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Abstract: This paper proposes the application of a low-cost gas sensor array in an assistant personal
robot (APR) in order to extend the capabilities of the mobile robot as an early gas leak detector for
safety purposes. The gas sensor array is composed of 16 low-cost metal-oxide (MOX) gas sensors,
which are continuously in operation. The mobile robot was modified to keep the gas sensor array
always switched on, even in the case of battery recharge. The gas sensor array provides 16 individual
gas measurements and one output that is a cumulative summary of all measurements, used as an
overall indicator of a gas concentration change. The results of preliminary experiments were used to
train a partial least squares discriminant analysis (PLS-DA) classifier with air, ethanol, and acetone as
output classes. Then, the mobile robot gas leak detection capabilities were experimentally evaluated
in a public facility, by forcing the evaporation of (1) ethanol, (2) acetone, and (3) ethanol and acetone
at different locations. The positive results obtained in different operation conditions over the course
of one month confirmed the early detection capabilities of the proposed mobile system. For example,
the APR was able to detect a gas leak produced inside a closed room from the external corridor due
to small leakages under the door induced by the forced ventilation system of the building.

Keywords: metal-oxide semiconductor; gas sensor; gas leak detection; assistant personal robot;
mobile robot

1. Introduction

The combination of mobile robots and environmental sensors enables the automatic supervision
of environmental parameters in large areas, for example, to reduce energy consumption or guarantee
human comfort. For example, Martínez et al. [1] described a mobile robot used in an ambient intelligent
application to detect uncomfortable temperature profiles. Similarly, Palacín et al. [2] showed the
automatic supervision of temperature, humidity, and luminance to evaluate human comfort in largely
frequented areas and to optimize the energy spent in heating, ventilation, and air conditioning (HVAC)
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and in illumination. Jin et al. [3] measured the performance of a ventilation system for room air renewal
by means of a mobile robot equipped with carbon dioxide (CO2) and volatile organic compound (VOC)
sensors and a stationary sensor network, showing that the robot can provide more accurate estimates
of the air quality. Mobile robots equipped with gas detectors were also used in outdoor applications
for pollution monitoring and source localization in public areas [4], surveillance of industrial facilities
producing harmful gases [5], and monitoring of landfill sites [6]. More recently, gas monitoring
outdoors was also addressed using unmanned aerial vehicles (UAVs), although with more size and
power constraint limitations. For example, Rossi et al. [7] proposed a fully autonomous UAV gas
sensing system based on the use of metal-oxide (MOX) sensors with an autonomy of 30 minutes,
capable of providing wireless real-time feedback. Gallego et al. [8] proposed an optimization of the
speed of the UAV and of the power consumption based on the gas sampling frequency. Additionally,
Rossi et al. [9] proposed a battery-powered, lightweight, and compact gas sensing board based on
the use of two MOX sensors, which was suitable for any type of mobile carrier such as UAVs or
wheeled robots.

The field of mobile robotic olfaction (MRO) traditionally considers two main tasks: gas source
localization (GSL) and gas distribution mapping (GDM). GSL consists of finding the source of a released
chemical, while GDM aims at building a map of the distribution or spread of the chemical in the
environment. GSL algorithms [7–15] can be divided into reactive plume tracking, plume modeling,
or map-based approaches. They usually assume that a single gas source is present in the environment.
GDM strategies [16] typically require that the robot fully explores the environment, and some of the
works considered multiple gas sources [17–21]. Loutfi et al. [17] obtained classification rates higher
than 85% in experiments where two odor sources were placed in different corridors to facilitate the
discrimination task. Monroy et al. [21] studied the impact of the speed of the robot in the discrimination
of two chemicals using a mobile robot equipped with an e-nose. They found that the classification
accuracy can degrade up to 30% when the motion speed of the data used for training highly differs from
that of the testing. The same authors proposed a method to create time-variant maps using obstacle
information [19]. One of the main limitations of previous indoor works was the overly simplistic
scenarios in terms of distance between the robot and the source. In most cases, the robot started the
exploration in the same room where the source was located, only a few meters away. There are few
exceptions to this. For example, Burgués et al. [19] used a gas-sensitive UAV to explore an indoor area
of 160 m2.

