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Abstract: An indoor map is a piece of infrastructure associated with location-based services.
Simultaneous Localization and Mapping (SLAM)-based mobile mapping is an efficient method
to construct an indoor map. This paper proposes an SLAM algorithm based on a laser scanner and
an Inertial Measurement Unit (IMU) for 2D indoor mapping. A grid-based occupancy likelihood
map is chosen as the map representation method and is built from all previous scans. Scan-to-map
matching is utilized to find the optimal rigid-body transformation in order to avoid the accumulation
of matching errors. Map generation and update are probabilistically motivated. According to the
assumption that the orthogonal is the main feature of indoor environments, we propose a lightweight
segment extraction method, based on the orthogonal blurred segments (OBS) method. Instead of
calculating the parameters of segments, we give the scan points contained in blurred segments a
greater weight during the construction of the grid-based occupancy likelihood map, which we call
the orthogonal feature weighted occupancy likelihood map (OWOLM). The OWOLM enhances the
occupancy likelihood map by fusing the orthogonal features. It can filter out noise scan points,
produced by objects, such as glass cabinets and bookcases. Experiments were carried out in a library,
which is a representative indoor environment, consisting of orthogonal features. The experimental
result proves that, compared with the general occupancy likelihood map, the OWOLM can effectively
reduce accumulated errors and construct a clearer indoor map.

Keywords: SLAM; orthogonal weighted occupancy likelihood map; IMU-aided laser scan matching;
2D indoor mapping

1. Introduction

Establishing an accurate and clear indoor map is a basic requirement of Indoor Navigation and
Location-Based Services (INLBS). Mobile mapping is a highly efficient method for constructing an
indoor map. Simultaneous Localization and Mapping (SLAM) is a popular and applicable method for
mobile mapping in a GNSS-denied area, especially indoor environments [1,2].

SLAM estimates the pose and map in an unknown environment simultaneously [3]. According
to the type of sensors, the SLAM techniques can be classified into vision-based and range-based
approaches. Vision-based SLAM uses monocular, stereo or RGBD cameras to accomplish navigation
and mapping and can obtain rich texture information [4–8]. While it is the cheapest approach, there
are some disadvantages that limit its applications in indoor mapping, such as its sensitivity to lighting
conditions, computational cost for processing large amounts of image data and the necessity for accurate

Sensors 2019, 19, 1742; doi:10.3390/s19071742 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7180-7627
http://www.mdpi.com/1424-8220/19/7/1742?type=check_update&version=1
http://dx.doi.org/10.3390/s19071742
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1742 2 of 15

calibration [9]. Range-based SLAM using sonar or laser sensors are applied in most indoor mapping
techniques [9–12], because of its advantages of low complexity of data acquired and insensitivity to
lighting conditions [9]. In this paper, Light Detection and Ranging (LiDAR) is utilized, which is one
of the most popular ranging sensors, with a high ranging accuracy for SLAM [13,14], and which is
utilized in many SLAM-based mapping applications [15,16].

There are two different major map representation methods with different positioning approaches.
One of them is a feature-based map, in which the features of the indoor environment mainly
include points and line segments. Point features can be detected by vision sensors, but for LiDAR,
the line segment features are more detectable [1,9]. The positioning is completed using feature
matching [1,17–24]. Feature extraction and association are the important steps for feature matching,
which increases the complexity and may result in errors. Moreover, there may be no features in a
laser scan. Compared to feature matching, the scan matching utilizes two or more consecutive frames
of scan points directly for positioning. The classical scan matching algorithm is classical Iterative
Closed Point (ICP) [25]. There are many improved algorithms, based on ICP, such as Polar Scan
Matching (PSM) [26] and Iterative Closed Line (ICL) [27,28]. These methods calculate the relative
position of consecutive pairs of scans, but the errors will accumulate rapidly over time. To overcome
this problem, a grid-based occupancy likelihood map, which is an alternative method, is utilized to
store the historical data, and scan-to-map matching is proposed to find the optimal position [29–35].
The key to this approach is how it generates the gird-based occupancy likelihood map. Scan-to-map
matching is one of the most popular methods for indoor positioning and mapping, such as Hector
SLAM [32] and Google’s Cartographer [34]. One of the scan-to-map matching algorithms with an
occupancy likelihood map is Maximum Likelihood Estimation (MLE) [11,13,14,29,30]. In our work,
we utilize MLE for scan-to-map matching.

