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Abstract: The bulk tobacco flue-curing process is followed by a bulk tobacco curing schedule, which is
typically pre-set at the beginning and might be adjusted by the curer to accommodate the need
for tobacco leaves during curing. In this study, the controlled parameters of a bulk tobacco curing
schedule were presented, which is significant for the systematic modelling of an intelligent tobacco
flue-curing process. To fully imitate the curer’s control of the bulk tobacco curing schedule, three types
of sensors were applied, namely, a gas sensor, image sensor, and moisture sensor. Feature extraction
methods were given forward to extract the odor, image, and moisture features of the tobacco leaves
individually. Three multi-sensor data fusion schemes were applied, where a least squares support
vector machines (LS-SVM) regression model and adaptive neuro-fuzzy inference system (ANFIS)
decision model were used. Four experiments were conducted from July to September 2014, with a total
of 603 measurement points, ensuring the results’ robustness and validness. The results demonstrate
that a hybrid fusion scheme achieves a superior prediction performance with the coefficients of
determination of the controlled parameters, reaching 0.9991, 0.9589, and 0.9479, respectively. The high
prediction accuracy made the proposed hybrid fusion scheme a feasible, reliable, and effective method
to intelligently control over the tobacco curing schedule.

Keywords: multi-sensor data fusion; electronic nose; bulk tobacco curing schedule; least squares
support vector machines; adaptive neuro-fuzzy inference system

1. Introduction

The tobacco drying process has a great influence on the quality of cigarette smoke [1,2].
The methods of tobacco drying are various all around the world, such as solar energy drying [3],
hot water drying [1,4], and the flue-curing method. In China, the flue-curing method is mostly
applied, which incorporates airflow and temperature control in bulk curing barns [5]. Specifically,
temperature control refers to keeping the dry-bulb temperature (DBT) and wet-bulb temperature
(WBT) of the curing barn consistent with the bulk tobacco curing schedule, which is designed based on
the three-stage curing theory. In this theory, according to the changes in the chemical and physical
characteristics of tobacco leaves, the bulk tobacco curing process could be divided into three stages,
namely: leaf-yellowing, leaf-drying, and stem-drying. During curing, the curer, who is a professional
worker, observes the tobacco curing condition so as to adjust the bulk curing schedule in order to make
sure the fragrant tobacco leaves be cured out.

Previous research on the tobacco curing control process mainly focused on how to automatically
implement temperature control in bulk curing barns. Fuzzy-based control methods have been mostly
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employed [4,6,7]. These methods keep the measured DBT or WBT in the curing barn consistent with the
set DBT or WBT of the bulk curing schedule. It has been noted that if the measured DBT is greater than
the set DBT, the heating apparatus of the curing barn will be turned off, otherwise it will be turned on.
In the above work, how to set DBT and WBT of tobacco curing schedule is not discussed. The setpoint
values of the DBT and WBT are the key parameters adjusted by the curer in the curing schedule.
As though they are pre-set at the beginning of the flue-curing process, during curing, the curer still
needs to adjust the setpoint values depending on the specific curing condition of the tobacco leaves in
the curing barn. For example, if the tobacco leaves have almost turned to yellow while the setpoint
value of the DBT still remains 42 ◦C, the curer might change it to 48 ◦C in order to ensure that the stems
of the tobacco leaves will be cured to yellow. Therefore, it is necessary and meaningful to research
how to intelligently set DBT and WBT in the curing schedule during the curing process. In one of
the few studies that involved an intelligent bulk tobacco curing control, Zhang, Jiang, and Chen [8]
proposed an intelligent tobacco curing control technique based on color recognition by means of the
fuzzy logical method, but the approach to utilizing the color features to control the flue-curing process
was not presented. Wu, Yang, and Tian [9]; Wang et al. [10]; and Wu, Yang, and Tian [11] applied
the flue-curing control methods that intelligently set the DBT and WBT of the bulk tobacco curing
schedule based on real-time image features, which could not fully reflect the characteristics changes of
the tobacco leaves.

