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Abstract: Maize is the most cultivated cereal in Africa in terms of land area and production, but low
soil nitrogen availability often constrains yields. Developing new maize varieties with high and
reliable yields using traditional crop breeding techniques in field conditions can be slow and costly.
Remote sensing has become an important tool in the modernization of field-based high-throughput
plant phenotyping (HTPP), providing faster gains towards the improvement of yield potential and
adaptation to abiotic and biotic limiting conditions. We evaluated the performance of a set of remote
sensing indices derived from red–green–blue (RGB) images along with field-based multispectral
normalized difference vegetation index (NDVI) and leaf chlorophyll content (SPAD values) as
phenotypic traits for assessing maize performance under managed low-nitrogen conditions. HTPP
measurements were conducted from the ground and from an unmanned aerial vehicle (UAV).
For the ground-level RGB indices, the strongest correlations to yield were observed with hue,
greener green area (GGA), and a newly developed RGB HTPP index, NDLab (normalized difference
Commission Internationale de I´Edairage (CIE)Lab index), while GGA and crop senescence index
(CSI) correlated better with grain yield from the UAV. Regarding ground sensors, SPAD exhibited
the closest correlation with grain yield, notably increasing in its correlation when measured in
the vegetative stage. Additionally, we evaluated how different HTPP indices contributed to the
explanation of yield in combination with agronomic data, such as anthesis silking interval (ASI),
anthesis date (AD), and plant height (PH). Multivariate regression models, including RGB indices
(R2 > 0.60), outperformed other models using only agronomic parameters or field sensors (R2 > 0.50),
reinforcing RGB HTPP’s potential to improve yield assessments. Finally, we compared the low-N
results to the same panel of 64 maize genotypes grown under optimal conditions, noting that only 11%
of the total genotypes appeared in the highest yield producing quartile for both trials. Furthermore,
we calculated the grain yield loss index (GYLI) for each genotype, which showed a large range of
variability, suggesting that low-N performance is not necessarily exclusive of high productivity in
optimal conditions.
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1. Introduction

Maize is the most commonly cultivated cereal in Africa in terms of land area and production [1].
Low yields in this region are largely associated with drought stress, low soil fertility, weeds, pests,
diseases, low input availability, low input use, and inappropriate seeds [2]. After water, nitrogen (N)
is the single most important input for maize production, and the lack of N is considered to be the
principal constraint to cereal yields in areas with more than 400 mm of average annual rainfall in
Sub-Saharan Africa (SSA) [3], but fertilizer application in SSA is negligible, accounting for less than 1%
of the global N fertilizer application [4]. As such, efforts to increase maize production capacities in
low fertilizer conditions may contribute substantially to improving food security and well-being in
the region [5]. One of the strategies considered for increasing maize yield with regards to N inputs in
SSA is breeding to improve yield under nutrient deficiency or towards specific adaptation to increase
performance under low-nitrogen conditions. Furthermore, the adaptation of maize to lower fertilizer
conditions may improve agricultural economics at equal or even better levels of production with
lower required inputs, less runoff, and resource extraction that may additionally result in reducing
environmental degradation and the loss of ecosystem services [6–8].

Plant scientists, especially breeders and agronomists, face the challenge of solving these limitations
while considering the additional implications of climate change on food security [2,9]. In that
sense, affordable technologies capable of monitoring crop performance, improving yield prediction,
or assessing phenotypic variability for breeding purposes are aimed at surpassing the bottlenecks in
the way of full exploitation of this technology [10,11]. One of the first non-destructive and analytical
tools was the chlorophyll meter, based on radiation absorbance by leaves in the red and near-infrared
regions (usually at 650 and 940 nm). These leaf level relative chlorophyll content readings have an
indirect and close relationship with leaf N and total chlorophyll concentrations [12,13]. Portable meters
have been used for some time on crops as a fairly quick and reliable method for N management [14,15],
but this technique is relatively slow compared with newer imaging techniques and does not include
the whole plot, thereby capturing less variability than full canopy remote sensing techniques [16].

Remote sensing has become an important tool in the modernization of field-based high throughput
plant phenotyping (HTPP), including improvements in yield potential, adaptation to abiotic stressors
(drought, extreme temperatures, salinity), biotic limiting conditions (susceptibility to pests and
diseases), and even quality traits [5,10,17]. Traditionally, the primary platforms used to obtain remote
images of the Earth’s surface were satellites and piloted aircrafts, but these instruments generally do
not deliver data at adequate spatial and temporal resolutions necessary for more detailed agricultural
applications, such as plant phenotyping [18]. Currently, these limitations can be overcome using more
flexible unmanned platforms, such as unmanned aerial vehicles (UAVs), also called remotely piloted
aircraft systems (RPASs) or unmanned aircraft systems (UASs) [19,20]. UAVs allow for many quick,
precise, and quantitative observations at improved spatial and temporal resolutions and at lower costs
with respect to airborne platforms or satellites.

The classical approach of remote sensing platforms, including UAVs, has involved the use
of multispectral sensors and the calculation of different vegetation indices associated with plant
physiological parameters, such as plant pigments, vigor, and above-ground biomass. In this sense,
visible and near-infrared (VNIR) imaging spectroscopy has demonstrated a fairly reliable capacity in
biophysical crop assessments in agriculture [21–27]. For example, the normalized difference vegetation
index (NDVI) [28] is a well-known, broadband vegetation index derived from visible and near-infrared
reflectance that is closely related to vegetation presence or vigor [29,30]. It can also be measured at
the ground level with active portable sensors (e.g., GreenSeeker). Other examples use narrow-band
reflectance values for more precise measurements [31] and are often found to be correlated with grain
yield and provided reliable information for yield forecasting [32] or specific biophysical properties,
such as canopy water content [33] or photosynthetically active pigments, [23,34,35] but require more
advanced sensor technologies for adequate quantification. Similarly, thermal infrared (TIR) imaging
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enables rapid remote observations of plant water status via their cooling capacity and stomatal
conductance [36,37].

As a low-cost alternative, and at an order of magnitude less expensive than scientific multispectral
VNIR or TIR sensors, various red–green–blue vegetation indices (RGB VIs), calculated from commercial
RGB cameras, have demonstrated their ability to predict grain yield, quantify nutrient deficiencies,
and measure disease impacts [38,39]. With respect to these commercially available RGB cameras, color
calibration quality should be assessed prior to scientific use for checking and/or correcting variations in
RGB color values, as illumination conditions may influence the accuracy of color reproduction [40,41].
On the other hand, when these types of camera are used for producing multi-image mosaics, within
image vignetting should also be assessed, as brightness attenuates away from the image center and
appears as artifacts in the image mosaics [42]. Still, RGB VIs can accurately quantify different properties
of color and have often demonstrated performance levels similar to or better than NDVI [39]. RGB
images can be processed using comparisons between red, green, and blue light broadband reflectance
values or through the use of alternate color spaces, as with the Breedpix code suite [43]. The treatment
of R, G, and B as separate spectral bands allows for the calculation of the triangular greenness index
(TGI), which estimates chlorophyll concentration in leaves and canopies [1], and the normalized
green–red difference index (NGRDI), which compares the differences between the green and red bands
in a calculation similar to NDVI but with less marked differences and less signal saturation. In the
hue–saturation–intensity (HSI) color space, where the hue (H) component describes color chroma
traversing the visible spectrum in the form of an angle between 0◦ and 360◦. Thus, the index green area
(GA) is the percentage of pixels in the image in the hue range from 60◦ to 180◦, ranging from yellow to
bluish green, while the greener green area (GGA) includes a more restrictive range of hue from 80◦

to 180◦, excluding yellowish-green tones that might be partially stressed or senescent. Hence comes
the crop senescence index (CSI), which combines GA and GAA to provide a strong discrimination
between tolerant and susceptible genotypes in various treatments [44,45].

To the end of better quantifying leaf pigment loss, and therefore color changes, due to nitrogen
deficiency [46,47], further investigation of the capacities and techniques for accurate color quantification
using digital images indicates that there are newer more advanced color models currently in use by
photography professionals. In the Commission Internationale de I´Edairage (CIE), CIELab color space
model, dimension L* represents lightness; the a* component expresses green to red, with a more
positive value representing red, and a more negative value indicating green; and the b* component
expresses blue to yellow, in which positive values are towards yellow, and negative values are closer
to blue. Correspondingly, in the CIELuv color space model, dimensions u* and v* are perceptually
uniform coordinates, where L is again lightness and u* and v* represent axes similar to a* and b* in
separating the color spectrum, respectively. For more specific details on the development of these
alternate color space RGB indices and their respective transformations, please see [48]. Both CIELab
and CIELuv include color calibration corrections through the separation of the color hue from the
illumination components of the input RGB signal; for that reason, we have developed two new
vegetation indices using these color spaces in a way similar to the conceptual basis for NDVI, using the
normalized difference between a* and b* (NDLab) and the normalized difference between u* and v*
(NDLuv). Thus, the CIElab and CIEluv color spaces offer the ability to simultaneously contrast green
vegetation quantity with both the reddish/brown soil background (fractional vegetation cover or plant
growth) and yellowing caused by chlorosis (loss of foliar chlorophyll)—both common symptoms of
nitrogen deficiency. Previously, RGB VIs have been employed at both the canopy and at the leaf levels
for precise crop management or as effective HTPP techniques in breeding programs aimed to improve
crop performance under a wide range of conditions [10].