While scan-to-map matching can achieve positioning directly, without feature extraction and
association, some non-geometric or noise scan points produced by the objects, such as glass cabinets
and bookcases, will affect the process involved in finding an optimal rigid-body transformation and
decrease the accuracy. Moreover, the generalized occupancy likelihood map contains all the information
collected by sensors, which includes useful structure information and noise information. It cannot
clearly represent the indoor environment. In artificial environments, line segments are the principal
elements and can provide considerable geometric information about the indoor environment. Using
line features for positioning, the accuracy of localization will be enhanced [19]. Kuo et al. proposed
a hybrid approach to enhance grid mapping by line matching and, for SLAM, utilized scan-to-map
matching and line feature matching together [19]. Feature matching and scan matching still work
independently. In fact, the line feature information could be utilized in generalizing the occupancy
likelihood map. Then, scan-to-mapping can be enhanced, without extra computing complexity.

In the approaches using line segments, the parameters and covariance matrix of the line segments
are calculated by the points that constitute a line segment [17–23]. This process compresses the data
information of the scan points into the line parameter, which increases the computing complexity and may
introduce errors, when the line segments are not very standard. It is better to use the points that constitute
a line segment directly for mapping. The lines in most indoor environments are considered parallel or
orthogonal to each other. This constraint is exploited to select line segments using various approaches in
order to improve the robustness of the orientation and filter out many dynamic objects [21–23].

Inertial Measurement Units (IMUs) have been applied in many SLAM systems, primarily for
attitude estimation [35–37]. The accurate attitude and orthogonal constraint can be combined to extract
the orthogonal line segments efficiently. In this paper, a 2-D LiDAR and a commercial-grade IMU are
utilized for 2D indoor mapping. An IMU-aided scan matching method is proposed for an orthogonal
weighted occupancy likelihood map (OWOLM).

Compared with existing LiDAR-based indoor mapping solutions, this paper offers two major
contributions. First, a new line segment extraction method is proposed, based on attitude-aided
blurred segments, and this method combines the attitude and orthogonal constraint to extract the
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orthogonal quickly, without calculating the parameters of the lines. Second, the blurred segments are
given a higher weight in generalizing the occupancy likelihood map, which can effectively reduce
accumulated errors and construct a clearer indoor map. The remainder of this paper is organized as
follows: Section 2 describes the methods utilized in this research; Section 3 introduces the indoor field
tests and discusses the experimental results; and Section 4 draws conclusions.

2. Methods

2.1. Algorithm Overview

A common laser scan matching algorithm finds the optimal rigid-body transformation T that
aligns the current laser scan St at time t with the previous one St−1 at time t−1. This method only
considers two sequential laser scans, and when they are applied iteratively for all laser scans one by
one, the pose drifting problem would deteriorate due to accumulated matching errors, which will
affect the accuracy of the next matching.

The 2D space region of interest is gridded. The MLE is a grid-based and probabilistic scan
matching method. It matches current scan St to a grid-based occupancy likelihood map Mt−1, instead
of only matching pairs of scans St−1 and St. Mt−1 is generated by all the previous scans, from 1 to t−1,
and stores the likelihood value of each grid cell in the 2D space region. According to Bayes Rules,
assuming the independence of each scan point of St, the sum likelihood value of St is computed as:

P(St
∣∣∣Mt−1) =

∑
x∈St

P(x
∣∣∣Mt−1) (1)

where P(x|Mt−1) represents the probability that the scan point x ∈ St drops in the Mt−1 at that location.
The current scan St is matched against the map Mt−1 by accumulating all the scan points. Due to the
motion of our robotic platform, the LiDAR coordinate system varies over time as LiDAR’s dynamic
position and attitude in the 2D space region. To match S against the map Mt−1, we need to find the best
rigid-body transformation T∗ from the LiDAR coordinate system of the current scan St to that of the
map Mt−1, which is calculated by maximizing the likelihood value of the laser scan St according to:

T∗ = argmax(P(T ∝ St
∣∣∣Mt−1) (2)

where T ∝ St is the set of St laser points, transformed by the rigid body transformation T.
Therefore, there are two key issues to complete MLE-based scan matching: the generation of the

occupancy likelihood map from all previous scans and an optimization framework to find the optimal
rigid-body transformation. In terms of the first issue, some strategies were proposed to determine
the likelihood value. One commonly used method is determining the likelihood value P(x|Mt−1) by
the distance d(x,Fclosest) of point x ∈ St from the closest environment feature Fclosest using the Gaussian
probability model:

P(x
∣∣∣Mt−1) ∝ exp(−d(x, Fclosest)/σ) (3)

where σ is the standard deviation of the sensor measurement noise. In 2D indoor mapping by 2D
LiDAR, the environmental features mean point features at intersections and line features (contours of
walls, tables, cupboards, etc.). Several studies [11,14,31] used point features to calculate the likelihood
value. The map stores all points from the previous scans. The distances of each point x in the current
scan St from the closest stored point x’ in the map are computed. Equation (3) is reconstructed as:

P(x
∣∣∣Mt−1) ∝ exp(−d(x, x′)/σ) (4)

However, this approach probably fails in some situations, because it attempts to find
correspondences for all points in the scans, even though a number of points may not correspond to the
current scan. A contour is another feature of the main 2D structure of indoor environments, which is
comprised of line segments [11,14]. In this contour-based approach, the contours are constructed by
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the pairs of adjacent points. Moreover, the grid cells, crossed by the contours, are considered to be the
robust features. For the point x in the current scan St, its occupy likelihood, along with the distance to
the closest contour C, extracted from all previous scans, is calculated, which is similar to Equation (3):

P(x
∣∣∣Mt−1) ∝ exp(−d(x, C)/σ) (5)

However, due to the influence of the measurement error, the contour information determined
by two neighboring points may introduce a large error, as it might be a pseudo-contour. The line
information should be extracted in a different way to calculate the likelihood value. In our work,
orthogonal line segments are extracted after the optimal rigid-body transformation is found. Then,
they are utilized in generating and updating the occupancy likelihood map.

In terms of the second issue, there are two main ways to find the optimal rigid-body transformation:
brute search and gradient ascent methods. The gradient ascent method may get stuck at the
local minimum, while the brute search method is a global search and is more robust. Moreover,
a multi-resolutions map and narrow search window can greatly improve the search efficiency of the
brute search method in time-expensive real-time application. Thus, the brute search method is selected
in our work. In addition, the attitude and orthogonal constraint can be combined by fusing IMU
and LiDAR, which improves both the efficiency and accuracy of scan matching. IMU can provide
an accurate navigation solution, especially in relation to the attitude. Based on Tang’s platform [35],
we utilized a 2D LiDAR and a commercial-grade IMU sensor, with MLE and the brute search method
in an indoor environment, to achieve a highly accurate rigid-body transformation solution.

The flowchart of our proposed SLAM algorithm is illustrated in Figure 1. Before the robotic
platform starts to operate, we initialize its position and attitude for both IMU and LiDAR. During
the operation, for the first laser scan S1 at time step 1, IMU-aided scan matching is skipped, as there
is no prior map, but for all later laser scans, from time step 2, IMU-aided scan matching is applied
to find the best rigid-body transformation to match St to map Mt−1, so that all the laser scans are
projected to the coordinate system of LiDAR at time step 1 (base coordinate system). Secondly, after St

is transformed into the base coordinate system, orthogonal line segments are extracted. At last the
OWOLM can be generated by the operation of 2-dimension Gaussian blurring, taking advantage of
the orthogonal line segments. All the above steps are repeated to robustly achieve laser scans and
the final OWOLM. Details of IMU-aided scan matching, orthogonal line segments extraction and the
generation of occupancy likelihood map will be introduced in the following section.
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2.2. IMU-aided Scan-to-Map Matching