The use of MOX gas sensors in mobile robots has the advantage of its lower cost and weight with
respect to other technologies. On the other hand, MOX sensors have well-known limitations such as
their limit of detection [22], power consumption [23], and their lack of selectivity and cross-sensitivity
to environmental factors such as temperature and humidity [24]. By combining multiple MOX sensors
with different operating temperatures, the selectivity of the system can be increased. Arrays of MOX
sensors, commonly known as e-noses, are widely used for gas sensing in ambient monitoring [25] and
gas distribution mapping [18,26,27]. For example, arrays of six [18,27] and 10 [21] MOX sensors were
used in a mobile robot in order to create indoor odor maps in presence of multiple sources. Finally,
Hernández et al. [18] combined a low-cost MOX array for chemical identification and a photo-ionization
detector (PID) to obtain fast and calibrated measurements of the concentration of the gas detected.

This paper proposes the application of an array of MOX gas sensors as a cost-affordable sensor
embedded in an assistant personal robot (APR) initially designed to provide telepresence [28], transport
of small objects, and other assistive services [29]. The final goal is the inclusion of gas sensing
capabilities in this type of mobile robot in order for it to operate as an early gas leak detection system.
However, the mobile robot will also have application as a specific tele-controlled or autonomous
exploratory device for the detection and identification of gas leaks in hazardous conditions. The gas
sensing capabilities are based on a custom array composed of 16 low-cost MOX gas sensors, based on
the definition of an overall gas detector procedure, and on the application of a multivariate classification
model (partial least squares discriminant analysis; PLS-DA) for gas leak identification.
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The main contribution of this paper is the validation of the application of an array of MOX gas
sensors in a mobile robot for early gas leak detection in a real case scenario. The novelty of this
contribution lies in the number of MOX sensors used, on the low concentrations of the target gas,
on the presence of chemical interferences, and on the dimensions (15 m × 40 m) and complexity of the
testing environment. These conditions represent an improvement over similar validations performed
in simulated scenarios [13] or in smaller areas [19] containing a single gas source [26] and artificially
induced unidirectional airflows [30]. The experimental arena is one floor of a university building, in
which a hypothetic gas leak can potentially spread very fast and affect many people. In this scenario,
the APR performing a routine patrol [1,2] must detect, as early as possible, gas leaking from a gas
source located far from the initial position of the robot or even in a closed room.

2. Methods

2.1. Assistant Personal Robot

The mobile robot used in this paper is a second-generation APR prototype [28] (APR-02) which
includes a holonomic motion system [31] and an improved suspension designed to absorb the vibrations
generated by the displacement of the omnidirectional wheels [32].

The APR-02 (Figure 1) includes a central processing unit based on a 4.2 GHz Intel(R) Core
(TM) I7-7700K processor, 16 GB of Double Data Rate 4 (DDR4) random-access memory (RAM), and
a 250 GB Western Digital PCIE NVMe (non-volatile memory express) solid-state drive (SSD) disc.
The connectivity of the central processing unit with all embedded sensors is based on Universal Serial
Bus (USB) connectivity, registering the devices as active USB-COM drivers. All sensors are accessed
using standard functions for the RS232 serial port which are managed by an initialization agent that
shares the information of the sensors between the different programs, functions, and agents that define
a particular application of the APR [33].
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Figure 1. Image of the assistant personal robot (APR-02) and detail of the array of metal-oxide (MOX)
gas sensors used for early gas leakage detection.

The APR-02 uses a two-dimensional (2D) light detection and ranging (LIDAR; UTM-30LX by
Hokuyo) as a main sensor for SLAM [34,35]. The mapping and autonomous navigation capabilities
are based on the application of the iterative closest point algorithm (ICP) [36] which, depending on
the configured operation, uses the scan data gathered with the LIDAR sensor in order to estimate the
position of the robot relative to a previous scan or relative to a reference map, either creating and/or
updating the current map with the information of the current scans. Finally, the A* [37,38] algorithm is
used to compute an optimal path between the initial robot position and its target destination according
on the information available in the current active map.
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2.2. Gas Sensor Array

Figure 1 shows details of the gas sensing array used in the APR-02. According to previous
experiences in gas leakage detection experiments with mobile robots [39,40], the gas sensing array is
placed in front of the mobile robot at a height of 500 mm. The gas sensing system is a heterogeneous
array of 16 MOX sensors (e-nose) which is an evolution of the array of eight MOX sensors proposed
to detect two gas sources in a wind tunnel by Fonollosa et al. [41]; however, in this paper, the gas
sensor array will be used to sample in open conditions. The gas sensing array is complemented with
a ppbRAE 3000 PID (RAE Systems) for validation purposes, providing accurate gas concentration
information. The gas sensing array integrates 16 MOX gas sensors (4× FIGARO TGS 2600, 4× FIGARO
TGS 2602, 4× FIGARO TGS 2611, 4× FIGARO TGS 2620) in a 105.06 × 57.90 mm printed circuit board
(PCB) that contains the interface and conditioning electronics. The MOX sensors are always turned on
in order to operate them isothermally, as recommended by the manufacturer.

