
and accuracy of the measurements. It has been investigated through the measurement of three samples
with different colors. Each sample has been measured 200 times with three colorimeters using the
same IC model. Table 2 summarizes the main results. This table shows the average values of each
HSV sample, the normalized standard deviation with respect to the maximum range of the parameter,
and the normalized maximum difference between the colorimeters. It can be observed that the
differences and the deviation is smaller than the typical difference observed with the days. The error is
uniformly distributed, showing that the main source of error is discretization noise due to the internal
analog to digital conversion in the colorimeter IC. The difference in the HSV values between different
ICs are small (typically under 1%). It is assumed that the calibration and the measurement by the
final user is done with the same model of colorimeter to improve the repeatability. However, small
differences can be found between colorimeters and spectrometers [30].

Table 2. Repeatability of the measured HSV parameters of three color samples.

Color Sample 1
(Red)

Sample 2
(Green)

Sample 3
(Blue)

Average HUE 0.31 150.41 205.34
Normalized HUE deviation 0.09% 0.03% 0.12%

Normalized Difference HUE between sensors 0.06% 0.19% 0.46%
Average Saturation parameter 0.62 0.32 0.58

Normalized Saturation deviation 0.6% 0.14% 1.03%
Normalized Difference Saturation between sensors 1.06% 1.04% 1.00%

Average Value 0.62 0.38 0.47
Normalized Saturation deviation 0.47% 0.64% 0.45%

Normalized Difference Value between sensors 0.4% 1.0% 0.70%

Figure 6 shows the histograms of HSV measurements of a golden apple as a function of the days
and the ripening conditions (in the fridge and at room temperature, respectively). Three kinds of
fruit are considered (bananas, red apples, and golden apples). The measurements were taken with
the colorimeter of the NFC tag. In Figure 7 the Cumulative Distribution Function (CDF) of the hue
and saturation parameters for the golden apple in the fridge and at room temperature as a function
of the number of days is shown. It can be observed that the color variation is smoother for the fruit
conserved in the fridge than that at room temperature. Therefore, the ripeness grade is also a function
of the environment parameters. Figures 8–11 show the histograms of HSV measurements and CDF
of the hue parameter for the banana (Figures 8 and 9) and the red apple (Figures 10 and 11). Similar
behavior is obtained for the red apple case. In the case of banana, the fruit is degraded very fast for
more than nine days at room temperature. This fact can be appreciated better in the variation of the
saturation value for the banana at room temperature. As a conclusion, the combination of hue and
saturation value can be used to study the degree of ripeness.
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(d) as a function of the number of days.

HSV and CIELab values were studied in order to select the most suitable values to analyze the
ripeness state of the fruit. Table 3 shows the average of 100 samples for each fruit stored at room
temperature, comparing the measurements of the first day (day 0) against the measurements after
a few days (day 15 for apples, and day 9 for bananas). The ∆% row shows the percentage increment
of each parameter, taking into account the range of each parameter. It can be observed that the best
combination is obtained using the H and S values. Hue changes 1.6% for red apples, 5.4% for golden
apples and 8.7% for bananas; whereas saturation (S) changes 2% for red apples, 12% for golden apples
and 42% for bananas. However, the variations are smaller using CIELab color space, with differences
between 0.1% and 2% for L, 1.2% and 4.3% for parameter a* and 1.4% and 8.2 for parameter b*.
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Table 3. Average readings of HSV and L*a*b of 100 samples. Comparative change of each parameter
over time.

Fruit Days H S V L* a* b*

Golden Apple
Day 0 59.4 0.48 0.40 41.1 −7.3 26.6
Day 15 40.0 0.60 0.46 40.9 3.6 30.2

∆% 5.4 12.00 6.00 0.1 −4.3 1.4

Red Apple
Day 0 17.4 0.58 0.51 37.9 20.6 22.1
Day 15 23.2 0.60 0.51 39.4 17.6 25.8