In the research presented here, the RGB VIs described above, namely hue, a*, b*, GA, GGA,
NGRDI, and the new NDLab and NDLuv, are examined for their potential as affordable HTPP tools to
accurately phenotype commercial and pre-commercial maize genotypes under low- and optimal-N
conditions. Firstly, we provide some maize genotype performance comparisons between the low-N
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and optimal growing conditions in order to provide some initial insights on the potential of selecting
for low-N-adapted maize genotypes. Then, we evaluate the performance of a set of remote sensing
RGB VIs from natural color images acquired at the ground level and from a UAV platform compared
with the performance of the field-based NDVI and SPAD sensors. Additionally, we evaluated how
these different sets of plant phenotyping data contribute to improving multivariate model estimations
of crop yield in combination with traditional agronomic field data, such as anthesis silking interval
(ASI), anthesis data (AD), plant height (PH), and canopy senescence (SEN) in order to determine the
level of improvements over traditional practices that they may provide.

2. Materials and Methods

2.1. Plant Material and Growing Conditions

Field trials for managed low-nitrogen and optimal fertilizer conditions were conducted at the
International Center for Maize and Wheat Improvement (CIMMYT) regional station located in Harare,
Zimbabwe (−17,800 S, 31,050 E, 1498 m.a.s.l.) (Figure 1). The soil of the station is characterized by a pH
slightly below 6, with low managed nitrogen (LOW) treatment for all plots at 25–35% less N compared
with the optimal standard fertilization application of 200 kg/ha, here defined as the optimum nitrogen
(OP) according to established standard CIMMYT protocols [17]. A set of 49 new maize genotypes that
were developed at CIMMYT and 15 commercial maize genotypes in Zimbabwe were selected for the
study (Table A1). Seeds were sown during the wet season, on 16 December 2015, in two rows per plot;
the rows were 4 m long and 75 cm apart (5.25 m2/plot), with 14 planting points per row and 25 cm
between the plants within a row. The experiment was carried out in 192 plots with 3 replicates per
variety. Both trials were rainfed only, being grown in the Zimbabwe rainy season, with local weather
station data recording growing season mean temperature, humidity, and total rainfall of 26◦C, 68%,
and 700 mm, respectively, effectively eliminating any chances of water stress even without irrigation.
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Figure 1. (a) Position of the regional station of International Center for Maize and Wheat Improvement
(CIMMYT) in Harare, Zimbabwe. (b) Red–green–blue (RGB) aerial orthomosaic of the 192 plots, with
64 genotypes and 3 replicas (three blue box) per each one, under low managed nitrogen (LOW). (c) A
plot with specific details of length and width.

The trials were harvested in mid-May of 2016, discarding 2 plants at each row end and harvesting
the central 3.5 m of each row in order to reduce edge effects. Thus, the total harvested weight
corresponded to an area of 5.25 m2 (0.75 m apart × 2 rows × 3.5 m long), consisting of the same
number of plants per plot (excepting locations of mortality). The cobs processed, and grains dried to
approximately 12.5% moisture, such that grain yield (GY, t·ha−1) was calculated as follows, where X is
the grain weight per plot:

GY = (X (kg/plot) *10)/(5.25 m2) (1)

The grain yield loss index (GYLI) as the stress index was calculated as:

GYLI = (GY at OP − GY at LOW)/(GY at OP) × 100 (2)
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where GY at OP represents the potential grain yield in optimum-nitrogen conditions and GY at LOW
corresponds to grain yield in low managed nitrogen conditions [38].

2.2. Agronomic Parameters

PH was measured on 19 February 2016 as the length from the soil surface to the base of the tassel
(excluding tassel length) using a ruler [49,50] on two representative plants per plot before all plants
were hand harvested and grain yield was assessed. ASI was determined by the number of days from
sowing until 50% of plants extruded anther AD and the number of days from sowing until 50% of
the plants show silks (silking date, SD), such that SD − AD = ASI. SEN was measured visually on a
plot basis as the proportion of green leaves 2–5 weeks after anthesis on a 0–100 scale, where 0 = 0%
canopy senescence and 100 = 100% canopy senescence (Equation (3)). That technique is based on the
different color classes, and given that any part of a leaf with yellow or brown (dry) color was classified
as undergoing or having succumbed to senescence, a senescence index was proposed as the ratio
between senesced canopy and the total canopy cover:

SEN = (YC + DC)/(YC + DC + GC) (3)

where GC is green canopy cover, YC is yellow canopy cover, and DC is dry canopy cover [17,44,51,52].
This was measured 4 times during the experimental trial, but only the last SEN measurements from 5
April 2016 were used in this study.

2.3. Proximal and Aerial Data Collection

RGB remote sensing evaluations were performed on young maize plants (less than 5 leaves) on
28 January 2016, during the last week of January. For ground RGB VIs, vegetation indices were derived
from one picture taken at the ground level for each plot (covering 40–50% of each plot), and UAV
RGB VIs were derived from whole plot coverage from the UAV RGB aerial image mosaic of the whole
study area as shown in Figure 2. At the ground level, one digital photograph was taken per plot with
an Olympus OM-D E-M10 Mark III (Olympus, Tokyo, Japan), holding the camera at about 80 cm
above the plant canopy in a zenithal angle and focused near the center of each plot. The images were
acquired with a resolution of 16 megapixels with a Micro Four Thirds (M4/3) Live MOS sensor with a
focal length of 14 mm, at a speed of 1/125 s with the aperture programmed in automatic mode at a
resolution of 4608 × 3072 for a Ground Sample Distance (GSD) of 0.03 cm/pixel. RGB aerial images
were acquired using an UAV (Mikrokopter OktoXL, Moormerland, Germany) flying under manual
remote control at 50 m a.g.l. (altitude above ground level). The digital camera used for aerial imaging
was a Lumix GX7 (Panasonic, Osaka, Japan), mounted on a two-axis gimbal with vibration reducers
for stable image capture while in flight. Images were taken at a 16-megapixel resolution of 4592 × 2448
pixels using a 4/3” sensor and a 20 mm focal length lens for an estimated GSD 0.9419 cm/pixel. These
images were taken with a 1/160 second shutter speed and auto-programmed mode for maximum
aperture at a rate of every 2 s for the duration of the flight and stored locally on microSD cards for
subsequent processing.

The measurements of the color calibration check and the vignetting calibration were taking
the same day of the data collection. We used the ColorChecker Passport Photo (X-Rite, Inc. https:
//www.xrite.com/es/categories/calibration-profiling/colorchecker-passport-photo/), which has a panel
of 24 industry standard color reference chips with published values in RGB, as well as the CIELab
color space. The photos of this passport were taken with the cameras Olympus OM-D and Lumix GX7
in natural light conditions in a zenithal plane. With the software FIJI (Fiji is Just ImageJ, https://fiji.sc/,
https://imagej.nih.gov/ij/), the calibration photos were imported and divided into the separate color
channels of red, green, and blue and in the CIELab color space as lightness, a* and b* and then
compared with the 24 published reference values of each standard chip with the photos of the passport
taken with the different cameras.

https://www.xrite.com/es/categories/calibration-profiling/colorchecker-passport-photo/
https://www.xrite.com/es/categories/calibration-profiling/colorchecker-passport-photo/
https://fiji.sc/
https://imagej.nih.gov/ij/
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Figure 2. Examples of the differences in resolution between the images of maize taken at ground level
(Ground Sample Distance 0.03 cm/pixel) and aerial level (Ground Sample Distance 0.9419 cm/pixel) in
LOW. (A) Maize ground image from 80 cm or canopy level image averages. (B) Maize ground image
from 80 cm showing green area (GA). (C) Maize ground image from 80 cm with greener green area
(GGA). (D) Maize aerial image from 50 m or canopy level whole plot averages. (E) Maize aerial image
from 50 m showing GA. (F) Maize aerial image from 50 m showing GGA.