IMU-aided Scan-to-Map Matching is based on an IMU and LiDAR fusion model. IMU can
estimate the position, attitude and velocity of the system from the raw data: velocity and angular
(pitch, roll and yaw) increments. Because of the drift of the accelerometer and gyroscope in IMU,
the IMU outputs contain errors that cause the navigation results to rapidly drift. To solve this problem,
an error propagation model, via first-order Taylor series expansion, is defined as follows:

δr = [δpn, δvn, δεn, δba, δbg] (6)

u = [δfb, δωb] (7)

δ
•
r = Fr + Gu (8)

where n means the navigation coordinate system, which is north-east-down (NED), with its origin
at the IMU sensor center in our work; and b is the body coordinate system, which is also defined at
the IMU sensor center, with its x-axis positioning forward, y-axis, right and z-axis, down. δr is the
error state, including the errors of position (δpn), velocity (δvn), attitude (δεn) at the navigation frame
and drift of accelerometer (δba) and gyroscope (δbg), δfb and δωb are the white noise of the specific
force, measured by an accelerometer, and body angular rate, measured by a gyroscope, respectively,
and F and G are two matrices that vary with time (more details about F and G can be found in [38]).
According to the theory of the linear system, Equation (8) is discretized in time as:

δrt = Φt|t−1δrt−1 + ηt−1 (9)

Φt|t−1 = Φ(t− 1, t) ≈ e

t∫
t−1

F(t)dt
≈ I + Ft−1∆t (10)

ηt−1 ≈ Gt−1Wt−1 (11)

where Φt|t−1 is the state transition matrix, ηt−1 is the Gaussian distributed vector, I is the identity matrix,
Wt−1 is the driven response of the input white noise at time t−1, and Q reflects the standard deviation
of IMU.

We use the MLE-based scan matching method, mentioned above, to get rt and T* (calculated from
x, y, yaw, which are from rt) from LiDAR scans. Similar to Equation (3)/(4)/(5), here we do t calculate
the distance, but instead find the grid cell in which the scan point locates and gets the likelihood value
from the map Mt−1 directly. Then, a brute search algorithm is applied for Equation (2) to estimate
rt and T*. For a large area, the brute search algorithm is time-consuming. To improve its efficiency,
a multi-resolution map is used. The resolution of each fine grid-map is 4 times the preceding coarse
one. The best estimation of rt−1 and T* at the last time step is used as the initial value of the brute
search algorithm for the next level, until the bottom one. Note that, using this strategy, we must know
the likelihood map at all levels so that the process in Section 2.4 updates the map at all levels, which
are used as the reference maps for the next incoming scan.

Equation (2) finds the T* that optimally matches the current scan to the reference map. To get a
more accurate position, velocity, attitude and rigid-body transformation, we use an IMU and LiDAR
fusion model, based on the Kalman Filter (KF). We put the above rt, calculated by the MLE-based scan
matching as rt,Lidar, and rt, from IMU motion mechanization as rt,IMU. As IMUs’ frequency is higher
than that of LiDARs, KF filters the results when there is LiDAR information rt,Lidar. The difference
between rt,IMU and rt,Lidar is used as observation information zt in KF for δrt in Equation (9). By
Equation (9), the prediction of δrt, represented as δr−t , is calculated by δrt−1. In EK, the state vector is
updated by zt:

δrt = δr−t + Kt(zt −Htδr−t ) (12)

P−t = Φt|t−1Pt−1ΦT
t|t−1 + Qt (13)
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Kt = P−t HT
t (HtP−t HT

t + Rt)
−1

(14)

Pt = (I−KtHt)P−t (15)

where Kt is Kalman gain, Ht the observation matrix which maps the state vector to observation vector,
Pt−1 and Pt error covariance of state vector, P−t the prior estimate of Pt, Rt the error covariance of
observation vector. Finally:

rt = rt, IMU − δrt (16)

rt includes the compensated position and attitude, from which the final T* can be calculated. rt is also
used as the initial value of the brute search for the next time step.