∆% 1.6 2.00 0.00 1.5 1.2 1.4

Banana
Day 0 41.2 0.55 0.44 40.0 2.0 27.1
Day 9 72.5 0.13 0.36 38.0 −2.4 6.0

∆% 8.7 42.00 8.00 2.0 −1.7 8.2

Extracting and selecting features helps to improve a machine learning algorithm by focusing
on the data that are most likely to produce accurate results. The challenge is to find the minimum
number of features that will capture the essential patterns in the data. From the histograms presented
above, it can be concluded that the hue angle and saturation are good choices. The variation over
time is higher compared to the value parameter. Another possibility is to apply Principal Component
Analysis (PCA) analysis to find the principal components in order to reduce the number of features.
However, PCA is not considered to simplify the implementation in a mobile environment because it
can increase the computational complexity. The next step is to select a machine learning algorithm.
No single machine learning algorithm works for every problem; therefore, the best algorithm is
found by exploring the datasets for different algorithms. The comparisons were performed using
the statistics and machine learning toolbox in the Matlab R2017a software. The training is performed
using a computer with Matlab and ideally should be performed by the manufacturer or a laboratory;
however, once the training is finished, the parameters are sent to the cloud server, from where the
consumer can download the parameters that are necessary for predicting the class. Therefore, as the
prediction step will be made on a mobile, the simplicity of the algorithm and minimal tuning play
an important role. Another possibility is that a cloud server executes a program that returns the results
as a function of the color measurement. However, mobile computing is preferred. Two classes were
considered: Good state (days < 6) and bad state (days >= 6) assuming that the fruit is outside the
refrigerator. Other intermediated classes can be defined if necessary. Half of the measurements in the
dataset were used for training and the other half were used for testing the prediction. In this work the
following algorithms are considered—linear SVM [31], linear discriminate analysis (LDA) [32], Naive
Bayes [33], decision tree [34] and Nearest neighbor [35]. Neuronal networks are not included because
they often require a lot of tuning parameters.

Although SVM and LDA have the same boundary decision (a line), their assumptions are different.
LDA assumes that data are distributed normally. SVM is a powerful algorithm that does not introduce
any assumptions into the data [31]. The LDA algorithm is somewhat sensitive to outliers because it
uses all the data in the set to estimate the covariance matrices [32]. On the contrary, SVM uses a data
subset that includes those data points that lie on the separating margin. The data points used for
optimization are called support vectors because they determine how the SVM discriminate between
groups and thus support the classification.

The Naive Bayes classifier is based on Bayes’ theorem assuming that the predictors are
independent random variables within each class. Even if this assumption is not followed, it usually
works well [33] and it is widely used.

The Decision Tree Classifier is a simple and widely used classification technique. The Decision
Tree Classifier repetitively divides the working area (plot) into subparts by identifying lines. In general,
decision trees are constructed via an algorithmic approach that identifies ways to split a data set based
on different conditions. It is one of the most widely used and practical methods for supervised learning.
Other types of non-parametric supervised learning methods are the decision trees [34] that are often
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used for classification and regression problems. The objective is to obtain a model based on simple
decision rules based on the characteristics of the data that predict the value of an objective variable.
Decision trees divide the feature space into axis-parallel rectangles or hyperplanes.

The nearest neighbor search locates the k-nearest neighbors or all neighbors within a specified
distance from certain query data points, based on the specified distance metric. A point is assigned to
the most common class in the k nearest neighbors, where k is a small positive integer [35]. The simple
case is for k=1, where the point is assigned to the class of the nearest neighbor point. One of the
simplest decision procedures that can be used for classification is the nearest neighbor (NN) rule.
This classifies a sample based on the category of its nearest neighbor.

In order to avoid introducing any bias in the classification results, the dataset is composed of the
same number of measurements each day (100 measurements). These samples have been obtained in
random positions of the surface of the fruits to take into account their heterogeneous composition.
In the preliminary results, 12 fruits per day are measured. Another fruit that is not included in the
training dataset is used for testing. Figures 12–17 show the decision regions found for each algorithm
superposed on the scatter plot of the training measurements of the dataset.

To explore the tradeoff between different kinds of misclassification, a confusion matrix is used.
Table 4 summarizes the confusion matrix calculated with different methods—linear SVM, Naive-Bayes,
decision tree, and Nearest Neighbor. In order to compare the methods, the accuracy is also included.
The accuracy of the confusion matrix is computed using (4) and the results of accuracy for each feature
are illustrated in the last column in Table 4.