With respect to vignetting calibration, one photo that was taken with the Lumix GX7 at 50 m
was divided into the separate RGB and CIELab color space channels. On the R, G, B, hue, a*, and b*
single band images, a line was drawn through the center for the X and Y axes in order to extract the
cross-image transect. Then, a filter was created using the hue band from the HSI color space in order to
select only sunlight soil pixels and applied for R, G, B, a*, and b* to eliminate vegetation and shadowed
pixels, and the digital numbers (DN) were extracted from each remaining point along the line in order
to observe changes in albedo across the image axes.

NDVI was measured on 28 January 2016 (at the same time as the RGB data) with the GreenSeeker
active field sensor (GreenSeeker handheld crop sensor, Trimble, Ukiah, CA, USA), which uses a
wavelength range of 650–670 nm and 765–795 nm for red and near-infrared, respectively. Additionally,
SPAD chlorophyll meter (Minolta SPAD-502, Spectrum Technologies Inc., Plainfield, IL, USA)
measurements were recorded on two different dates (at 3 and 5 weeks after the RGB and NDVI
data), once on 18 February 2016 (SPAD vegetative stage, SPADV) and then again on 1 March 2016
(SPAD reproductive stage, SPADR). A total of 4 leaves were measured for each row for a total of
8 measurements per plot to provide a representative average value for each plot. Delayed SPAD sensor
timing was due to availability and has been included for sensor technique as well as data capture
timing comparisons. Different measurement timing details for the complete study are presented in
Figure 3 for added clarity.

2.4. Image Processing

For the RGB images captured from the UAV platform, Agisoft PhotoScan Professional software
(Agisoft LLC, St. Petersburg, Russia) was employed using a total of 63 overlapping images to produce
an accurate image mosaic with at least 80% overlap, and this presented a resolution of 11772 × 4932, as
seen in Figure 1. As the aerial images were acquired in clear sky conditions at the same time as the
ground RGB images, no cross-calibration radiometric corrections were deemed necessary. The open
source image analysis platform FIJI [53] (Fiji is Just ImageJ; http://fiji.sc/Fiji) was used to segment

http://fiji.sc/Fiji
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regions of interest for each row for the plots to be cropped in order to produce a single micro image per
plot. RGB pictures were subsequently analyzed using a version of Breedpix 0.2 software adapted to
JAVA8 and integrated as part of the MaizeScanner, an open-source and open access FIJI plugin that
also provides for the implementation of TGI and NGRDI, as well as some specific analyses for maize
research-related maize lethal necrosis impact quantification (https://github.com/sckefauver/CIMMYT).

Within FIJI, images were processed to convert RGB values into indices based on RGB broadband
reflectance and also for color quantification from the HSI, CIELab and CIELuv color spaces. The TGI is
calculated as the area of a triangle from the matrix determinants after factoring the terms:

A = ± 0.5 [(λ1 − λ3) × (R1 − R2) − (λ1 − λ2) × (R1 − R3)] (4)

where A is the triangular area; λ1, λ2, and λ3 are the center wavelengths for the three image bands;
and R1, R2, and R3 are reflectance values for the three image bands, respectively. The order of bands is
not important, but the order will affect whether the result is positive or negative. Starting with R1 as
R670 (red), R2 as R550 (green), and R3 as R480 (blue) for convenience:

TGI = −0.5 [190 × (R670 − R550) − 120 × (R670 − R480)] (5)

where TGI has units of wavelength × reflectance, so using nm wavelength units or percent reflectance
does not affect the value of TGI after the units are converted. We used digital camera bands of red,
green, and blue broadband reflectance centered approximately at 670, 550, and 480 nm, respectively,
so that λ1, λ2, and λ3 were the centers of the wavebands, and R1–R3 were the waveband reflectance
values [54].

We used the NGRDI to analyze the images from the digital camera:

NGRDI = (R550 − R670)/(R550 + R670) (6)

where R550 and R670 are the reflectance values of the green and red bands of the RGB camera,
respectively. The difference between green and red light reflectance differentiates well between plants
and soil due to the absorption of chlorophyll at R670, and the sum normalizes for variations in light
intensity resulting in a possible range from −1.0 to 1.0, with NGRDI values mostly between −0.2 and
0.5, ranging from soil to healthy vegetation [55].

As described previously, the HSI color space index GA is calculated as the percentage of pixels in
the hue range from 60 to 180◦, including from yellow to bluish green, while the GGA includes a more
restrictive H range from 80 to 180◦, excluding yellowish-green tones that might be partially stressed or
senescent. Subsequently, the CSI was calculated in agreement with [38,44] as follows:

CSI = 100 × (GA − GGA)/GA. (7)

In addition, we developed two new different vegetation indices, modeled after NDVI, such that
values of soil fall closer to 0 and vegetation closer to 1. In order to do so, because the a* and the u*
image values for green are both negative, those values were placed first but using the complement
of a* so that greener vegetation gives a higher value, as would the near-infrared of NDVI. As b* and
v* both have more yellowish values with higher values, no inversion was necessary [38,56–58]. The
normalized difference between a* and b* (NDLab) through the color space CIELab is as follows:

NDLab = (((1 − a*) − b*)/((1 − a*) + b*) + 1). (8)

The normalized difference between u* and v* (NDLuv) through the color space CIELuv is
as follows:

NDLuv = (((1 − u*) − v*)/((1 − u*) + v*) + 1). (9)

https://github.com/sckefauver/CIMMYT
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By inverting a* and u*, more green vegetation becomes a positive contribution to the index,
while more red/brown soil background reduces the index value. Then, dividing by b* and v*, an
increase in yellow chlorotic vegetation will reduce the index. The addition of 1 provides for a more
balanced equation for positive values for crops from NDLab and NDLuv using CIELab and CIELuv;
normalization then limits the index to values between −1 and 1, with most crops between 0 and 1.Sensors 2018, 18, x FOR PEER REVIEW  7 of 29 
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Figure 3. Field phenotyping, field imaging, and unmanned aerial vehicle (UAV) aerial image data
capture chronogram for the controlled low-N field trial, showing dates for the measurement of all
parameters at vegetative and reproductive stages, including red–green–blue (RGB), (high throughput
plant phenotyping (HTPP) imaging, plant height (PH), canopy senescence (SEN), anthesis data (AD),
and anthesis silking interval (ASI).

2.5. Statistical Analysis

Statistical analyses were conducted using the R project for statistical computing [59] in combination
with R studio [60]. The maize crop physiological traits were analyzed using ANOVA and Fisher’s
Least Significant Difference (LSD) tests (α = 0.05) in order to test the effects of growing conditions on
the different traits. The results of the canopy level image averages per picture taken at the ground level
were compared with the canopy level whole plot averages of the UAV images (Figure 2) with Pearson
correlation coefficients and ANOVA analyses. Pearson correlation coefficients of the different remote
sensing indices were additionally compared against grain yield. Multiple regressions were calculated
with GY as the dependent variable and the different indices as independent variables using forward
stepwise methods with the stepAIC () function of the MASS R package. The figures were also drawn
using the R studio software.

3. Results

3.1. The Effect of Optimal Condition and Low Managed Nitrogen on grain yield

The range of yield in the LOW treatment was between 1.53 tn/ha and 4.43 tn/ha, while for OP
it ranged between 6.68 tn/ha and 12.30 tn/ha; the GYLI range was from 46.88% to 85.22% (Table 1).
On the other hand, significant differences in GY between genotypes were observed in this study for
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the two different conditions (Table A1), but in order to standardize for comparisons between the two
treatments, we divided the genotypes into quartiles by yield. Therefore, in Figure 4 the results show
the 64 genotypes divided in quartiles as high yield (HY), medium high yield (MHY), medium low
yield (MLY), and low yield (LY). The ANOVA for the OP and LOW treatment demonstrated that there
were significant differences in GY between all of the quartiles of genotypes.

Table 1. Minimum, maximum, and average of grain yield (GY) and percentage of Nitrogen (N) of the
two different treatments: LOW and optimum nitrogen (OP). Minimum, maximum, and average of
grain yield loss index (GYLI).

Minimum Maximum Average N (%)

GY (Mg/ha) at LOW 1.53 4.43 2.93 ± 0.58 25–35
GY (Mg/ha) at OP 6.68 12.30 9.62 ± 1.24 100

GYLI (%) 46.88 85.22 69.01 ± 7.48
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Figure 4. Box plot of grain yield for the set of 64 genotypes divided into four quartiles: low yield (LY),
medium low yield (MLY), medium high yield (MHY), and high yield (HY) under OP (A) and LOW (B)
conditions. The bottom and top of the box are lower and upper quartiles, respectively. The band near
the middle is the median value across each group, and the bars are the standard deviation. Letters are
significantly different according to Fisher Least Significant Difference (LSD) multiple range test (P < 0.01).