2.3. Orthogonal extraction by blurred segments

Commonly used line segmentation methods were summarized and compared in terms of their
performances by Nguyen et al. [39], among which the Split-and-Merge method [40] and Incremental
method [41] performed better than other methods [39] due to their high efficiency and accuracy.
However, these two methods mainly use the residual test of line fitting for line segmentation and do
not consider the orthogonal constraint in indoor environments. Moreover, some surfaces, such as book
shelves in an indoor environment, are not smooth. Because of the unevenness of surfaces and the
presence of noise, the blurred segment is an outstanding method for line segmentation.

The blurred segment is defined as a finite set of discrete two-dimensional points between line
ax + by = µ and line ax + by = µ+ w. The parameters of a blurred segment can be obtained by the
support line of the convex envelope of this set of points [42]. If we consider the orthogonal constraint,
after converting the current scan points according to the optimal rigid-body transformation, most of
the line segments should be parallel to the coordinate axes, which means a = 0 or b = 0. The constraint
blurred segment is called the orthogonal blurred segment (OBS). The blurred segments parallel to the x
coordinate axe are determined by the points between line y = µ and line y = µ+ v, and those parallel
to the y coordinate axe are determined by the points between line x = µ and line x = µ+ w. In our
work, the width v equals w. To extract the OBSs with a certain width v or w, the sets of points whose
x-coordinates vary less than w, or whose y-coordinates vary less than v, are selected. The OBS is more
reliable when the set contains more points, so the set which contains the most points is chosen to be
split and tested. Algorithm 1 shows the pseudo-code of the proposed OBS extraction algorithm for
OBSs parallel to the x coordinate axis. The OBSs parallel to the y coordinate axe are extracted similarly.
Figure 2 illustrates this process more vividly.Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 

 

 

Figure 2. An illustration of OBS extraction for the y-coordinate. 

Generally, n and l are larger, the OBS is more reliable, while some blurred segments would be 
missed. In the split process, Δxthreshold is determined by the range and angle sampling interval. We do 
not calculate the parameters from the points by line fitting. In contrast, we first determine the 
segmentation parameters and then find the points that constitute the OBS. This method can find the 
main line segments in an indoor environment quickly. 

 

Algorithm 1: Pseudo-code of OBS extraction, where OBSs are parallel to x coordinate axe 

Requires: 1. Coordinates (x, y) of scan points 
2. Width v of OBS 
3. Minimum number n of points in OBS 
4. Minimum length l of OBS, which is 1 in this paper 
5. Maximum distance between the adjacent points in OBS Δxthreshold 
sort the scan points according to the y-coordinates in ascending order 
for each point with y-coordinates y 
collect the set of points in the y-coordinates between y and y + v 
end for 
Find the set with the maximum number N of points 
if N > n 
sort the set of points according to the x-coordinates in ascending order 
split the set if the adjacent x-coordinates Δx >Δxthreshold 
else 
exit the loop 
end if 
for each set 
if the length > l 
save this set of points 
remove the point from the scan points 
end if 
end for 
 

2.4. OWOLM Generation 

The occupancy likelihood map is the fundamental component for the scan-to-map matching 
algorithm. It provides the known background information, acquired from the previous laser scans. 
Grid-point occupation is a simple method to determine the likelihood value of each grid [13]. Tang et 
al. have combined this method and the contour-slope method and proposed a simple 
line-feature-based and three-level strategy [11]. These methods pre-define the likelihood value 
empirically, without extracting any features. In this paper, we propose a likelihood value 

Figure 2. An illustration of OBS extraction for the y-coordinate.