Aiming to achieve intelligent control, the curer’s operation for adjusting the curing schedule
should be analyzed first. As the bulk tobacco curing schedule is pre-set beforehand, the tobacco
leaves might not be cured properly if following this pre-set curing schedule [12]. In fact, the curer’s
changes to the pre-set curing schedule to make it suit the actual curing condition, which involves
adjusting the setpoint values of DBT and WBT, as well as the duration from current curing stage to the
next. The most significant factor that will lead a curer to make adjustments in the curing schedule
is the color of the tobacco leaves. Specifically, if the tobacco leaves have not turned to yellow at the
end of the yellowing stage, the curer may increase the setpoint value of DBT or make the setpoint
change to a longer time. To simulate this feature, a machine vision system was employed in this study.
In addition, the chemical odor released by the tobacco leaves has important information for analyzing
the curing process. In the traditional way, the curer might not smell the odor of the tobacco leaves for
the toxicity of the odor during the curing process [13]. The chemicals emitted from the leaves during
the curing process are harmful to the health of the curers. The airborne nicotine concentrations in
the curing barns and the front yard of the curing barn were very high [14]. Many tobacco farmers
had died from a variety of diseases after years of exposure to smoke, including lung or blood cancer,
liver cirrhosis, or kidney failure [13]. An electronic nose (E-nose), which simulates the function of
human’s nose, can solve this problem. It can “smell” what humans smell and what they are not able
to [15–18]. E-noses have been widely used in tobacco-related research, such as for the suppression of
background interference on odor data during tobacco curing [19], and for the identification of cigarette
brands [20–23]. Consequently, this system added an E-nose in order to investigate the odor during
tobacco’s curing. Furthermore, the moisture content of the tobacco leaves is also a key parameter to be
considered, thus a moisture detector was included. Therefore, three types of sensors were applied in
this study, that is, image, gas, and moisture sensors.

The next issue would be how to effectively make use of the multi-sensor data in order to achieve
a good performance in the intelligent control process. Zhang et al. [24] applied the artificial neural
network (ANN) method to process the odor, image, moisture, and other extracted features of the
tobacco to achieve automatic control of the curing process. As a result of the high performance of
the multi-sensor data fusion method on the noise elimination to the process control application [25],
it was chosen in order to analyze the control process of a bulk tobacco curing schedule in this study.
The multi-sensor data fusion method has been widely used in various research areas [17,26–31]. In the
field of artificial sensors’ applications, which are highly related to the present study, a feature level
fusion with principal component analysis (PCA) feature selection method and several pattern analysis
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techniques, such as ANN, linear discriminant analysis (LDA), partial least square (PLS), and support
vector machine (SVM), have been mostly used for food authentication and the on-line monitoring of
food fermentation processes [30,32–34]. These applications mostly employed either a feature level or
decision level fusion method.

Inspired by the aforementioned applications of multi-sensor data fusion, we proposed three
multi-sensor data fusion schemes to implement the intelligent control of a bulk tobacco curing schedule.
The proposed fusion approach could make full considerations for the fused information of gas, image,
and moisture sensors, so that a more accurate determination on the adjustments of the curing schedule
could be achieved.

2. Materials and Methods

2.1. Materials and System Set-Up

A gas sensor, image sensor, and moisture sensor were employed to observe the curing condition
of the tobacco leaves. The framework of the proposed intelligent control method for the tobacco curing
schedule is shown in Figure 1. Three types of sensor data were collected, and all were sent to a computer
to process and analyze. After computer processing the multi-sensor data and deciding how to adjust
the bulk curing schedule, the adjustment decision was sent to the programmable logic controller (PLC),
which received this order and controlled the air blower and vent damper in order to make sure the
measured DBT and WBT of the curing barn would just follow this modified curing schedule.
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Figure 1. Framework of the proposed intelligent control method for bulk tobacco curing schedule.
PLC—programmable logic controller; DBT—dry-bulb temperature; WBT—wet-bulb temperature.

The E-nose prototype (Figure 2) developed in this study was placed outside of the curing barn.
The volume of the chamber in the E-nose is approximately 230 mL, and the sensors array (Figure 3)
was located inside of the chamber. The inlet of the chamber was connected to one port of the three-way
solenoid valves, which featured three port connections and two valve orifices, while the other two
ports of the three-way solenoid valves were separately connected to the gas from the bulk curing barn
and the ambient air that was purified by an air filter. The outlet of the chamber was connected to the
pump. In the present study, the entire odor sampling period was one hour. In the first 15 min, a pump
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evacuated air from the chamber, and the valve of the pure air side was switched on. During this time,
pure air entered the chamber from its inlet, and the gas sensors were expected to have no response.
In the next 10 min, the valve of the pure air side switched off while the valve of the sampling gas turned
on. The air in the bulk curing barn was evacuated into the chamber, and the gas sensors started to
make responses to the volatile organic compounds (VOCs) released by the tobacco leaves during this
period. After that, the sampling gas was blocked, and pure air was evacuated into the chamber again
so as to purge the air in the chamber and to fully clean it. This process lasted another 15 min. In the rest
of the time during the sampling period, the pump was switched off. The response curves of the gas
sensors in one odor sampling period, also known as the original response curves, were similar to the
static response curves [35]. When the pump was working, it evacuated gas from inside the chamber at
the flow rate of 3 L/min. To maintain a relatively stable gas flux, a rotameter was installed between the
pump and chamber. The on or off state of the pump, as well as the switching on or off of the three-way
solenoid valves were controlled by the computer. The sensors array sent odor signals to the signal
amplifier and regulation buffer. These analog signals then were converted to digital signals by a 12-bit
ADC of the electrical circuit, at 3300 samples per second, and were sent to the computer. The computer
processed the measured sensor signals, extracted the odor features, and analyzed them together with
the other sensors’ data in order to achieve the intelligent control of the bulk tobacco curing schedule.
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Figure 3. The sensors array in the chamber of E-nose.