In Table 2, the results additionally demonstrate that 44% of the genotypes that belonged in the top
HY group grown under OP conditions remained in the HY group in the LOW condition. Similarly,
19% of the genotypes in the OP condition LY group were also in the LOW condition LY group. This
suggests that while high yield under both low-N and optimal-N conditions is not completely exclusive,
previous breeding efforts have perhaps been more focused on yield in optimal conditions without
considering the robust performance of a genotype in other potential growing conditions (i.e., low-N).

Table 2. Maize genotypes that were in both, the HY and LY groups with different applications of
nitrogen: LOW and OP, with their GY.

LOW OP

Genotype GY(Mg/ha) Yield Group GY(Mg/ha) Yield Group

CZH128 3.35 HY 10.93 HY
CZH15024 3.50 HY 11.13 HY
CZH15028 3.88 HY 10.60 HY
CZH15045 3.38 HY 10.13 HY
CZH15057 3.82 HY 11.40 HY
11C4393 3.37 HY 10.97 HY

LOCAL CHECK2 2.44 HY 10.59 HY
CZH15027 2.32 LY 8.44 LY
PHB30G19 2.28 LY 8.46 LY

MRI 634 2.29 LY 7.97 LY
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3.2. The Performance of Remote Sensing Indices and Field Sensors

3.2.1. Color and Vignetting Calibration

The results shown in Figure 5 demonstrate that all the color calibration correlation R2 were higher
than 0.80, with most falling close to 0.90. With respect to the Lumix GX7, we can see the highest
determination coefficient was the green channel, followed by the b*.; for the Olympus Camera the
highest was b*, followed by the blue channel. While the L values from the CIELab color space were
among the furthest from the 1:1 comparison line with high y-axis intercepts, the associated a* and b*
linear correlations were among the closest to a 1:1 ratio with intercepts close to 0.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 29 

 

 
Figure 5. Color calibration through ColorChecker Passport. (A) The determination coefficients 
between the photo taken with Lumix GX7 camera for each channel red, green, and blue (a–c) and 
Commission Internationale de I´Edairage (CIE)Lab color space (d–f) (n = 24). (B) The determination 
coefficients between the photo taken with the Olympus OM-D camera for each channel red, green, 
and blue (g–i) and CIELab color space (j–l) (n = 24). 

Figure 5. Color calibration through ColorChecker Passport. (A) The determination coefficients between
the photo taken with Lumix GX7 camera for each channel red, green, and blue (a–c) and Commission
Internationale de I´Edairage (CIE)Lab color space (d–f) (n = 24). (B) The determination coefficients
between the photo taken with the Olympus OM-D camera for each channel red, green, and blue (g–i)
and CIELab color space (j–l) (n = 24).

Figure 6 shows that the vignetting effects observed for the both color spaces with respect to the y-
and x-axes were minimally present for the RGB color spaces and reduced for a* and b* in CIELab.
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taken with Lumix GX7 from the UAV at 50 m, comparing x-axis and y-axis transect pixel digital number
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RGB channels (a,b). CIELab color space without lightness (c,d).

While the calibration check for the RGB images taken from both cameras demonstrated high
correlations (Figure 5), the result of applying the calibration coefficients to the data resulted in both cases
in lower correlations between the vegetation indices at different scales, as well as lower correlations
between the RGB indices with GY (data not shown). Moreover, the results demonstrated low presence
of vignetting effects, with reduced vignetting in the luminescence-controlled CIELab and CIELuv color
spaces of particular interest for this study (Figure 6).

3.2.2. The Performance of Remote Sensing Indices and Field Sensors Assessing Grain Yield

No significant differences were found between quartile groups for any of the RGB indices from the
aerial or ground level, as seen for GGA at ground level. The correlations were calculated for GY with
both levels of RGB indices at LOW (Table 3). In the case of UAV RGB VIs, GGA was best correlated
with GY followed by CSI, followed by saturation and GA. For ground RGB VIs the closest correlations
were observed with hue, GGA (values between 0.248 and 0.685), and NDLab (values between 0.3953
and 0.8290). The rest of the RGB VIs were somewhat weaker with respect to the GY, but many were
still significant. Additionally, the field sensors presented some close correlations with GY (Table 3), as
well as significant differences between genotypes when grouped by quartile (data not shown), the
strongest was SPADV (taken in the vegetative stage closer to the RGB VIs), which only indicated
differences between HY and LY, followed by SPADV and finally NDVI, both of which were recorded in
the vegetative stage (see Figure 3). SPAD measurements exhibited the highest correlations (Table 3)
with respect to all indices with SPADV being the highest followed by SPADR (taken in the reproductive
stage much later than the other measurements for temporal comparisons only).
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Table 3. Grain yield correlations in LOW with all proximal remote sensing variables from the RGB
images taken from the UAV aerial platform, RGB images from the ground, and leaf chlorophyll content
(SPAD) and normalized difference vegetation index (NDVI) field sensors. These indices are defined
in Sections 1 and 2. Levels of significance: *, P < 0.05; ***, P < 0.001. GGA; GA; NDLab, normalized
difference between a* and b*; NDLuv, the normalized difference between u* and v*; CSI, crop senescence
index; TGI, triangular greenness index; and NGRDI, normalized green–red difference index.

GY

UAV
RGB VIs r P Ground

RGB VIs r P Additional
Field Sensors r P

GGA 0.445 *** GGA 0.483 *** SPADV

(18/02/16)
0.542 ***

GY 0.407 *** GA 0.466 *** SPADR

(01/03/16)
0.506 ***

Hue 0.381 *** Hue 0.485 *** NDVI 0.375 ***
Intensity −0.305 *** Intensity 0.095
Saturation −0.427 *** Saturation −0.227 *
Lightness −0.291 *** Lightness 0.144 *

a* −0.36 *** a* −0.383 ***
b* −0.397 *** b* −0.089
u* −0.383 *** u* −0.449 ***
v* −0.297 *** v* 0.014

NDLab 0.359 *** NDLab 0.468 ***
NDLuv −0.378 *** NDLuv 0.442 ***

CSI −0.428 *** CSI −0.321 ***
TGI 0.229 * TGI −0.043

NGRDI 0.406 *** NGRDI −0.027

The correlation coefficients between the hue, u*, GA, and GGA remote sensing indices evaluated at
ground level versus the same indices measured from the UAV were quite strong (Table 4). In addition,
most of these indices showed slopes close to 1:1 and correlations reaching r = 0.766. In contrast, the
relationships reported for the remaining RGB indices, such as intensity, lightness, TGI, and NGRDI
were lower. With regards to ANOVA, the results showed that there were statistically significant
differences between all the RGB indices at ground level with the aerial observation level, except for
saturation from the HSI color space.

Table 4. Correlation coefficients between the remote sensing UAV RGB VIs and ground RGB VIs. These
indices are defined in Section 1 and further detailed in Section 2. Levels of significance: *, P < 0.05;
**, P < 0.01, ***; P < 0.001; ns, not significant. GGA, GA, NDLab, NDLuv, CSI, TGI, and NGRDI.

R P ANOVA

GGA 0.758 *** ***
GA 0.766 *** ***
Hue 0.731 *** ***

Intensity −0.062 ns ***
Saturation 0.509 *** ns
Lightness −0.039 ns ***

a* 0.617 *** ***
b* 0.424 *** ***
u* 0.723 *** ***
v* 0.33 *** ***

NDLab 0.781 *** ***
NDLuv −0.676 *** ***

CSI 0.457 *** ***
TGI −0.163 * *

NGRDI −0.223 * **
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3.3. Agronomic Parameters and Their Effect on Yield

Finally, for agronomic data parameters, the correlations with GY (Table 5), the results showed that
all the agronomic data indicators performed differently between OP and LOW conditions. For LOW
conditions, the indices that were better correlated with GY were ASI and AD. The other two indices
(PH and SEN) showed very low correlations with GY. In OP conditions, the agronomic parameters
showed very low correlations with GY.

Table 5. Grain yield correlations with different indices of agronomic data, such as PH, SEN, AD, and
ASI. Correlations were studied across plots in LOW and OP conditions. Levels of significance: *, P <

0.05: **, P < 0.01; ***, P < 0.001; ns, not significant.

