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S1. Theoretical treatment of structured fibre pressure sensor 

 

The designed sensor shown in Figure 1a is comprising by matrix, optical fibre with 

fibre Bragg gratings, a spacer, and a rigid base with a rectangular groove. First, only 

mall deformation of all components occurs due to the fracture strain of silica is only 

0.6% [1]. Accordingly, it is reasonable to assume that all components are made by the 

linear-elastic material. Secondly, the optical fibre is well fixed on the rigid base by 

using glues (Aron alpha). The stiffness of the base made of ABS or Invar are three 

orders higher than that of optical fibre or the silicone film. Coupled with the above 

announcements, the fixed optical fibre can be considered as an elastic beam with the 

built-in condition. Thirdly, the film over the groove is simplified as a simply-

supported plate. Because only part of bottom surface of the film is fixed on the base, 

while the top surface of the film is free. Moreover, the thin film is normally soft and 

has very low elastic modulus comparing to that of the base. For those reasons, the thin 

film can be simplified as a simply-supported plate. Fourthly, the groove has a 

sufficient depth, so that the optical fibre will not touch the bottom of the groove during 

deformation. Fifthly, the influences of the spacer on the flexural stiffness on the optical 

fibre and the soft matrix film are neglected. As well as the deformation of spacer in the 

compression direction is also neglected. Moreover, the spacer has a sufficient 

thickness, so that the optical fibre does not contact with the thin film on the zone over 
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the groove. Sixthly, the wavelength of FBGs induced by the pressure applied from the 

spacer can be neglected comparing to that inducing by axial deformation. To construct 

the theoretical model, several assumptions are made. From these assumptions, three 

cases will be included: a simply-supported rectangular plate with a load uniformly 

distributed over a rectangle zone shown in Figure 1b, which is corresponding to the 

shape of the spacer, a simply-supported rectangular plate under a uniform pressure 

shown in Figure 1c, and a built-in beam under a uniform load over the center part 

shown in Figure 1d, corresponding to the length of the spacer. 

 

S1.1 Theoretical Treatments of a Simply-Supported Plate under Uniform Pressure 

 

Let us firstly consider the case of a simply-supported rectangular plate under a 

uniform load, p1, distributed over a shaded rectangle (corresponding to the spacer) 

with the sides of as and bs, shown in Figure 1b. The derivation of deflection, W1, is 

similar to that shown in reference [2], having a different mathematic form because the 

origins of coordinates are different. The deflection, W1, at any point of the plate is 

given below. 
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 , E, , and h are the elastic modulus, 

poison’s ratio and thickness of the plate, a and b are the length of the rectangular plate 

in x direction and the width of the rectangular plate in y direction, respectively, 

corresponding to the size of the groove on the base.  
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Similarly, as shown in Figure 1c, a uniform load, p, is distributed over the whole 

rectangle, meaning sa a and sb b , thus, the deflection,W2, at any point of the plate 

can be given by 
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S1.2. Theoretical Treatments of a Built-in Beam under a Load Uniformly 

Distributed at the Center Part 

 

As shown in Figure 1d, a load, q, is uniformly distributed at the center part of a built-

in beam. The origin of a coordinate x is set at the center of the beam. The deflection 

can be obtained by sequential integration of the basic relations. First, the applied load, 

F, from the spacer, is given by 
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Next, the shear force, Q, is obtained by integration of the transverse equilibrium 

equation, F
dx

dQ
 . 
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Next, from Q
dx

dM
  , the moment, M, neglecting the influence of force in x-axial 

direction on the moment due to small deformation, is given by  
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where the arbitrary constant C0 is the moment at the center of the beam.  

Then, from
b z

d M

dx E I


 , the rotation, , gives 
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where 
bE  and 

zI  are the elastic modulus and the cross-sectional moment of inertia of 

the beam, respectively. 