The design of the intelligent E-nose system included the selection of special sensors to measure
the gas compounds in the curing barns. Based on previous extensive investigation on the existing odor
measurement technologies and equipment, as well as on the various sensors available for measuring
odor compounds, 10 gas sensors were selected, and they are listed in Table 1.
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Table 1. Sensors used for the developed electronic nose (E-nose).

Name of Sensor Compounds to be Detected Material

TGS 2600 Hydrogen and carbon monoxide. Metal oxide
TGS 2602 Ammonia, H2S, and toluene. Metal oxide
TGS813 Methane, propane, and butane. Tin dioxide

TGS822 Carbon monoxide, methane, combustible gases, and vapors of
organic solvents. Tin dioxide

TGS825 Hydrogen sulfide. Tin dioxide
TGS826 Iso-butane, hydrogen, ammonia, and ethanol. Metal oxide

WSP2111 Toluene, benzene, alcohol, and acetone. Metal oxide
MQ135 NH3, NOx, alcohol, benzene, smoke, and CO2. Tin dioxide
MQ138 Benzene, n-Hexane, NH3, alcohol, smoke, and CO. Tin dioxide

SP3S-AQ2 Methane, iso-butane, CO, hydrogen, and ethanol. Tin dioxide

A machine vision system was developed in order to sense the image, specifically the color
of the tobacco leaves during curing. The image sampling set-up is shown in Figure 4. A digital
camera (CNB-ZCN-21Z22, CNB Technology Inc., Seoul, Korea) protected by a vacuum insulated shield
(operating temperature range: −50~150 ◦C) with a cloud platform was fixed on the wall of the curing
barns. The cloud platform made it possible to watch and monitor the tobacco leaves at any corner
of the barns. Two water pipes were set around a camera and were used to cool down the camera,
as a high temperature would be achieved during curing, which might affect the image quality of the
camera. During the curing, images of the tobacco leaves were captured every hour, and were decoded
by a video decoder card (DS4004HC, Hikvision Digital Technology Co., Ltd., Hangzhou, China) and
sent to the computer, where the images were saved in bitmap format with the effective pixels number
at 752 × 582. The image data were collected in such a way that the tobacco curing process could be
protected and maintain its integrity.
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Figure 4. Image sampling set-up.

The moisture data of the tobacco leaves were retrieved from a moisture meter (MC-7825P, Dalian
Teren Industry Instruments Co., Ltd., Dalian, China). Two pin probes were inserted into the stem
of the tobacco leaves to detect the water loss during curing. The moisture meter was connected to
the computer with a RS-485 to RS-233 converter, and the moisture data were measured every hour
during curing.
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2.2. Data Sets

The odor, image, and moisture data were collected through two test curing barns from July to
September 2014, in Zunyi County, Guizhou Province, China. The tobacco leaves were cured following
a three-stage curing theory. Each test barn (13,000 mm in length and 2600 mm in width) could be
loaded with up to 5000 kg of tobacco leaves. All of the tobacco leaves were laid upon three layers
of bamboo boards and were placed in a random way. The inside of the curing barn loaded with
tobacco at the beginning of the curing process is illustrated in Figure 5. The data obtained from four
experiments with good curing results were used in this research. Each experiment was a complete
curing process. The available data sets are listed in Table 2. The period of each experiment lasts about
one week. From the beginning to the end of the flue-curing process, the odor, image, and moisture data
were collected every other hour by the ways described in Section 2.1. These real-time measurements
might not affect or interrupt the tobacco curing process. The numbers of the measurement points
varied a little for each experiment, and they were 157, 148, 147, and 151 respectively. Thus, a total of
603 measurement points were obtained. During data collecting, the curer’s adjustments in the tobacco
curing schedule were recorded at the same time.

Sensors 2019, 19, x 6 of 20 

 

the tobacco leaves to detect the water loss during curing. The moisture meter was connected to the 

computer with a RS-485 to RS-233 converter, and the moisture data were measured every hour during 

curing. 

2.2. Data Sets 

The odor, image, and moisture data were collected through two test curing barns from July to 

September 2014, in Zunyi County, Guizhou Province, China. The tobacco leaves were cured 

following a three-stage curing theory. Each test barn (13,000 mm in length and 2600 mm in width) 

could be loaded with up to 5000 kg of tobacco leaves. All of the tobacco leaves were laid upon three 

layers of bamboo boards and were placed in a random way. The inside of the curing barn loaded 

with tobacco at the beginning of the curing process is illustrated in Figure 5. The data obtained from 

four experiments with good curing results were used in this research. Each experiment was a 

complete curing process. The available data sets are listed in Table 2. The period of each experiment 

lasts about one week. From the beginning to the end of the flue-curing process, the odor, image, and 

moisture data were collected every other hour by the ways described in Subsection 2.1. These real-

time measurements might not affect or interrupt the tobacco curing process. The numbers of the 

measurement points varied a little for each experiment, and they were 157, 148, 147, and 151 

respectively. Thus, a total of 603 measurement points were obtained. During data collecting, the 

curer’s adjustments in the tobacco curing schedule were recorded at the same time. 