Similarly to Rossi et al. [9], the specific power applied to each heating resistor is controlled by
a pulse width modulation (PWM) signal to change the temperature of the sensing layer. This PWM
operates at 500 Hz and the heating resistors are powered with 6.5 V. Sensors of the same model are
powered with different duty cycles (Table 1), which results in different operating temperatures and
different sensitivity profiles [42]. When sensors of the same type are operated at different temperatures,
the multivariate sensor responses can be processed to increase the selectivity [43]. The gas sensing
array includes an Arduino Mega microcontroller which controls the power applied to the heating
resistors, reads the sensor signals, and provides external USB serial connectivity. The readout circuit
is based on a voltage divider using a load resistor (RL) of 10 kΩ, which is connected to a reference
voltage (VREF) of 3.3 V, and the sensing resistor (RS), which is connected to the ground. The sensor
voltage is measured at 10 Hz with a 10-bit analog-to-digital converter (ADC). Hence, the value of the
sensing resistor (RS) can be analytically deduced from the digital value provided by the ADC.

Table 1. Metal-oxide (MOX) sensors used in the electronic board and duty cycle applied. ID—identifier;
PWM—pulse width modulation.

ID Sensor PWM Channel Duty Cycle

1 TGS 2600 1 25%
2 TGS 2602 1 25%
3 TGS 2611 1 25%
4 TGS 2620 1 25%
5 TGS 2620 2 50%
6 TGS 2611 2 50%
7 TGS 2602 2 50%
8 TGS 2600 2 50%
9 TGS 2620 3 75%
10 TGS 2611 3 75%
11 TGS 2602 3 75%
12 TGS 2600 3 75%
13 TGS 2620 4 62.5%
14 TGS 2611 4 62.5%
15 TGS 2602 4 62.5%
16 TGS 2600 4 62.5%

Figure 2 shows the sensor board with the spatial distribution of the 16 MOX sensors and the sensor
enclosure designed and implemented in black polylactic acid (PLA). The sensor case includes entry
air holes in the bottom and a small ventilation hole in the top. The upper hole includes an internal
extractor fan (25 × 25 × 8 mm, 3.2 m3/h, 500 mW, 12 V of direct current (DC)) as a way to force a slightly
but constant air circulation of air inside the case of the device. The fan was powered at 6 V in order to
obtain an optimal air circulation inside the device with a minimum cooling effect in the sensors.
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TGS 2620 (red: 4, 5, 9, 13). (b) Enclosure of the sensor array integrated with the APR (160 × 60 × 50 mm).

The mobile robot has a power management procedure which is continuously measuring the
power drained from the batteries and continuously providing an estimate of the remaining battery
capacity in order to generate a battery recharge warning. The maximum power consumption of the
gas sensor array is approximately 1.0 A (powered at 12 V of DC). This continuous power consumption
represents approximately 2.7% of the current onboard batteries of the APR-02 prototype. In this
paper, the continuous powering of the gas sensor array is guaranteed by increasing the threshold level
of the battery warning in order to have enough time to return to the recharging station. Similarly,
the recharging system keeps powering the gas sensor array even if the mobile robot is completely
turned off. The gas sensor array was operated continuously during several months without any
remarkable incidence. However, future evolutions must include procedures to reduce the power
consumption while preserving the accuracy of the measurements. For example, Rossi et al. [44]
proposed a strategy of sampling and processing which permits reducing the energy consumption by
one order of magnitude. Jeličić et al. [45] proposed the use of a pyroelectric infrared sensor to modulate
the duty cycle of an MOX gas sensor only when detecting the presence of people. Rossi et al. [46] and
Brunelli et al. [47] also proposed the strategy of fixing a reading interval allowing a 20-fold reduction
of the power required to perform measurements with an MOX gas sensor.