By the above process, OBSs can be quickly extracted only by the numerical comparison of
coordinates. From Algorithm 1, we can see that the priori parameters include the width of OBS v or w,
the minimum number n of the included points, the minimum segment length l and the maximum
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distance ∆xthreshold between the adjacent points in OBSs. v or w is determined by the accuracy of
ranging, which is usually 2δ, where δ is a ranging error, to guarantee that most of the scan points in the
orthogonal can be contained in OBSs. n and l adapt to the environment and can be determined using a
trial-and-error scheme.

Generally, n and l are larger, the OBS is more reliable, while some blurred segments would
be missed. In the split process, ∆xthreshold is determined by the range and angle sampling interval.
We do not calculate the parameters from the points by line fitting. In contrast, we first determine the
segmentation parameters and then find the points that constitute the OBS. This method can find the
main line segments in an indoor environment quickly.

Algorithm 1: Pseudo-code of OBS extraction, where OBSs are parallel to x coordinate axe

Requires: 1. Coordinates (x, y) of scan points
2. Width v of OBS
3. Minimum number n of points in OBS
4. Minimum length l of OBS, which is 1 in this paper
5. Maximum distance between the adjacent points in OBS ∆xthreshold
sort the scan points according to the y-coordinates in ascending order
for each point with y-coordinates y
collect the set of points in the y-coordinates between y and y + v
end for
Find the set with the maximum number N of points
if N > n
sort the set of points according to the x-coordinates in ascending order
split the set if the adjacent x-coordinates ∆x >∆xthreshold
else
exit the loop
end if
for each set
if the length > l
save this set of points
remove the point from the scan points
end if
end for

2.4. OWOLM Generation

The occupancy likelihood map is the fundamental component for the scan-to-map matching
algorithm. It provides the known background information, acquired from the previous laser scans.
Grid-point occupation is a simple method to determine the likelihood value of each grid [13]. Tang et al.
have combined this method and the contour-slope method and proposed a simple line-feature-based
and three-level strategy [11]. These methods pre-define the likelihood value empirically, without
extracting any features. In this paper, we propose a likelihood value determination method, according
to the 2-D Gaussian blurring operation. Each point of a new laser scan is projected onto the map,
after the optimal rigid-body transformation. The occupancy values of 9 grid cells around a laser point
are calculated as Figure 3. In the figure, the black dot is the center point of the grid cell, which is
closest to the scan point (represented by a blue ellipsoid). The occupancy likelihood is calculated by
the x-coordinate (see 3(a)) and y-coordinate (see 3(b)) independently using the Gaussian assumption.
In 3(a), grid cells in the first column have the same likelihood value, which is calculated by:

Px1x2 =
1

σx
√

2π

∫ x2

x1

exp(−
(x− xc)

2

2σx2 )dx (17)
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where σx represents the standard deviation in the x axis, and xc is the x-coordinate value of the center
grid. Similarly, Py1 y2 is calculated by:

Py1 y2 =
1

σy
√

2π

∫ y2

y1

exp(−
(y− yc)

2

2σy2 )dy (18)

Then, the new occupancy likelihood values of the nine grid cells are calculated, as in 3(c). If the
blue ellipsoid shaped scan point is located in the OBS, mentioned above, σx and σy are set to much
smaller values, which means that this scan point has a larger weight and higher probability of being
located around grid cells.

From Mt−1, we get the prior occupancy likelihood values of these nine grid cells, marked as P1
′,

P2
′ . . . P9

′ in row-major order, as shown in Figure 4a. Then, the updated occupancy likelihood values
of these 9 grid cells are calculated, as shown in Figure 4b. After all the scan points of the current scan
at time step t update the Mt−1 iteratively by repeating this process, a new OWOLM Mt is generated.
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3. Experimental Results