GY

Agronomic Data
LOW OP

r r

PH 0.191 ** 0.131 ns
SEN −0.213 ** NA ns
AD −0.46 *** 0.272 **
ASI −0.53 *** 0.161 *

3.4. Multivariate Models

Figure 7 shows the correlations of the most relevant agronomic parameters and indices with GY; it
was considered that these could be complimentary in multivariate models because ASI and AD show
negative correlations with respect to GY, whereas the other indices present positive correlations with GY.
As such, in Table 6 we present the stepwise multivariate linear models for explaining grain yield using
different selections of non-destructive UAV RGB VIs and ground RGB VIs at additional field sensor
and agronomic data as indicated using both forward and backward stepwise selection techniques with
a standard Akaike information criterion (AIC) selection criterion. We also present the determination
coefficients (R2) and the residual standard error (RSE). All three models presented were found to be
significant at the P < 0.001 level. Where noted, (*) indicates simplified formulas, meaning that in using
stepwise selection these formulas were considered to have an excess of nonsignificant parameters and
were reduced accordingly (only significant parameters with the strongest individual correlation to
yield were selected in the case of auto-correlation detected between two multivariate parameters).

Table 6. Multilinear regressions (stepwise) of GY in LOW as the dependent variable comparing the
different categories of remote sensing traits: UAV and ground RGB VIs (these indices are defined in
Section 1), agronomic data such as ASI, AD, SEN, and PH, and NDVI and SPAD. R2, determination
coefficient; RSE, Residual Standard Error. Level of significance: ***, P < 0.001. (*) simplified formulas.

Parameters Stepwise Equations R2 RSE P

Agronomic Data +
Field sensors

GY = − AD*0.28 + SPADV*0.03 +
SPADR*0.02 − ASI*0.78 + 5.97

0.61 0.539 ***

Agronomic Data +
Ground RGB VIs (*)

GY = − ASI*0.189 − AD*0.128 −
SEN*0.237 + PH*0.01 + b*0.11 −

v*0.064 + NDLab*15.20 −
NDLuv*6.99 + 3.36

0.588 0.556 ***

Agronomic Data +
UAV RGB VIs (*)

GY = − ASI*0.20 − SEN*0.26 −
AD*0.13 + PH*0.01 −

Saturation*84.97 − u*1.37 + v*1.61
+ TGI*0.02 + NDLuv*3.95 + 31.8

0.604 0.546 ***

In the combination of agronomic data with additional field sensors, such as SPADv, NDVI, and
ASI, 61% of the yield could be explained. The multivariate stepwise models for explaining yield
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variations regarding agronomic data plus ground RGB VIs level was 63%, but in Table 5, we show
the simplified formula explaining 58% of variance. With respect to combining agronomic data with
UAV RGB VIs, the result was similar at 62%, but we show the simplified formula with 60% of the
yield that may be explained by mostly agronomic data and combined with other indices, such as
NDLab, NDLuv, and Saturation. Combining the agronomic data, field sensors and RGB VIs provided
little improvement in the multivariate model explaining the yield, whereas, in comparison, more
parsimonious models combining only AD, ASI, and only either the NDLab or NDLuv RGB indices still
explained over 50% of the variation in yield (data not shown).
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Figure 7. Correlation between GY in LOW and (a,b) traditional field plant physiology measurements
ASI and AD; ground RGB VIs (c) NDLab; (d) NDLuv; (e) GA.g (green area ground); (f) GGA.g (greener
green area ground); (g) plant vigor using GreenSeeker NDVI; and (h) relative leaf chlorophyll content
in the vegetative stage (SPADV). Level of significance: ***, P < 0.001. (n = 192).

4. Discussion

4.1. The Effect of Managed Low Nitrogen on Grain Yield

Nitrogen (N), after water, is the single most important input for maize production. It plays a major
role in establishing optimal photosynthetic capacity during key growth stages for crops to achieve high
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yields [18,61]. N deficiency reduces leaf chlorophyll content, soluble protein content, photosynthetic
rate, and related enzyme activities of the maize plant during grain filling [62–64]. For that reason, the
GY of all the 64 genotypes was assumed to have been strongly affected by the lack of nitrogen in LOW
conditions. There were significant differences noted in GY by genotype, but in Table A1 we can see that
OP treatment presented many more different groups, and because of that, the genotypes were divided
into quartiles for the sake of comparisons across growing conditions. (Figure 4). These four groups
showed differences between each other with respect to grain yield. Nitrogen is especially plentiful
in leaves, mainly in photosynthetic enzymes, where it may account for up to 4% of the dry weight.
Because N uptake, biomass production, and grain yield are strongly correlated, the N requirement
of a maize crop has even been directly related to grain yield; it has been estimated that 187 kg/ha N
is required to produce 9.5 t/ha yield, 98 kg/ha is required for 5.0 t/ha, and 40 kg/ha is required for
2.0 t/ha [17]. Following these guidelines, the concentration for the optimal condition was around 200
kg/ha and that for the low managed nitrogen condition was around 40 kg/ha, thus indicating that
many of the genotypes tested here have already been somewhat adapted to the managed low nitrogen
conditions; however, those that showed the best and most consistent adaptation were the genotypes of
the HY quartile, some of which appeared in HY in both LOW and OP (Table 2). In some cases, it has
been reported that the genotypes selected under LOW fertilization input are not truly adapted to N-rich
soils [65]; however, it has been suggested that when the plant material performs relatively well under
low-N input conditions, it should be selected under N deficiency conditions for which yield reduction
does not exceed 35–40% [66]. Here, in comparison with the same panel of maize genotypes grown
under optimal conditions, 44% of the genotypes that were in the highest yield producing quartile
under OP conditions remained in the highest quartile when grown under LOW conditions, further
suggesting that low N productivity is not necessarily exclusive of high productivity in OP conditions.
The GYLI results also show that there was a large amount of genotypic variability present (Table A1),
again suggesting that the genotypes selected for this study behaved quite differently physiologically
under the two nitrogen conditions.

4.2. Effect of Managed Low Nitrogen on Agronomic Parameters

A higher reduction in maize yield under stress environments can often be partly explained by the
wider date range of ASI under stress, as ASI typically has a high negative correlation with GY under
stress conditions [67,68]. In Figure 7, we demonstrated that AD and ASI exhibit negative significant
relation in low-N conditions correlations when the plants were under stress, as these parameters
decreased with increasing yield. Genotypes with a short ASI have been suggested to possess greater
efficiency in biomass partitioning to ear and tassels at flowering than those with a long ASI [69]. On
the other hand, the correlation results in OP conditions do not indicate any relationship between GY
and ASI or AD (Table 5). Similar studies showed that high GY under a range of stress intensities is
associated with a short ASI and earlier flowering dates, increased plant and ear height, increased
number of ears per plant, and delayed leaf senescence [69,70].

Besides ASI, traits related to high photosynthetic capacity (e.g., chlorophyll content) and plant
water content (e.g., stomatal conductance) have often been reported to contribute to higher GY under
drought stress [71]. When maize flowers under drought, there is a delay in silking, and the period
between male and female flowering increases giving rise to ASI. In this study, however, drought
stress was minimal due to the adequate rainfall recorded during the study field season (700 mm), and
also further supported by the lack of correlation between ASI and AD with GY in the OP conditions
(Table 5). In generally optimal agronomic conditions, these phenological characteristics are not always
good estimators of yield. In contrast, the rest of the agronomic parameters here showed similar relation
with GY variability. These results suggest that this technology could be applied in an adapted way to
water stress studies, even though it was not the specific aim of this research.
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4.3. Remote Sensing Indices and Field Sensors

4.3.1. Color and Vignetting Calibration

Figure 5a–c,g–i show the correlations between the R, G, and B values from of each digital camera
with respect to the standard values for R, G, and B from the X-Rite ColorChecker Passport. Some
lamination effects can be observed as values from the camera appearing higher than the standard,
though still with good correlation. However, in Figure 5e,f,k,l of the a* and b* images, the light effects
are less pronounced, with a ratio closer to 1:1 due to the CIELab color space separation of lightness
from color hue values [72]. Regarding the color calibration, the results show that the determination
coefficients between the values of the ColorChecker passport and the values for each camera were high
(most near R2

≈ 0.90), suggesting that the photos were not in need of a separate color calibration [73].
Indeed, application of the color calibration coefficients did not result in any improvements in RGB
vegetation index performance with regards to grain yield or yield loss estimation (data not shown).

With respect to vignetting effects, in Figure 6a,b, the graphics of three RGB channels present a small
sad smile along the axis, showing some brightness attenuation away from the image center [74,75].
Nevertheless, this did not represent any significant differences between the DN values of extremes
of each side respect to the DN of center (data not shown). On the other hand, Figure 6c,d present
minimal variation along the axis. This was expected as a* and b* color spaces are independent of the
image lightness and thus absent of vignetting effects. Thus, while the RGB VIs are passive sensors and
dependent on ambient light conditions, the use of the alternate color spaces, such as CIELab, provides
for inherent lightness correction and enables their use in variable conditions similar to active sensors,
such as the NDVI GreenSeeker.