Accuracy(%) = 100
TP + TN

TOTAL DATA
(4)

Table 4. Confusion matrix for ripeness grading identification for different classifiers.

Fruit Classifier TP % FP % FN % TN % Accu. %

Golden
Apple

Naive Bayes 73.66 6.67 26.33 93.33 83.50
Linear Discriminant Analysis 73.00 8.67 27.00 91.33 82.17

Decision Tree 76.33 12.33 23.67 87.67 82.00
Nearest Neighbor 81.33 13.33 18.67 86.67 84.00

Nearest Neighbor k = 5 80.00 13.67 20.00 86.33 83.17
SVM 68.00 2.00 32.00 98.00 83.00

Banana

Naive Bayes 90.00 4.00 10.00 96.00 93.00
Linear Discriminant Analysis 90.50 5.00 9.50 95.00 92.75

Decision Tree 84.50 3.50 15.50 96.50 90.50
Nearest Neighbor 87.00 13.00 13.00 87.00 87.00

Nearest Neighbor k = 5 87.00 3.00 13.00 97.00 92.00
SVM 90.50 5.50 9.50 94.50 92.50

Red apple

Naive Bayes 73.33 46.67 26.67 53.33 63.33
Linear Discriminant Analysis 86.67 40.00 13.33 60.00 73.33

Decision Tree 63.33 40.00 36.37 60.00 61.67
Nearest Neighbor 60.00 66.67 40.00 33.33 46.67

Nearest Neighbor k = 5 80.00 36.67 20.00 63.33 71.67
SVM 96.67 90.00 3.3 10.00 53.33

QDA 86.67 26.67 13.33 73.33 80.00

The highest accuracy is obtained for the banana and the worst for the red apple. In the case of the
golden apple, the two features (hue and saturation) are clearly correlated because all the training points
fall along a line. Therefore, a single feature (for example the hue or using PCA decomposition) can be
used for classification. A smooth variation of the color is found as a function of the time. The decision
boundary found for all classifiers is a perpendicular line to this line. Accuracies of about 82–84% are
obtained depending on the classifier algorithm considered. In the case of the banana, as it can be observed
from the histogram, the color remains nearly constant for the first days, and then starts to degrade fast
from the sixth day. The change in the color is in both hue and saturation features and the relation is not
so linear as in the case of the golden apple. However, the two classes are clearly separable and high
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accuracy is obtained for all the classifiers. The last case is more complicated to classify because the color
is not homogeneous. This fruit has regions of red but other regions are close to yellow. To avoid this
problem only the red region is considered and the points are filtered before the training in the range of
hue < 50◦. If a point falls outside this range, the application asks the user to repeat the measurement in
another point in the red region. After outliers have been filtered, the color degradation is smooth as in
the case of the golden apple. However, due to the heterogeneous distribution of the color on the surface,
the accuracy obtained for the different classifier algorithms is considerably lower than in the previous
cases. Only LDA and Nearest Neighbor with k = 5 obtained reasonable values of 73 and 71%, respectively.
An improvement is found if a quadratic discriminant analysis (QDA) is used, achieving an accuracy of
80% because the boundary decision can be described better for a parabolic function.

Machine learning applications can be deployed in production systems on desktops, in enterprise IT
systems (either onsite or in the cloud), and embedded systems. For prediction, the linear SVM, LDA or
QDA give an analytic boundary decision function (a line or quadratic function) that only needs to know
the polynomial coefficients to define the decision region. The evaluation of the algorithm in the other
methods requires the training data from the server. In addition, it requires the implementation in JAVA, C,
PHP or another language in the mobile environment or in the cloud. In order to avoid this problem, a
table (or image) can be downloaded from the cloud service that is used to interpolate the results.
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Figure 12. Decision boundaries and scatter plot (class 1 squares, class 2, crosses) for the golden apple.
(a) Naive Bayes, (b) linear discriminant analysis, (c) classification tree and (d) Nearest Neighbor (k = 5).
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Figure 13. Decision boundaries and scatter plot (class 1 squares, class 2, crosses) for the banana.
(a) Naive Bayes, (b) linear discriminant analysis, (c) classification tree and (d) Nearest Neighbor (k = 5).
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Figure 14. Decision boundaries and scatter plot (class 1 squares, class 2, crosses) for the red apple.
(a) Naive Bayes, (b) linear discriminant analysis, (c) classification tree and (d) Nearest Neighbor (k = 5).
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Figure 15. Decision boundaries and scatter plot (class 1 squares, class 2, crosses) for the golden apple.
(a) Naive Bayes, (b) linear discriminant analysis, (c) classification tree and (d) Nearest Neighbor (k = 5).
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Figure 16. Decision boundaries and scatter plot (class 1 squares, class 2, crosses) for the banana.
(a) Naive Bayes, (b) linear discriminant analysis, (c) classification tree and (d) Nearest Neighbor (k = 5).
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Figure 17. Decision boundaries and scatter plot (class 1 squares, class 2, crosses) for the red apple.
(a) Naive Bayes, (b) linear discriminant analysis, (c) classification tree and (d) Nearest Neighbor (k = 5).