 

 

Figure 5. Inside of the curing barn loaded with tobacco. 

Table 2. Data sets. 

Experiment 

No. 

Experimental 

period 

(day/month) 

Number of 

measurement 

points 

Test curing 

barn 

Tobacco 

stalk 

position 

Type of 

tobacco 

B146705 24/08 – 01/09 157  No. 2 Upper GY2 

B146704 14/08 – 21/08 148 No. 2 Upper GY2 

B146604 14/08 – 21/08 147 No. 1 Upper NJ3 

B146605 24/08 – 01/09 151 No. 1 Upper GY2 

Total number of measurement 

points 
603 ---- ---- ---- 

  

Figure 5. Inside of the curing barn loaded with tobacco.

Table 2. Data sets.

Experiment No.
Experimental

Period
(day/month)

Number of
Measurement

Points

Test Curing
Barn

Tobacco Stalk
Position

Type of
Tobacco

B146705 24/08–01/09 157 No. 2 Upper GY2
B146704 14/08–21/08 148 No. 2 Upper GY2
B146604 14/08–21/08 147 No. 1 Upper NJ3
B146605 24/08–01/09 151 No. 1 Upper GY2

Total number of measurement points 603 —- —- —-

2.3. Controlled Parameters for Intelligent Bulk Tobacco Curing Schedule

Analyzing the controlled parameters is the first step to model the intelligent control of a bulk
tobacco curing schedule. The tobacco leaves were cured following a certain tobacco curing schedule.
Before the curing began, a pre-set tobacco curing schedule was put in the memory of PLC. During the
curing, the curing schedule could be adjusted by the curer as a result of the specific curing condition
of the tobacco leaves. The intelligent control of the tobacco curing schedule means appropriately
adjusting the controlled parameters of the curing schedule according to the information received
from the multi-sensor data, which represent the image, odor, and moisture of the tobacco leaves.
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According to the curer’s operation of the curing schedule, the adjustment includes modifying the
setpoint changing time (tS), which denotes the curing time when the curing process changes from the
current phase to the next; the adjustment of the pre-set value of the DBT, designated as ∆TD; and the
adjustment of the pre-set value of WBT, designated as ∆TW . These controlled parameters are all shown
in Figure 6.
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Figure 6. Controlled parameters for the intelligent control of a bulk tobacco curing schedule.

In order to give a detailed and clear description of the relationship between the controlled
parameters and the tobacco curing schedule, an abridged general view of the tobacco curing schedule
is plotted in Figure 7. The curing schedules in blue are the pre-set ones that are originally put in the
memory of the PLC before curing, while the schedules in red are the adjusted ones that are made by
the curer during curing. If the data is collected at the curing time of the 24th hour, the controlled
parameters will be recorded as follows: tS is 36th hour, ∆TD is 1 ◦C, and ∆TW is 0 ◦C.
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2.4. The Proposed Multi-Sensor Data Fusion Schemes for the Intelligent Control of the Tobacco Curing Schedule

Multi-sensor data fusion can provide a collaborative approach to improve prediction accuracy
by using multiple sensors. In our study, there are the following four steps followed to accomplish
multi-sensor data fusion:

Step 1: Acquire the versatile sensing information of the tobacco leaves during curing, including
the odor, image, and moisture.

Step 2: Extract the multi-sensor data features of the odor, image, and moisture.
Step 3: Apply the proposed multi-sensor data fusion schemes to analyze the intelligent control of

the tobacco curing schedule.
Step 4: Evaluate the multi-sensor data fusion schemes by comparing their performance and

prediction accuracy.
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Three fusion schemes to analyze the intelligent control of the tobacco curing schedule were
applied, including feature level fusion, decision level fusion, and hybrid fusion schemes.

Figure 8 shows the multi-sensor data fusion schemes applied in our study. At the feature
level fusion (Figure 8a), the multi-sensor data of the odor, image, and moisture were collected and
pre-processed so as to extract the corresponding features of the tobacco leaves during curing. The least
squares support vector machines (LS-SVM) regression model was chosen to analyze the intelligent
control of the tobacco curing schedule, and its detailed definition is in Section 2.6. The inputs of
the LS-SVM model are the joint features of odor, image, and moisture. The output is the controlled
parameter of the bulk tobacco curing schedule.
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(b) decision level data fusion; (c) hybrid multi-sensor data fusion. LS-SVM—least squares support
vector machines; ANFIS—adaptive neuro-fuzzy inference system.
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The decision level fusion is shown in Figure 8b. The features of image, odor, and moisture were
extracted and individually input into three different LS-SVM regression models for predicting the
controlled parameter of the bulk tobacco curing schedule, which resulted in three sets of the output,
all of which were then fed into an adaptive neuro-fuzzy inference system (ANFIS) in order to make the
final decision of the adjustment. The ANFIS model will be defined in Section 2.7. The output of the
ANFIS model is still the controlled parameter of the bulk tobacco curing schedule.