3.1. System overview

In order to verify the performance of the algorithm described in the following Section 3,
a LiDAR/IMU integrated system (Figure 5) was designed and implemented. The measurement
sensor LiDAR and Inertial Measurement Unit (IMU) are integrated on the mobile mapping platform to
form the hardware of the system. A “UTM-30LX-EW” LiDAR, manufactured by Hokuyo Company
(Osaka, Japan), was adopted for the platform. The LiDAR operated at 40 Hz and had a scanning angle
range of 270 degrees, with an angular resolution of 0.25 degrees, a maximum effective range of 30 m
and a range accuracy of ±30 mm at 0.1 m ~ 10 m and ±50 mm at 10 m ~ 30 m. The measurement
accuracy of the LiDAR is in centimeters, and it is a medium precision device. The model of IMU is
MTiG, which is a MEMS level device, and the bias stability of IMU gyroscopes is about 200.0 ◦/h,
the bias stability of IMU accelerators is about 2000 mGal (1 Gal = 1 cm/s), and the sampling frequency
of the IMU is 200 Hz.
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3.2. Results

Field tests were carried out in the library of the Finnish Geospatial Research Institute main
building. Dynamic experiments along the aisles of the bookcases were conducted to evaluate the
precision and effectiveness of our indoor mapping. Figure 6 shows the comparative results of the
occupancy likelihood maps generated by the traditional OLM approach and our proposed OWOLM
in a representative indoor scene. On the left, OWOLM (a) and OLM (b) are presented; on the right
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side, five scene photos of three places in the OWOLM are shown. In this test scene, there are many
bookcases in the library and several glass cabinets in the corridor, as shown in the scene photos in
Figure 6. Comparing Figure 6a,b, our OWOLM is much clearer and more distinct than the traditional
OLM. More details on this will be discussed below.
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The bookcases contain various layouts of books, with different shapes or empty shelves, which
may introduce noise into indoor mapping. In our 2D map, bookcases are shown as rectangles, such
as the perspectives from places number 2 and 3 in Figure 6. Comparing the mapping results of the
bookcases in Figure 6a,b, we can see that, in our OWOLM approach the noise is reduced, and the
contours of the bookcases are straighter, while the contours of the bookcases in 6(b) have more burrs or
connection errors. This comparative result proves that our proposed method is more effective than the
traditional OLM method, because it has far fewer connection errors in relation to contours.

In our test scene, in the place numbers 4 and 5 in Figure 6a, there are several tables and some
scattered chairs around the tables. From the occupancy likelihood map in Figure 6b, we can see that,
in this situation, the map generated by the traditional OLM approach looks messy and irregular. In our
OWOLM, we used the orthogonal blurred segment, with the priori setting of parameters, the mapping
of scattered tables and chairs, leaving out the unnecessary details and only keeping the main contours.

Clear glass may also introduce errors into LiDAR by providing missing data or inaccurate data.
Figure 7 is a zoom-in of place number 1 in Figure 6. We can obviously observe that the traditional
OLM method is vulnerable to the negative effect of the glass. Many grid cells around the contours of
glass cabinets have high, but wrong, occupancy likelihood values, with bright intensities. In contrast,
our OWOLM method filters out LiDAR’s inaccurate data, caused by the glass, through orthogonal
constraint, so that the contours of the glass cabinets are more distinct, and the mapping accuracy
is improved.
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approach. Brighter intensities indicate higher likelihood values.

Localization in the front-end of the SLAM system has accumulated errors. If the accuracy of
localization is improved, the accumulated errors can be reduced, and the mapping precision can
be further improved. In our experiment, we designed a loop trajectory, as shown in the Figure 6a.
Our platform started and ended at the same point. If the accumulated error is small, the occupancy
likelihood map, generated at the beginning of the trajectory, should coincide well with the map
produced in the end phase of the mapping.