4.3.2. Performance of RGB VIs and Additional Field Sensors

The ground RGB VIs hue, GGA, and NDLab demonstrated the best correlations with GY,
outperforming other ground RGB VIs (Table 3). GA and GGA quantify the portion of green pixels to
the total pixels of the image and is a reliable estimation of vegetation cover [76]. The values of GA
from both observation levels (field and aerial) were consistently below 60%. The ground and aerial
measurements were taken at the same time on the same day, variation in environmental variables, such
as light intensity and brightness can be assumed to be negligible. Thus, the main differences must be
due to the resolution of the images (Figure 2); nevertheless, advances in digital photography allow for
sufficiently high resolution for low-altitude aerial imaging to be a viable and economical monitoring
tool for agriculture [77]. In this sense, correlations with GY by indices derived from aerial images were
generally only slightly weaker than indices measured at ground level, most likely demonstrating a
trade-off between them. Some of the RGB indices, such as NDLab, GGA, and GA produced coefficients
of correlation higher than r = 0.75 when comparing the same indices measured from the ground level
and from the aerial platform (Table 4). This is despite different acquisition/imaging techniques (full
plot for UAV RGB VIs vs. one image per plot at higher resolution covering only a portion of the plot
for the ground RGB VIs). On the other hand, none of the UAV RGB VIs and ground RGB VIs showed
significant differences between adjacent quartiles. This may be best explained considering that the
data for our study were collected at an early phenological (vegetative) stage, when the plants were
not yet at full canopy cover, and they did not yet show the full range of symptoms of N deficiency,
as may be observed in the reproductive stage (Figure 3). N deficiency can reduce plant growth
rates, but also other later factors that affect GY, including leaf chlorophyll content, soluble protein
content, photosynthetic rate, and related enzyme activities of the maize plant during grain filling in
the reproductive stage [78–80], which may be a more optimal timing of remote sensing observations
when phenotyping low N.

NDVI has been used with satisfactory results in many predictive models of yield in multiple
crops, including wheat, barley, and maize at the field level [54,81], even at regional or state levels using
field, airborne, and satellite imagery [82–84]. Regarding NDVI, the values clearly highlight (Figure 7)
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that the variability was low, with more than 90% of values being in the range of 0.55–0.80. These
results support the previously reported saturation of the index, such that increasing leaf area does
not involve a parallel increase in NDVI values [83,85,86]. Furthermore, other authors have noted that
the optimal stages for measuring NDVI vary depending on the germplasm and environment [87,88].
Better performance of NDVI usually occurs at earlier or later growth stages, depending on the crop and
symptoms, because at maximum vegetation cover, NDVI values often saturate, and thus, correlation
with GY decreases [38]. Furthermore, other studies comparing the performance of RGB VIs with
frequent data acquisitions throughout the crop growing cycle and NDVI indicate that RGB VIs respond
with higher correlations with GY earlier than NDVI [57].

SPAD is used to measure relative chlorophyll content in plant leaves, and it has been effectively
used to diagnose N status and predict GY potential in maize [89]. Leaf level chlorophyll meters provide
a convenient and reliable way to estimate leaf N content during vegetative growth [90] and over a large
time range even after anthesis [91]. With specific mention regarding the two different measurement
dates, SPADV and SPADR (Table A2), there are some notable differences related, in this case, to the
date of measurement, having been one of the few sensors available to the field crews on-site to do
multiple measurements. In the first measurement, SPADV, the results showed significant differences
between the HY, MHY, and MLY groups in comparison with the LY group. These are interpreted as
symptoms of lack of nitrogen. With regards to the second measurement, SPADR, it was possible to
identify the differentiation of HY groups in comparison with MHY and MLY and, additionally, these
three from the LY group. This is interpreted as a decline in relative chlorophyll content of the leaves
measured between the two SPAD measurements. This is because when crops were younger at SPADV,
when still developing roots and leaves, they may behave as sink organs for the assimilation of N and
the synthesis of amino acids originating from N uptake before flowering [92]. After flowering, at
SPADR, the N accumulates in the vegetative parts of the plant and is remobilized and translocated to
the grain [93]. In most crop species, a substantial amount of N is absorbed after flowering to contribute
to grain protein deposition [89] in V8–R1. Similarly, Teal et al. [94] also reported a strong association
between grain yield and NDVI between the V6 and V8–R1 growth stages of maize, again between the
timing of SPADV and SPADR, but after the remote sensing observations were recorded. Finally, the
increased performance of SPADV compared with SPADR, closer to the RGB and NDVI data acquisition
date, was promising in that earlier stage of image data capture for field phenotyping, which may
reduce crop breeding costs with earlier variety selection and increased crop cycles per year.

4.4. Multivariate Model Assessment

The vegetation indices derived from conventional digital RGB images have been proposed as
means of estimating green biomass and GY in maize and other cereals under stress conditions [95],
and in other studies in wheat grown under different stress conditions [38,43,96]. The multivariate
regression models revealed the most appropriate parameters for field phenotyping towards improving
GY in managed low-nitrogen conditions. Using all the UAV RGB VIs and ground UAV VIS, the
multivariate models explained GY at around R2 = 0.30 (data not shown). That could be a result of the
fact that the data capture of RGB VIs were taken earlier than the SPADV and SPADR, and at later growth
stages, the plants may have presented more symptoms related to a lack of nitrogen. However, all of
the regression models with a R2 higher than 0.50 included some of the agronomic data as independent
variables. Additionally, GY estimation was similar in the cases of agronomic data combined with field
sensors with respect to agronomic data combined with UAV RGB VIs and ground RGB VIs (all having
approximate R2 values of 0.60). With respect to the RSE in these three different multivariable models,
they adapt to a 50% coefficient of determination. As such, our study suggests that these phenological
traits still provide useful information related to grain yield in abiotic stress conditions, but that they
may be potentially supplemented by UAV RGB VIs and ground RGB VIs phenotyping platforms. Still,
RGB image analyses were able to improve over agronomic data alone, increasing the R2 values to
explain more than half of the variance in the yield, suggesting that they are complimentary in the
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information that they are able to provide. Furthermore, the UAV RGB VIs in this study were acquired
quite early in the growing season, which may help to provide for faster selection of varieties, thus
reducing costs and increasing the number of crop cycles per year.

Additionally, RGB VIs may provide considerable saving with regards to field equipment and
human time, considering that RGB data capture and processing of 200 plots took approximately 10 min
in the field (counting flight and preparations), 20 min to mosaic (unattended on the computer), and half
an hour to extract and process the data (semi-automatic), totaling 60 min, excluding drone preparation
prior to flying. In the case of RGB image data capture and processing, the field portion would be
approximately double, while the computer processing would be about half, totaling about the same
amount of time in the case of 200 plots. With respect to time costs while implementing the use of
SPAD or field-based GreenSeeker NDVI, the estimated time for measurement would be over five times
greater (e.g., 2 min per plot × 200 plots = 400 minutes). Moreover, NDVI evaluation from the ground
may not be easy to implement when plants are reaching the reproductive stage. Furthermore, with
larger phenotyping trials, the time savings of the UAV RGB VIs would represent even greater time
savings while retaining the same data quality; up to 1000 plots may approximately double the amount
of time needed to process the data, while the field sensors would increase linearly and take five times
as long, representing over a 10-fold time difference at larger study scales. Thus, the implementation of
higher throughput UAV RGB VIs may make the most sense in combination with some of the quicker
traditional agronomic measurements and can also result in substantial time cost savings when applied
in large platform breeding programs.

In a recent study by Gracia-Romero et al. in 2017 [97], the effectiveness of UAVs for canopy level
remote sensing for plant phenotyping of maize was similarly demonstrated under different phosphorus
nutrient conditions and the results presented therein suggested that the RGB indices were the best
option at early growth stages. In the case of low P, however, an equation using GA and u* were the
best indicators of GY (R2 = 0.82). Even though applied to a different crop in that case, reflectance in the
near-infrared (NIR) and blue regions was found to predict early season P stress between growth stages
V6 and V8, much earlier than suggested for N deficiencies. With respect to plant N concentrations,
the best correlations have been found using reflectance in the red and green regions of the spectrum,
while grain yield was best estimated using reflectance in the NIR region, with the wavelengths of
importance changing with growth stage (V14-R1) [98,99]. Furthermore, Ma et al. [100] showed that
canopy light reflectance is strongly correlated with field “greenness” (similar to the GA and GGA used
in this study) at almost all growth stages, with field greenness in that case being a product of plant leaf
area and leaf greenness measured with a chlorophyll meter.