The hybrid fusion scheme (Figure 8c) incorporates feature level fusion into decision level fusion.
Four local decisions are made by four LS-SVM regression models, the inputs of which are the image,
odor, moisture, and joint features, individually, which are then put into the ANFIS model to predict the
final controlled parameter.

2.5. Feature Extraction Methods for Odor, Image, and Moisture

The odor features were extracted using the method presented in Figure 9. A valid response of
the gas sensors should be extracted from the original response curves, as the noise and disturbance
that appear when the sampling gas has not entered the chamber yet might impact the odor feature
extraction. Then, after the smooth filtering of the valid response curves, this could be applied to extract
the odor features. The methods of odor feature extraction that are normally used are based on the
basic characteristics of the response curve [36–38]. In this study, integrals at a specific interval from
the response curves were extracted. Integrals may represent the accumulative total of the reaction
degree changing, which also reflects the gas sensor response equilibrium final steady state information,
which is also used to distinguish between the different types and concentrations of odor. The integral
of the response curve is given as follows:

It =

∫ t2

t1

f (t)dt, (1)

where f (t) is the transient response, t1 is the time when the sampling air starts to enter the chamber,
t2 is the time when the sensors recovery completed, and t is the time index from t1 to t2. To simplify
the calculation of Equation (1), the closed Newton–Cotes differential method [39] was used, and given
as follows:

It =

∫ t2

t1

f (t)dt ≈
t2 − t1

6

[
f (t1) + 4 f

( t1 + t2

2

)
+ f (t2)

]
. (2)

Using Equation (2) to extract the integrals of the response curves, 10 entire odor features designated
from O1 to O10 were extracted.
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Figure 9. Odor features extraction method.

During curing, images of the tobacco leaves were taken using the camera fixed on the wall of
the curing barn, and were sent to the computer to process. The image feature extraction method
(Figure 10) involved bilateral filtering and K-means clustering segmentation. The algorithms were
described detailed by Wu et al. [9]. In total, 12 image features were extracted, which were noted as Ravg,
Gavg, Bavg, Havg, Savg, Iavg, Rstd, Gstd, Bstd, Hstd, Sstd, and Istd, where Ravg, Gavg, and Bavg are the mean
values of the red component, the green component, and the blue component in the red, green, and blue
(RGB) color model of the tobacco leaves image, respectively; Havg, Savg, and Iavg are the mean values
of the hue component, the saturation component, and the brightness component in the hue, saturation,
and intensity (HSI) color model of the tobacco leaves image, respectively; Rstd, Gstd, and Bstd are the
standard deviation of the red component, the green component, and the blue component in the RGB
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color model of the tobacco leaves image, respectively; and Hstd, Sstd, and Istd are the standard deviation
of the hue component, the saturation component, and the brightness component in the HSI color model
of tobacco leaves image, respectively.
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As for the moisture feature extraction (Figure 11), the data were collected from the moisture
detector and then denoised using a smooth filter. The moisture feature labeled Mt was extracted.
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2.6. LS-SVM Regression Model

The features of image, odor, and moisture were input into an LS-SVM model to analyze the local
adjustment of the tobacco curing schedule. In this study, the LS-SVM regression model proposed by
Suykens and Vandewalle [40] was applied.

Based on a training data set of N samples
{
xi, yi

}N
i=1, where xi ∈ Rp represents a p–dimensional

input data and yi ∈ R is the output variable that corresponds to xi, the goal of the LS-SVM regression is
to solve the minimization problem, which can be described as follows: min

w,b,e
J(w, b, e) = 1

2 wTw + ϑ
2

N∑
i=1

e2
i ,

s.t. yi = wTϕ(xi) + b + ei , i = 1, 2, . . . , N,
(3)

where ϕ(·) : Rp
→ Rh applies nonlinear mapping from the input space to a higher dimensional feature

space, w = [w1, w2, . . . , wh]
T is the weight vector, ei ∈ R is the error variance, b is a real constant, and ϑ

is the trade-off (or penalty) parameter.
The Lagrangians of the optimization problem of Equation (3) can be formed as follows:

L(w, b, e : α) = J(w, b, e) −
∑N

i=1
αi

{
wTϕ(xi) + b + ei − yi

}
, (4)

where αi ∈ R is the Lagrange multiplier. The conditions for optimality are the following [41]:

∂L
∂w = 0→ w =

N∑
i=1

αiϕ(xi),

∂L
∂b = 0→

N∑
i=1

αi = 0,

∂L
∂ei

= 0→ αi = ϑei, i = 1, 2, . . . , N,
∂L
∂αi

= 0→ wTϕ(xi) + b + ei − yi = 0, i = 1, 2, . . . , N.