From the symmetry condition of   00 x  , an arbitrary constant
1C   can be 

eliminated, that is, 01 C . Then, the moment,
0C , is determined by another boundary 

condition,   02  /ax  , whereby
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1C  into 

equation (S1-5) and (S1-6), M and  can be presented as 
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Finally, the deflection can be given by the integration of the shear and moment. 

 
dx

dW
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where 
zGA

Q
  , G  and

zA  are the shear rigidity and the cross-sectional area of the 

beam, respectively. From which, the deflection,
3W , at any point of the beam is given 

by 
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The arbitrary constant,
2C , is determined by the boundary,  3 / 2 0W x a   , whereby
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S1.3. Evaluation of Average Axial Strain of the Built-in Beam 

 

After fabrication, the plate and the beam have an initial deflection due to a spacer is 

setup between the plate and the beam. At the initial condition, ,s Ip  and ,s Iq , represent 

the effective interactive force between the spacer and the plate and the fibre, 

respectively. Based on compatibility condition of displacement and force, one gives 



6 
 

,I 1, , 3,

,I ,

s e s I e s

s s s I

p W q W h

p b q

  



                     (S1-11) 

where hs is the thickness of the spacer. 
1,eW  and 

3,eW  are the effective deflection of the 

plate under unit load uniformly distributed over the rectangular area of the spacer 

and the effective deflection of the beam under unit load distributed over the center 

part covered by the spacer, respectively. 
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Then,
,s Ip and

,s Iq can be given by  
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If an external load, p, applied on the top surface of the plate, the compatibility 

conditions of displacement and force are also satisfied, and the effective contact force 

from the spacer on the plate and the fibre becomes sp  and sq , respectively. 
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where 2,eW is given by 
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From the above equation system, ps and qs can be solved.  
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Then from equation (S10), the deflection, W, of the optical fibre induced by an external 

load can be given by 
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Finally, the average strain, , along axial direction can be estimated by integration of 

the deflection.  
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S1.4. Evaluation of the Wavelength Shift of FBGs 

 

The typical optical fibre with fibre Bragg gratings is shown in Figure 1a. The fibre has 

multiple layers, including core, cladding and coating layers. The mechanical 

properties of the layers normally are different, such as the elastic modulus of the core 

layer and the cladding layer (~ 70 GPa) is higher that of the coating layer (~ 2.5 GPa) 

for the optical fibre utilized in this study. The effective parameters of the beam can be 

estimated by the combination among the elastic modulus, the cross-sectional moment 

inertia and the cross-sectional area, which are given below. 
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where
1cE ,

1c , and
1cd are the elastic modulus, Poisson’s ratio and diameter of the core 

layer, respectively. 
2cE ,

2c , and
2cd are the elastic modulus, Poisson’s ratio and 

diameter of the cladding layer, respectively, 
3cE ,

3c , and
3cd are the elastic modulus, 

Poisson’s ratio and diameter of the coating layer, respectively. 

 

Then merging equations (S1-22), (S1-23) and (S1-24) into the above relations, replacing 

the
b zE I ,

b zE A and
zGA . And the average axial strain of FBGs can be obtained from 

equation (S1-21). The Bragg wavelength,
B ,of fibre Bragg gratings is sensitive to the 

axial strain and temperature. The wavelength shift,  , induced by the applied strain,

 , and change of temperature, T , can be approximately given by[3] 

 s T BC C T                                               (S1-25) 

where
B is the initial Bragg wavelength of FBGs,

sC is the coefficient of the applied 

strain, and
TC is the coefficient of temperature, which is made up of the thermal 

expansion coefficient and the thermos-optic coefficient. If the temperature of the FBG 

pressure sensors is constant, the equation (S1-25) can be simplified by 

s BC                                         (S1-26) 

 

 

 

S2. Mechanical properties of Silicone 903 
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Figure S1. Stress-strain curves of a cubic specimen made of silicone 903, which is 

laboratory-fabricated in the length of sides of 2 cm. The test was carried out on the 

machine (Instron 5566, USA), and the loading rate applied on the specimen is set up 

of 20 N/min, including 3cycles. 

 

As shown in Figure S1, stress-strain cures of an illustrated specimen made of silicone 

903 indicates that such silicone has good elasticity, an approximately linear 

relationship between stress and strain with low hysteresis (~ 2.1% Full Scale Output). 

The effective elastic modulus in the studied range is about 1.3 MPa. 
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