5. Conclusions

Modern phenotyping technologies may help in improving much-needed maize GY in low-N
conditions, and the current range of variability in performance as indicated by the observed GYLI
values suggests that low-N and optimal-N performance need not be considered mutually exclusive.
For HTPP, RGB sensors can be considered to be functional technology with an advanced technology
readiness level (TRL) from the ground or a UAV platform, but, similar to the current standard field
sensors SPAD and NDVI, the data capture for RGB VIs must be planned accordingly in order to
optimize their benefits in support of plant breeding. Several different RGB image-based vegetation
indices, including the NDLab and NDluv indices new to this study, demonstrated similar correlations
with GY and contributions to multivariate model GY estimates when compared with standard NDVI
and SPAD field phenotyping sensors. This study presents possible uses of RGB color image analyses
from the ground or from UAVs, with potential benefits compared with currently used field sensors,
especially regarding time costs when applied to larger breeding platforms, here demonstrated in
application to low-N phenotyping in maize.
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The following abbreviations are used in this manuscript.
N Nitrogen
SPAD Relative leaf chlorophyll content
HTTP Hight throughput plant phenotyping
UAV Unmanned aerial vehicle
VNIR Visible and near-infrared
NDVI Normalized difference vegetation index
SR Simple ratio
NDWI Normalized difference water index
RGB Red–green–blue
RGB VIs Red–green–blue vegetation indices
UAV RGB VIs Unmanned aerial vehicle red-green-blue vegetation indices
Ground RGB VIs Ground level red-green-blue vegetation indices
HIS Hue–intensity–saturation
H Hue
GA Green area
GGA Greener green area
CSI Crop senescence index
CIMMYT International center for maize and wheat improvement
OP Optimum nitrogen
LOW Low managed nitrogen
L* Lightness
NDLab Normalized difference between a* and b*
NDLuv Normalized difference between u* and v*
TGI Triangular greenness index
NGRDI Normalized green–red difference index
ASI Anthesis silking interval
AD Anthesis data
PH Plant height
SEN Canopy senescence
MOI Moisture
GY Grain yield
GYLI Grain yield loss index
HY High yield
MHY Medium high yield
MLY Medium low yield
LY Low yield
ANOVA Analyses of variance
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Appendix A

Table A1. The LOW and OP treatment with ANOVA analysis, following with a post hoc.

LOW OP

Genotype GY (Mg/ha) Group Genotype GY (Mh/ha) Group

CZH15062 4.43 a PGS65 12.30 a
CZH15047 4.19 ab CZH15026 12.08 ab
CZH15028 3.88 abc CZH15054 12.04 abc
CZH15032 3.87 abc CZH15022 11.98 abc
CZH15057 3.82 abc CZH15057 11.40 abcd
CZH15058 3.65 abc CZH15053 11.36 abcd
10C3271 3.54 abc PAN53 11.27 abcde

CZH15055 3.51 abc CZH15024 11.13 abcdef
CZH15024 3.5 abc 11C4393 10.97 abcdefg
CZH15052 3.44 abc CZH128 10.93 abcdefgh
CZH142087 3.41 abc MRI 614 10.79 abcdefghi
CZH15045 3.38 abc CZH141029 10.75 abcdefghi
11C4393 3.37 abc X40F424W 10.73 abcdefghi
CZH128 3.35 abc LOCAL CHECK2 10.59 abcdefghij

CZH15060 3.3 abc CZH132043 10.53 bcdefghij
CZH15050 3.28 abc CZH132047 10.51 bcdefghijk
CZH15031 3.27 abc CZH15029 10.49 bcdefghijk
CZH15046 3.25 abc CZH15037 10.35 cdefghijkl

CZH132043 3.22 abc 10C3271 10.24 defghijklm
CZH15033 3.19 abc CZH15033 10.23 defghijklm

LOCAL CHECK1 3.18 abc MH1547 10.15 defghijklmn
CZH15051 3.17 abc CZH15045 10.13 defghijklmn
CZH15054 3.16 abc CZH15043 10.08 defghijklmn
CZH15029 3.16 abc CZH15028 10.06 defghijklmno

CZH141022 3.15 abc CZH15030 10.04 defghijklmno
CZH142010 3.15 abc CZH15044 9.90 defghijklmno
CZH15042 3.06 abc CZH15056 9.87 defghijklmno
CZH15039 3.05 abc CZH15035 9.80 defghijklmnop
CZH15030 3.05 abc CZH15036 9.71 defghijklmnop
CZH15035 3.03 abc CZH15058 9.69 defghijklmnopq
CZH15038 3 abc CZH15060 9.68 defghijklmnopq
CZH15059 3 abc CZH15047 9.61 efghijklmnopq
CZH15044 2.97 abc CZH15052 9.61 efghijklmnopq

PAN53 2.95 abc CZH15025 9.56 efghijklmnopq
CZH15041 2.93 abc CZH15048 9.48 fghijklmnopqr
CZH15040 2.87 abc CZH15032 9.47 fghijklmnopqr

P2859W 2.85 abc CZH15034 9.39 ghijklmnopqrs
MH1547 2.82 abc CZH15061 9.39 ghijklmnopqrs

X40F423W 2.81 abc CZH15031 9.37 ghijklmnopqrs
CZH15026 2.79 abc CZH15038 9.24 hijklmnopqrs
CZH15053 2.75 abc CZH15041 9.20 hijklmnopqrst

SC513 2.72 abc CZH15023 9.17 ijklmnopqrst
CZH15061 2.71 abc CZH15050 9.08 ijklmnopqrstu
CZH1227 2.68 abc CZH141022 8.96 jklmnopqrstu

CZH15056 2.68 abc X40F423W 8.93 jklmnopqrstu
PGS65 2.67 abc CZH15046 8.88 jklmnopqrstu

X40F424W 2.67 abc CZH15049 8.87 jklmnopqrstu
CZH15023 2.56 abc MRI 624 8.79 klmnopqrstu
CZH15025 2.56 abc CZH15039 8.72 lmnopqrstu
CZH141029 2.52 abc CZH15042 8.59 mnopqrstu
CZH15048 2.45 abc CZH142010 8.56 mnopqrstu
CZH132047 2.45 abc PHB30G19 8.46 nopqrstu

LOCAL CHECK2 2.44 abc CZH1227 8.45 nopqrstu
CZH15027 2.32 abc CZH15027 8.44 nopqrstu
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Table A1. Cont.

LOW OP

Genotype GY (Mg/ha) Group Genotype GY (Mh/ha) Group

MRI 634 2.29 abc CZH142087 8.42 nopqrstu
PHB30G19 2.27 abc CZH15062 8.34 opqrstuv

MRI 614 2.24 abc CZH15040 8.12 pqrstuv
CZH15049 2.21 abc MRI 634 7.97 qrstuv
CZH15022 2.03 bc P2859W 7.77 rstuv
CZH15043 2.02 bc CZH15055 7.71 stuv
CZH15036 1.98 bc CZH15059 7.68 stuv
CZH15034 1.92 bc CZH15051 7.48 tuv

MRI 624 1.69 c LOCAL CHECK1 7.39 uv
CZH15037 1.53 c SC513 6.68 v

ANOVA: *** ANOVA: ***

Table A2. Descriptive data of GY, LOW, GYLI, ASI, PH, AD, NDVI, SPADV, SPADR, GA, and GGA
according to the quartiles HY, MHY, MLY, and LY.

Entry name GYLI
(%)

GY
(12/5/16) ASI PH

(29/2/16) AD NDVI
(28/1/16)

SPADV

(18/2/16)
SPADR

(1/3/16)
GA.a

(28/1/16)
GA.g

(28/1/16)
GGA.a

(28/1/16)
GGA.g
(28/1/16)

CZH128 69.32 3.35 ±
0.39 1.00 193.00 71.67 0.730 41.09 37.97 0.483 0.522 0.327 0.452

CZH142087 59.54 3.41 ±
0.75 4.00 192.38 67.33 0.705 42.86 37.56 0.457 0.573 0.307 0.479

CZH15024 68.59 3.50 ±
0.65 3.00 183.96 73.00 0.672 40.78 34.07 0.417 0.454 0.269 0.360

CZH15028 61.44 3.88 ±
0.43 0.67 200.63 69.33 0.702 44.41 43.00 0.358 0.496 0.225 0.415

CZH15031 65.11 3.27 ±
0.06 5.33 201.88 69.00 0.698 41.18 39.03 0.445 0.533 0.266 0.413

CZH15045 66.60 3.38 ±
0.21 2.00 208.04 70.00 0.707 41.80 36.65 0.460 0.540 0.324 0.434

CZH15047 56.32 4.20 ±
0.39 2.00 214.21 68.33 0.730 45.36 39.01 0.537 0.622 0.383 0.515

CZH15050 63.89 3.28 ±
0.35 3.00 172.88 68.67 0.725 43.14 39.29 0.410 0.471 0.256 0.391

CZH15052 64.19 3.44 ±
0.36 3.00 198.79 69.33 0.730 43.18 38.93 0.531 0.574 0.377 0.464

CZH15055 54.54 3.51 ±
0.69 2.00 188.75 70.67 0.675 43.25 40.68 0.397 0.497 0.232 0.397

CZH15057 66.49 3.23 ±
0.43 2.67 187.58 72.00 0.707 41.76 37.37 0.461 0.536 0.299 0.468

CZH15058 62.28 3.83 ±
0.44 0.33 185.63 71.67 0.712 46.04 38.54 0.421 0.558 0.278 0.456

CZH15061 71.13 3.48 ±
0.95 4.00 182.00 71.33 0.720 45.71 35.81 0.478 0.566 0.323 0.495

CZH15062 46.88 3.90 ±
0.49 1.67 185.42 68.33 0.697 42.51 37.50 0.484 0.557 0.326 0.477

11C4393 69.25 3.44 ±
0.22 3.00 204.29 67.67 0.720 41.01 33.84 0.529 0.622 0.367 0.534

Local check 2 76.92 3.64 ±
0.94 3.33 207.75 70.00 0.695 43.63 37.16 0.413 0.521 0.273 0.450