2.3. Odor Delivery System

Ethanol and acetone were selected to carry out the gas leak experiments as they are commonly
used in scientific experimentation with MOX gas sensors [42,47] in open spaces due to their low toxicity.
The analytes in liquid form were dosed over a heated surface for its evaporation. Figure 3 shows the
evaporation system, based on a peristaltic pump (0.5 mL/min), for accurate liquid-flux control and a
30-W heating resistor as a final evaporator.
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2.4. Experimental Area

The experiments of early gas detection with the APR and the onboard matrix of MOX gas sensors
were performed on the second floor of the Polytechnic School located in the University of Lleida, Spain.
Figure 4 shows a map of this area, which contains a large corridor with one emergency exit door (which
is normally closed) at the end and one hall at the beginning. There are also 14 small offices on one side
and five laboratories and multiuse rooms on the other side. In this mixed area, a hypothetic gas leak can
potentially spread very fast and affect many people. Figure 4 also shows a representation of the global
air recirculation originated from the central HVAC system with different arrows. In the laboratories,
the conditioned air comes through air vents located in the ceiling. On the one hand, the injection of
air originates a slight pressure inside the laboratories that is passively drained with return ducts also
located in the ceiling. However, the air is also pushed below closed doors, originating a global air
recirculation in the building. Therefore, one of the hypotheses is that a gas leakage originating inside
a laboratory will reach the corridor and the hall of the plant, even in the case of a laboratory with a
closed door. On the other hand, the HVAC of the offices is based on individual fan coil units (FCU)
that do not increase the air pressure and do not contribute to the global air recirculation in the building.
The air current profiles described in Figure 4 were measured by Martinez et al. [1].
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2.5. Measurement Campaigns

The robot equipped with the MOX sensor array and the PID was used to collect data in the
scenario described in Section 2.4. The first measurement campaign, performed at the beginning of



Sensors 2019, 19, 1957 7 of 16

May 2018, consisted of 11 explorations of the target area, divided into three explorations with clean air
conditions, four explorations with an ethanol gas source placed in the middle of the corridor, and four
explorations with an acetone gas source in the same location. The experimental protocol consisted of
continuously evaporating the selected analyte using the gas source described before and displacing
the mobile robot towards the gas flow. The initial position of the robot was around 10 m from the gas
source. In each exploration, which lasted approximately four minutes, the robot traversed the corridor
(following the green lines depicted in Figure 4) from one end to the other at a speed of 0.13–0.16 m/s
without stopping. The HVAC of the building was switched on at all times. This dataset was used for
building the multivariate classifier.

The second measurement campaign, performed at the end of June 2018, was used for validation
purposes. The robot performed several explorations of the corridor using the same trajectory as in the
previous measurement campaign, but we devised four different scenarios. In Scenario I, a single gas
source (ethanol or acetone) was placed in the middle of the corridor (same location as in the previous
campaign) and the HVAC of the building was switched on. In Scenario II, the gas source of acetone
was placed in the same location as before, but the HVAC of the building was switched off to explore
the effect of ventilation in gas source localization. In Scenario III, we placed two gas sources (ethanol
and acetone) in different locations of the corridor and the HVAC was switched off to avoid premature
mixing of the two substances. In Scenario IV, the gas source of ethanol was placed inside one of the
rooms adjacent to the corridor and the robot needed to detect the presence of the source from outside
the room with the door closed (just from propagation below the door).

2.6. PLS-DA Classifier

A PLS-DA classifier [48] was trained to discriminate in real time between three classes (air, ethanol,
and acetone) from the raw uncalibrated data gathered from the gas sensing array; the data obtained with
the PID were omitted in this training since the response time of both devices was significantly different
and could lead to inaccurate classification. PLS-DA is especially suited to deal with multicollinearity,
one of the main problems encountered when analyzing gas sensor array data. The number of latent
variables (LV) of the model was set to three based on previous experience of the authors. The model
was built using all data from the first measurement campaign. The classification model was validated
in real time using the data captured in the second measurement campaign. We considered that the gas
identification was correct when the classifier output went from air (far from the source) to the correct
gas when the robot approached the source. In case both labels (ethanol and acetone) appeared at the
classifier output, we considered the identification correct when the correct gas label was displayed
longer than the alternative gas label.

3. Results and Discussion

This section describes the experimental results and discusses them in the perspective of early gas
leak detection.