(5)
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After the elimination of w and e, the output y(x) corresponding to a new input vector x can be
obtained in the form of the following:

y(x) =
∑N

i=1
αiK(x, xi) + b, (6)

where αi and b can be solved by Equation (5), and K(x, xi) = ϕ(x)T ϕ(xi) is the kernel function of the
LS-SVM model. In this study, radial basis function (RBF) kernel was chosen, which is given as follows:

K(x, xi) = exp
{
−
||x− xi ||

2

σ2

}
, i = 1, 2, . . . , N, (7)

where σ is a constant representing the “width” of this Gaussian function.

2.7. ANFIS Decision Model

At the decision level fusion and hybrid fusion, ANFIS was applied to make the final decision on
the adjustments of the tobacco curing schedule. The inputs of the ANFIS are the local decisions made
by the LS-SVM models. A Sugeno-type fuzzy relation was used in this study, and the linguistic labels
of each input are small, medium, and large. The membership function applied is triangular-shaped
membership function, given as follows:

µAi j(xi) =



0, xi ≤ δi j
xi−δi j
θi j−δi j

, δi j ≤ xi ≤ θi j
ρi j−xi
ρi j−θi j

, θi j ≤ xi ≤ ρi j

0, ρi j ≤ xi

i = 1, 2, . . . , M; j = 1, 2, 3; (8)

where xi is the i-th input linguistic variable, M is the number of the input linguistic variables (for
decision level fusion, M is 3, and for hybrid fusion, M is 4), Ai j is the j-th linguistic label associated
with xi, and δi j, and θi j, and ρi j are the parameters of the triangular-shaped function.

There are five layers in the ANFIS model. They are the fuzzification layer, rule operation layer,
normalization layer, consequent layer, and aggregation layer, sequentially. The output of the ANFIS
model is expressed as follows:

F =
∑3M

k=1
wkhk =

∑
k wkhk∑

k wk
k = 1, 2, . . . , 3M, (9)

where wk is the firing strength of the k-th rule, given as follows:

wk =
∏M

i=1
µAi ji

(xi) i = 1, 2, . . . , M; ji = 1, 2, 3; k = 1, 2, . . . , 3M, (10)

and hk is the consequential output of the k-th rule, which takes the following form:

Rule 1: IF x1 is A11 and x2 is A21 . . . and xM is AM1,
Then h1 = a1

0 + a1
1x1 + a1

2x2 + . . .+ a1
MxM

Rule 2: IF x1 is A11 and x2 is A21 . . . and xM is AM2,
Then h2 = a2

0 + a2
1x1 + a2

2x2 + . . .+ a2
MxM

. . .

Rule k: IF x1 is A1 j1 and x2 is A2 j2 . . . and xi is Ai ji . . . and xM is AMjM ,
Then hk = ak

0 + ak
1x1 + ak

2x2 + . . .+ ak
i xi + . . .+ ak

MxM,

where ak
i is the Sugeno parameter, i = 1, 2, . . . , M; ji = 1, 2, 3; k = 1, 2, . . . , 3M.



Sensors 2019, 19, 1778 12 of 19

2.8. Evaluation of the Performance of the Data Fusion Schemes

To assess the performance of the multi-sensor data fusion schemes, the evaluation parameters of
the coefficient of determination (R2), which is the square of correlation coefficient; root mean square
error (RMSE); and mean absolute error (MAE) are used.

3. Results and Discussions

3.1. Odour Data Pre-Processing Analysis

The pre-processing of odor data was applied. The data were cropped and smoothed, and the
results are illustrated in Figure 12.
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Figure 12. Pre-processing result of the E-nose response data to the air in the bulk curing barn.

3.2. Odor, Image, and Moisture Features of the Tobacco Leaves during Curing

The odor, image, and moisture data, which were collected by the E-nose, image sensor,
and moisture sensor, respectively, were processed by the methods described in Section 2.5. The raw
images of the tobacco leaves at the leaf-yellowing stage are shown in Figure 13, and the moisture
content of the tobacco during curing is illustrated in Figure 14. The features extracted in the five
different stages during tobacco curing are illustrated in the radar chart of Figure 15. The data from
stage 1 to stage 5 were collected at the beginning of the curing, leaf-yellowing stage, leaf-drying stage,
stem-drying stage, and the end of the curing, correspondingly. The feature vectors were normalized to
unit length so as to be appropriately shown in the radar chart.
Sensors 2019, 19, x 13 of 20 

 

  
(a) (b) 

Figure 13. The raw images of tobacco leaves at the leaf-yellowing stage in the different curing phases: 

(a) early phase; (b) middle phase. 