An Android application has been developed to analyze the sample and show the result to the
user. The operation flow is described in the flowchart of Figure 18. When the application is launched it
connects to a server to obtain a list of available fruits and downloads an image and some information
about each of them. Then it shows the list of the possible fruits to analyze (Figure 19a), the user selects
the fruit and a message appears to place the smartphone over the tag (Figure 19b). When the tag is
triggered, it performs the color reading, and sends the Near Field Communication Data Exchange
Format (NDEF) message with the HSV and RGB values to the smartphone, which processes the
message and shows the result on the screen (Figure 19c). The hue and saturation values are calculated
to extrapolate the point using the image previously downloaded, which represents the decision
boundaries of the training (Figure 19d). When the user pushes over the image of the fruit a new
screen is open (Figure 19e), where he can consult additional information about the product such as
the origin, date of collection, web links, etc. The application obtains the resolution and the minimum
and maximum values of hue and saturation for each image. This makes it possible to check the color
of a specific point of the classification matrix and determine the class the measured color belongs
to. The application sends a warning to the user when the point is outside the decision boundaries,
because the analyzed point falls on some area with high concentration of pigments or there is a defect
on the surface with different color. After that, the user can select another point (see the flowchart in
Figure 18). This method is computationally cheap on the reader side. Furthermore, the fact that the
axis boundaries and the image resolution are retrieved from the server makes it possible to adapt this
system to any kind of image, no matter which classification algorithm has been used or how many
classes it contains, whereas the colors of each class are well differentiated.
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Figure 18. Flowchart of the mobile application. 
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Figure 19. Phone screen of the developed application. (a) Fruit selection, (b) screen indicating to tap
the tag, (c) representation of the detected color, (d) decision boundaries of the training, (e) additional
user information.

Figure 20 shows a smartphone with the main screen of the application after measuring the color
of a red apple that is on top of the 3D printed enclosure that contains the tag.
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4. Conclusions

In this work, a system for classifying the fruit ripeness grade based on the color measured with
a battery-less NFC tag and read from a mobile phone is presented. The tag integrates a microcontroller,
a colorimeter, a led, and an NFC IC. The tag is powered by the energy harvested from the mobile.
Experimental results show that the ripeness grade is a function of time and environment conditions
(especially the storage temperature). This work uses HSV color space for classification. It is observed
that the main parameters that change are the hue and saturation, which are used as features for the
classification. Different classification algorithms have been compared in order to show the robustness
of the system. Linear discriminant analysis and nearest neighbor work well in all cases. The proposed
system is a low-cost solution compared with expensive spectrometers. In addition, the measurement is
not influenced by external illumination, and therefore the measurements are repeatable in comparison
with computer vision systems based on mobile cameras. A simple table-based method is proposed
to avoid increasing the complexity of implementing the software in the mobile application when
the boundary decision regions are not described by analytical functions, such as the case of the
nearest neighbor classifier. A drawback of the presented colorimeter is the small size of the analyzed
area. If large defects or pigments with different color fall in this area, the points are treated as
outliers and the measurement must be repeated. The portable device and algorithm described in this
work could be extended to another applications, such as obtaining the grade of ripeness of the fruit
during the harvesting, whenever the classification algorithms were trained with samples of a different
grade of maturation. This work shows the potential of sensors based on NFC technology for novel
IoT applications.
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