3.1. Signals Acquired in the First Measurement Campaign

The main goal of the first measurement campaign was to confirm that the sensors had a limit
of detection (LOD) good enough to have a sufficient response to ethanol and acetone in the different
scenarios, and also to build a PLS-DA classifier. Figure 5 shows the raw conductance measured from
each of the 16 MOX sensors when the mobile robot moved toward a gas source evaporating ethanol
or acetone at a flow rate of 0.5 mL/min, or when it explored the area and no gas source was present.
The underlying hypothesis was that the different sensor types and the different power applied to
sensor heaters of the same type may induce different responses. As a result, the multivariate sensor
response will enable the ethanol/acetone discrimination task.
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3.3. Scenario I: One Gas Source and HVAC Turned On 

This sub-section shows the exploration results obtained with the mobile robot and the matrix of 
MOX gas sensors in the case of a gas leak source located approximately in the middle of the corridor. 
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Figure 5. Measured sensor conductance obtained with the 16-element MOX sensor array when the
APR traveled through the arena and reached the gas plume for ethanol and acetone.

3.2. Calibration of the PLS-DA Classifier

Using the raw signals shown in Figure 5, we built a PLS-DA classifier with 3 LVs. The scores of
the calibration samples in the latent variable space (Figure 6) indicated good separability between the
three classes. To validate the performance of the classifier in unseen data, we projected data from the
second measurement campaign (Scenario I) into the score plot obtained from the first campaign and
colored the samples according to the classifier output. In the test samples, the beginning of the robot
trajectory was classified as clean air (green crosses and squares) because the robot was far from the
source, and then the predicted class converged to the true class (blue crosses and red squares) as the
robot approached and passed by the source.
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least squares discriminant analysis (PLS-DA) score plot of calibration data (filled circles). The validation
data are colored according to the label given by the classifier.

3.3. Scenario I: One Gas Source and HVAC Turned On

This sub-section shows the exploration results obtained with the mobile robot and the matrix of
MOX gas sensors in the case of a gas leak source located approximately in the middle of the corridor.
Figure 7 shows the exploration trajectory followed by the mobile robot, the position of the gas source
(red circle), and the information of the mean sensor array response. The cumulative sum of the ADC
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value was used as an overall indicator of the existence of a variation of conductance caused by a
variation in the concentration of volatile substances. A threshold level applied to this cumulative sum
was used as a fast detector. In this case, the threshold level was reached just after the robot passed next
to the source and the classifier correctly classified the gas as ethanol. The conductance of the matrix of
MOX sensors had a similar evolution to the PID signal, which we considered ground truth. The PID
registered peak concentrations of approximately 1.1 ppm next to the gas source and along the corridor
and the hall of the plant. These low concentrations represent a challenging scenario for MOX sensors,
which exhibit LOD values around 1 ppm even with multivariate calibration models in the presence
of humidity interference [49]. The mean sensor array response reached its peak value at almost five
meters from the source. The main reason for this phenomenon was the vertical distance between the
gas source (located at ground level) and the gas sensor (55 cm above the ground), combined with the
air currents induced by the HVAC system, causing the plume to be pushed away from the source.
This was already observed by Sánchez-Sosa et al. [30] and is later confirmed by results obtained with
the HVAC system turned off.
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Figure 7. Results of exploration with one gas source of ethanol (Scenario I). From top to bottom: map
of the arena (built by the robot) and output of the PLS-DA classifier overlaid on the robot trajectory;
concentration measured by the photo-ionization detector (PID); conductance of the matrix of MOX gas
sensors; output of the PLS-DA classifier and mean sensor array response (analog-to-digital converter
(ADC) value) (for visual clarity, we added a threshold that indicates the mean array response during
the commutation from air to ethanol). The red dotted line indicates the point of closest approximation
to the gas source.

Similarly to the previous example of ethanol presentation, we released acetone in the environment.
Figure 8 shows the trajectory, the sensor array response, and the output of the classifier. A variation in
the conductance of the sensors was observed when the robot passed by the acetone gas source, as in the
case of ethanol. Peak concentrations of approximately 2.2 ppm next to the gas source were measured
by the PID. The output of the classifier presented some transition time to correctly predict the class of
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acetone. Results agreed with the hypothesis that there is global air recirculation into the plant that
pushes the air from the laboratories to the hall. In fact, the sudden descent of volatile concentration
appearing in the trajectory of the mobile robot was probably caused by the arrival of new fresh air that
entered into the global recirculating air flow from below the closed door corresponding to the next
laboratory in the corridor.
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Figure 8. Results of exploration with one gas source of acetone (Scenario I). From top to bottom: map
of the arena (built by the robot) and mean sensor array response overlaid on the robot trajectory;
concentration measured by the PID; conductance of the matrix of MOX gas sensors; output of the
PLS-DA classifier and mean sensor array response (ADC value) (for visual clarity, we added a threshold
that indicates the mean array response during the commutation from air to ethanol). The red dotted
line indicates the point of closest approximation to the gas source.
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3.4. Scenario II: One Gas Source and HVAC Turned Off