 

Figure 14. The moisture content of tobacco during curing. 

Figure 15. Radar chart of the odor, image, and moisture features in five stages. 

At the early period of curing (stages 1 and 2), the odor features changed a little from the 

beginning to the leaf-yellowing stage. Meanwhile, the strengths of the odor in this period were the 

weakest in five stages, which means that the fragrance and some other VOCs of the tobacco leaves 

had not been released yet at the leaf-yellowing stage. The image features from this period changed a 

lot, especially for the features of Ravg and Havg. Also, the moisture of the tobacco leaves decreased from 

the very beginning to the leaf-yellowing stage. 

At the leaf-drying stage (stage 3), the odor features made the most significant change and became 

the strongest out of the whole curing, indicating that the fragrance and VOCs come out largely at this 

stage, which is a similar conclusion to Song et al. [42]. The image features at this period continued to 

0

0.2

0.4

0.6

0.8

1
O1

O2
O3

O4

O5

O6

O7

O8

O9

O10
RavgGavgBavgRstd

Gstd

Bstd

Havg

Savg

Iavg

Hstd

Sstd
Istd

Mt

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 13. The raw images of tobacco leaves at the leaf-yellowing stage in the different curing phases:
(a) early phase; (b) middle phase.
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Figure 14. The moisture content of tobacco during curing.
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At the early period of curing (stages 1 and 2), the odor features changed a little from the beginning
to the leaf-yellowing stage. Meanwhile, the strengths of the odor in this period were the weakest in
five stages, which means that the fragrance and some other VOCs of the tobacco leaves had not been
released yet at the leaf-yellowing stage. The image features from this period changed a lot, especially
for the features of Ravg and Havg. Also, the moisture of the tobacco leaves decreased from the very
beginning to the leaf-yellowing stage.

At the leaf-drying stage (stage 3), the odor features made the most significant change and became
the strongest out of the whole curing, indicating that the fragrance and VOCs come out largely at this
stage, which is a similar conclusion to Song et al. [42]. The image features at this period continued to
make changes, and the color of the tobacco leaves curing at this stage tended to be fixed. The moisture
feature decreased a lot, and the decreasing amplitude was much larger than that from stage 1 to stage 2.

At the stem-drying stage (stage 4), the odor strength decreased, the image features were made
smaller, and the moisture content of the tobacco leaves continued to decrease.

At the end of the curing (stage 5), the odor strength became strong again, the image features had
nearly no change compared with that at the stem-drying stage, and the moisture content became nearly
0, indicating that the tobacco leaves were cured to be almost dry. The tobacco leaves were cured to be
completely dry after curing [43].

3.3. Performance Analysis of the Proposed Multi-Sensor Data Fusion Schemes

In total, 603 measurement points were obtained from four experiments, of which 25% (151)
were randomly selected for testing and 75% (452) were used for training. For the LS-SVM model,
the optimization routine and cost function were set as grid search and cross validation, respectively.
For the ANFIS model, the max iteration was 1000, the step size was initialized to be 0.05, and all of the
consequent parameters were set to be 0 initially.



Sensors 2019, 19, 1778 14 of 19

The simulation results of tS for the different fusion schemes are shown in Figure 16, and the
corresponding prediction error is shown in Figure 17. It is obvious that the best performance of the
prediction is the hybrid fusion model, for which the prediction results are shown in Figures 16d and 17c.
The feature level fusion scheme provides relatively poor predictions (Figures 16b and 17a), in which
the maximum error achieved 20 h, which is unacceptable for curing hours. The simulation results of
∆TD are shown in Figure 18, and the prediction error is shown in Figure 19. The prediction results of
the feature level fusion (Figure 18b) do not agree with the desired results (Figure 18a). The simulation
results of the decision level fusion and hybrid fusion are quite similar. The simulation results of ∆TW

are shown in Figure 20, and the prediction error is shown in Figure 21. Both of the results made by the
feature level (Figure 20b) and decision level (Figure 20c) fusions are not satisfied. Apparently, the hybrid
fusion scheme (Figure 20d) makes the best performance among the three data fusion schemes.
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3.4. Statistical Comparison