Figure 8 shows a zoom-in of the mapping results near the start/end point. In Figure 8b, there is
an obvious bias in the occupancy likelihood maps from the two mapping phases. We analyzed the
mapping data at four places in Figure 8b and found that the accumulated error in the localization
achieved a sub-meter level. However, in Figure 8a, the bias is largely decreased. The noise scan points,
produced by objects, such as glass cabinets and bookcases, are filtered out by our OWOLM method,
and the IMU and LiDAR fusion model is used, so the localization precision in the front-end is largely
improved, and the mapping accuracy is improved as well. To further evaluate the performance of our
OWOLM method, we used a Terrestrial Laser Scanner (TLS) to measure and map our test scene, as a
reference. The mapping accuracy of TLS is at the millimeter level and can evaluate our mobile mapping
results using the OWOLM approach. 18 feature points are chosen to analyze the mobile mapping
results. Using the coordinates of the 18 correspondence feature points in OWOLM’s coordinate frame
and TLS’s coordinate frame, the transformation parameters of the two coordinate frames is calculated.
Three transformation parameters are considered: translation along the X and Y axis and rotation.
The transformation parameters transform the coordinates of the 18 feature points from OWOLM’s
coordinate frame to TLS’s coordinate frame, as shown in Figure 9. The residual is calculated using the
difference in the coordinates between TLS’s coordinate frame in the X (residual_x) and Y (residual_y)
direction and the Euclidean distance (residual), as shown in Table 1. We can see that most of the points
have residuals of only 1cm or 2cm or 3cm.

Table 1. The residual error (cm) of the 18 feature points. Residual_x and residual_y are residual errors
of the x-coordinate and y-coordinate, respectively, and residual is the root mean square of residual_x
and residual_y.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

residual_x 5.8 −1.8 2.5 2 1.4 1.9 −12.5 −0.6 −1.6 2.9 1 0.3 1.3 −8.5 6.2 −1 3.5 −2.7

residual_y −1.5 0.1 1.5 0.4 2.2 −4.7 −6.7 0.3 1.7 −1.1 0.5 1.5 2.6 −7.4 14.5 1.8 −6.2 0.7

residual 6 1.8 2.9 2.1 2.6 5 14.2 0.7 2.3 3.1 1.1 1.6 2.9 11.3 15.7 2.1 7.2 2.8
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4. Discussion

In many cases, such as in a large area, closed-loop detection is difficult or unavailable.
The accumulated error of the front-end in SLAM could be reduced by closed-loop detection in
the back-end of SLAM. In our experiments, we did not use closed-loop detection but an IMU and
LiDAR fusion model.

Our OWOLM approach, based on IMU-aided scan-to-map matching and orthogonal blurred
segments, can largely improve the localization and mapping accuracy of SLAM. It can filter out the
inaccurate scan points, caused by bookcases and glass, such as glass cabinets or windows, from laser
scans. Additionally, our IMU and LiDAR fusion model also improved the attitude and position
estimation. Due to its theoretical basis, our proposed IMU-aided OWOLM approach is suitable for
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indoor environments, where orthogonal features are rich. Fortunately, the main indoor structures have
abundant orthogonal features, such as walls, doors, desks, cupboards and so on.

In the process of generating orthogonal blurred segments, parameters are defined before mapping.
These parameters may affect the results of segments and the final OWOLM. For example, different
maximum distances between adjacent points would generate line features of different lengths. Therefore,
these parameters are empirical and vary, depending on the indoor environment.

5. Conclusions

Based on the data, collected by a 2D laser scanner and IMU mounted on a mobile platform, a new
indoor SLAM algorithm via scan-to-map matching, aided by the grid-based occupancy likelihood map,
was proposed in this paper. Instead of matching two sequential laser scans to find the optimal rigid
body transformation, we used IMU-aided scan-to-map matching, which was based on an IMU and
LiDAR fusion model, to alleviate the accumulated matching error. First, the scan-to-map matching
method, based on the occupancy likelihood map and a brute search algorithm, was proposed to find
a rough transformation, which was combined with IMU motion mechanization by a Kalman filter
to get an optimal transformation. Then, a blurred segment was applied to extract the orthogonal in
the indoor environment. A 2-D Gaussian blurring operation was applied to update the likelihood
value of the occupancy likelihood map, where orthogonal blurred segments gained higher weights.
Finally, the orthogonal feature weighted occupancy likelihood map (OWOLM) was generated. Field
test results, in several data sets, acquired from a typical indoor environment, demonstrated that our
proposed SLAM algorithm can provide high-precision positioning and mapping results.
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