The robot explored the arena with a gas source of acetone in the middle of the corridor with
the HVAC switched off. Figure 9 represents the mean response of the sensor array overlaid on the
robot trajectory. Compared to the results shown in Figure 8 (same conditions but HVAC turned
on), the current map shows less diffusion of the evaporated acetone due to the inexistence of global
recirculating air currents in the building. This allows a more precise estimation of the source location
using the sensor array.
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Figure 9. Results of exploration with one gas source of acetone and heating, ventilation, and air
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3.5. Scenario III: Two Gas Sources and HVAC Switched Off

Figure 10 shows the exploration results obtained with two gas sources (ethanol and acetone)
placed in the corridor of the experimentation area with the HVAC switched off. The evaporation of
ethanol and acetone started simultaneously when the mobile robot started the exploration. The center
of mass of the area detected as ethanol or acetone appeared displaced from the gas sources, probably
because the experiment was performed on a summer day at noon with the highest level of solar
radiation. Therefore, this displacement was probably caused by the natural convection originating
from the existing temperature gradient between the interior (26.5 ◦C in the corridor) and exterior
(31.4 ◦C) of the building.
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(Scenario III). Top: map of the arena (built by the robot) and mean sensor array response overlaid on the
robot trajectory using two colors based on the classifier output (red for ethanol and cyan for acetone);
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threshold that indicates the mean array response during the commutation from air to ethanol).

3.6. Scenario IV: Gas Leak Inside a Door-Closed Room and HVAC Turned On

Figure 11 shows the results of the exploration with a leak of ethanol located inside a laboratory
with the door closed and the HVAC turned on. The mobile robot is exploring the corridor and does
not enter the room. In this case, the gas spreads outside of the room under the door because of the
global air recirculation originated by the HVAC. The maximum mean response of the sensor array was
obtained near the door of the closed laboratory, although the gas sensor array was able to detect the
ethanol a few meters before reaching that location. The PID provides a more accurate estimate of the
source location but only detects the gas when the robot is in front of the door of the room containing
the gas source. The results of this experiment demonstrate that a gas leak originated inside a closed
laboratory can be detected by a mobile robot at a large distance from the source with an embedded
array of MOX gas sensors when the HVAC of the building is turned on.
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Figure 11. Results of exploration with an ethanol gas source inside a closed room and HVAC turned on
(Scenario IV). Top: map of the arena (built by the robot) and mean sensor array response overlaid on
the robot trajectory; bottom: map of the arena (built by the robot) and PID response overlaid on the
robot trajectory.
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4. Conclusions and Future Work

This paper proposes the extension of the application of a mobile robot as an early gas leak detector
for safety purposes. The gas sensor is composed of an array of 16 low-cost MOX sensors which are
continuously powered for continuous measurement. The measurements were carried out with the
mobile robot in continuous motion without stopping for taking measurements. The matrix of gas
sensors generates 16 individual voltage measurements which are sampled with a 10-bit ADC and
converted to sensor conductance. Additionally, all sensor voltage values sampled are added and used
as a fast indicator of a change in the gas concentration by applying a threshold level. Then, the MOX
sensor conductance is applied to a trained PLS-DA in order to classify the gas as air, ethanol, or acetone.
Results show that the proposed system can detect two chemical sources in an indoor scenario at large
distances from the source. The proposed classifier was able to correctly classify the target gas in a real
scenario, despite the validation conditions being more challenging than the calibration conditions.
Results also show that, when two sources are present at the same time, the mobile robot detects only
the most concentrated chemical. The combination of mobile robot and gas sensing device was able to
detect a gas leak located in a contiguous room with closed doors due to the small air flow going under
the door. The positive results obtained in different operation conditions over the course of one month
confirmed the early detection capabilities of the proposed mobile system.
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