CZH132043 69.44 3.22 ±
0.56 3.67 202.33 72.00 0.692 43.48 37.98 0.431 0.548 0.285 0.442

CZH142010 63.25 3.15 ±
0.53 4.33 189.00 67.67 0.697 41.75 36.91 0.444 0.524 0.295 0.436

CZH141022 64.84 3.15 ±
0.15 4.33 169.75 68.67 0.697 42.57 36.05 0.487 0.490 0.331 0.410

CZH15029 69.91 3.16 ±
0.54 4.00 205.25 70.33 0.712 43.49 40.53 0.473 0.511 0.318 0.412

CZH15030 69.63 3.05 ±
0.60 3.33 197.46 70.67 0.685 44.07 37.67 0.387 0.472 0.246 0.378

CZH15032 59.12 3.87 ±
0.56 2.67 181.54 69.00 0.728 41.54 36.33 0.428 0.508 0.270 0.404

CZH15033 68.86 3.19 ±
0.61 4.33 195.00 73.00 0.690 41.56 36.17 0.495 0.534 0.321 0.414

CZH15035 69.07 3.03 ±
0.45 4.67 209.83 73.33 0.710 38.39 37.47 0.472 0.521 0.299 0.417

CZH15039 65.00 3.05 ±
0.46 4.00 196.21 67.67 0.687 42.23 41.02 0.379 0.502 0.243 0.418

CZH15042 64.35 3.06 ±
0.50 1.67 199.67 72.00 0.727 37.11 32.71 0.432 0.568 0.273 0.446
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Table A2. Cont.

Entry name GYLI
(%)

GY
(12/5/16) ASI PH

(29/2/16) AD NDVI
(28/1/16)

SPADV

(18/2/16)
SPADR

(1/3/16)
GA.a

(28/1/16)
GA.g

(28/1/16)
GGA.a

(28/1/16)
GGA.g
(28/1/16)

CZH15046 63.40 3.25 ±
0.39 3.00 173.17 67.33 0.687 46.32 38.29 0.425 0.555 0.285 0.468

CZH15051 57.62 3.17 ±
0.17 1.67 180.33 69.33 0.717 44.84 38.88 0.465 0.554 0.277 0.432

CZH15054 73.79 3.16 ±
0.31 3.00 207.33 71.00 0.710 38.12 32.19 0.478 0.605 0.312 0.451

CZH15059 60.88 3.22 ±
0.79 5.00 186.96 69.67 0.710 43.65 36.60 0.450 0.598 0.289 0.485

X40F424W 75.08 3.07 ±
0.66 5.33 213.71 72.00 0.727 43.71 33.73 0.551 0.627 0.400 0.539

10C3271 65.39 3.14 ±
0.15 1.67 198.83 66.67 0.723 40.27 39.00 0.492 0.612 0.350 0.510

PAN53 73.79 2.95 ±
0.23 3.67 204.25 70.67 0.702 43.55 34.76 0.451 0.576 0.318 0.504

P2859W 63.28 2.85 ±
0.33 2.67 187.67 70.00 0.643 41.21 35.78 0.367 0.453 0.239 0.388

SC513 59.23 2.72 ±
0.25 4.33 197.58 69.67 0.673 38.00 32.98 0.379 0.439 0.209 0.319

CZH1227 68.28 2.68 ±
0.42 2.67 173.21 69.00 0.702 40.32 37.79 0.508 0.585 0.340 0.481

CZH15023 72.05 2.56 ±
0.66 3.33 179.04 70.33 0.703 39.43 31.36 0.449 0.545 0.272 0.461

CZH15025 73.23 2.56 ±
0.71 1.67 196.38 72.67 0.725 35.41 31.33 0.471 0.529 0.306 0.447

CZH15026 76.90 2.79 ±
0.25 5.00 208.17 72.67 0.723 40.93 32.87 0.473 0.530 0.306 0.434

CZH15038 67.50 3.0 ±
0.52 5.33 199.00 69.00 0.717 44.98 37.76 0.431 0.574 0.287 0.492

CZH15040 64.71 2.87 ±
0.22 6.00 180.25 67.33 0.658 43.01 39.73 0.373 0.441 0.221 0.331

CZH15041 68.13 2.93 ±
0.37 4.67 184.21 69.00 0.673 43.31 37.73 0.351 0.499 0.212 0.412

CZH15044 70.02 2.97 ±
0.13 3.67 190.25 70.33 0.683 45.24 40.79 0.424 0.524 0.272 0.435

CZH15053 75.79 2.75 ±
0.37 2.00 202.00 71.67 0.715 38.50 33.27 0.533 0.552 0.367 0.449

CZH15056 72.87 2.68 ±
0.24 1.67 174.29 73.00 0.702 41.79 32.66 0.383 0.515 0.235 0.415

CZH15060 65.96 2.67 ±
0.20 2.00 181.13 69.00 0.685 43.64 40.30 0.458 0.543 0.306 0.461

X40F423W 68.52 2.81 ±
0.34 6.67 204.17 72.00 0.687 41.63 33.69 0.416 0.474 0.278 0.370

Local check 1 56.92 2.75 ±
0.47 3.00 201.96 72.67 0.678 44.61 35.68 0.407 0.467 0.246 0.357

PHB30G19 73.10 2.28 ±
0.60 6.67 203.75 69.33 0.712 41.80 35.77 0.478 0.561 0.335 0.469

CZH132047 76.68 2.45 ±
0.20 4.00 209.83 72.67 0.673 40.87 38.25 0.442 0.527 0.275 0.431

CZH141029 76.53 2.52 ±
0.04 1.33 189.67 74.33 0.672 38.99 35.54 0.361 0.467 0.207 0.341

CZH15022 83.03 2.03 ±
0.21 1.00 166.33 77.00 0.690 36.19 31.04 0.405 0.525 0.240 0.413

CZH15027 72.52 2.32 ±
0.27 3.67 191.38 74.00 0.665 39.63 31.78 0.399 0.465 0.254 0.352

CZH15034 79.59 1.92 ±
0.17 6.33 199.92 72.33 0.697 38.48 35.76 0.397 0.491 0.231 0.363

CZH15036 79.64 1.98 ±
0.23 3.67 205.13 72.67 0.695 38.90 31.69 0.436 0.543 0.276 0.408

CZH15037 85.22 1.53 ±
0.29 7.00 189.75 71.33 0.710 40.76 34.23 0.444 0.553 0.297 0.435

CZH15043 79.99 2.02 ±
0.32 7.33 196.38 72.67 0.710 39.74 33.60 0.493 0.616 0.332 0.517

CZH15048 74.16 2.45 ±
0.52 4.67 169.46 70.33 0.668 43.14 37.98 0.460 0.516 0.319 0.462

CZH15049 75.04 2.21 ±
0.59 5.00 174.67 70.67 0.700 39.81 36.25 0.415 0.462 0.268 0.381

PGS65 78.26 2.52 ±
0.45 4.00 197.46 75.00 0.703 37.86 28.82 0.426 0.484 0.258 0.381

MH1547 72.17 2.54 ±
0.01 3.00 194.58 72.33 0.675 36.77 33.97 0.386 0.468 0.235 0.379

MRI 624 80.82 1.84 ±
0.58 7.00 180.38 74.67 0.660 38.49 32.22 0.390 0.469 0.241 0.353

MRI 634 71.21 2.20 ±
0.33 5.33 196.17 72.33 0.668 43.86 42.19 0.435 0.540 0.299 0.467

MRI 614 79.22 2.37 ±
0.37 6.67 213.38 72.33 0.687 42.72 37.68 0.489 0.563 0.332 0.484
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