To make a more specific comparison of the different fusion schemes, the detailed statistical
parameters of the test results are listed in Table 3. For the statistical parameters of R2, RMSE, and MAE,
the best performance was made by the hybrid fusion scheme. For a better understanding of the good
performance of the hybrid fusion scheme, PS1 (percentage of tS data with an absolute error smaller than
1 h), PD1 (percentage of ∆TD data with an absolute error smaller than 0.5 ◦C), and PW1 (percentage of
∆TW data with an absolute error smaller than 0.5 ◦C) are also given in the table. According to practical
experience, the higher these percentages, the smaller the effect of these errors on tobacco curing. Tested
by the hybrid fusion scheme, PS1 was 7.3% beyond the decision level fusion scheme and 40.6% beyond
the feature level fusion scheme, while for PD1, an improvement of 5.2% was recorded over the decision
level fusion scheme and a gain of 19.8% was achieved over the feature level fusion scheme. Similarly,
the PW1 tested by hybrid fusion was 12.2% above the decision level fusion and 16% above the feature
level fusion. In Table 3, PS2 (percentages of tS data with absolute error larger than 5 h), PD2 (percentage
of ∆TD data with absolute error larger than 1 ◦C), and PW2 (percentage of ∆TW data with absolute
error larger than 1 ◦C) were also recorded. The higher the values of PS2, PD2, and PW2, the greater
the effect of the error on tobacco curing. The results demonstrate that the prediction performance
of the proposed hybrid multi-sensor data fusion is superior to those obtained by the other two data
fusion schemes.

In addition, we have compared our proposed hybrid fusion scheme with that of Zhang et al. [24].
They used a three-layer neural network trained by a typical back propagation learning algorithm in a
feature level in order to provide the local decision by each kind of the tobacco features and applied a
weighted sum model (WSM) to make the global decision. Tested by the above method, the coefficient
of determination R2 for the controlled parameters of tS, ∆TD, and ∆TW are 0.9636, 0.8472, and 0.7945,
decreasing by 0.0355, 0.1117, and 0.1534, respectively. For tS, there is 15.2% of data with an absolute
error larger than five hours, 13.9% bigger than that obtained by the hybrid fusion scheme, which might
result in an unsatisfactory curing control process, especially when the error occurs at the leaf-yellowing
stage. For the WSM in Zhang et al. [24], the simple multi-criteria decision analysis method is used,
and the weight of each local decision is determined by the relative importance of each characteristic of
the tobacco leaves, that is, odor, color, and moisture, which highly depends on the empirical analysis.

One could tell from the experiment results that the intelligent control of the curing process is
promising in our system. The predicted results for ∆TW still need to be promoted. For commercial use,
the future work of this study should focus on the optimization of the odor data processing to improve
the effectiveness of the odor feature extraction and selection, so that a more accurate control process
might be achieved.
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Table 3. The performance comparison of different fusion schemes on intelligent control of tobacco curing
schedule. RMSE—root mean square error; MAE—mean absolute error; R2—coefficient of determination.

Fusion Schemes Statistical Parameters
Adjustment of the Tobacco Curing Schedule

tS (h) ∆TD (◦C) ∆TW (◦C)

Feature level fusion

R2 0.9962 0.7552 0.7826
RMSE 3.4184 0.8715 1.2105
MAE 1.9085 0.4731 0.5631

PS1/PD1/PW1 (%) 50.7 75 70.7
PS2/PD2/PW2 (%) 12.7 15.3 16

Decision level
fusion

R2 0.9987 0.9183 0.8049
RMSE 2.0279 0.5056 1.1054
MAE 0.8550 0.1560 0.5917

PS1/PD1/PW1 (%) 84 89.6 74.5
PS2/PD2/PW2 (%) 4.7 4.9 12.7

Hybrid fusion

R2 0.9991 0.9589 0.9479
RMSE 1.6521 0.3595 0.5362
MAE 0.6428 0.1268 0.4769

PS1/PD1/PW1 (%) 91.3 94.8 86.7
PS2/PD2/PW2 (%) 1.3 3.3 9.1

4. Conclusions

This study put forward the controlled parameters of the bulk tobacco curing schedule, namely,
the setpoint changing time labeled tS, the adjustment of the pre-set value of the DBT labeled ∆TD,
and the adjustment of the pre-set value of WBT labeled ∆TW , which is significant and important for the
construction of an intelligent bulk tobacco curing system. To fully imitate the curer’s operation of the
adjustments on the tobacco curing schedule, three types of sensors were applied, that is, a gas sensor,
image sensor, and moisture sensor. The odor, image, and moisture features extraction methods, as well
as the way to extract the valid response curves of the gas sensors, were presented. Multi-sensor data
fusion schemes were proposed to analyze the intelligent control of the bulk tobacco curing schedule.

Three multi-sensor data fusion schemes were applied, including feature level fusion, decision
level fusion, and hybrid fusion schemes. The prediction results demonstrate that a hybrid fusion
scheme that incorporated the feature level fusion into the decision level performed best. The coefficient
of determination R2 for tS is 0.9991, 0.9589 for ∆TD, and 0.9479 for ∆TW . There were 91.3% of testing
data with an absolute error less than 1 h for tS, 94.8% of data with an absolute error less than 0.5 ◦C
for ∆TD, and 86.7% of the data with an absolute error less than 0.5 ◦C for ∆TD. The high prediction
accuracy that the proposed hybrid fusion scheme achieved made it a feasible, reliable, and effective
method for the intelligent control of the tobacco curing schedule.
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