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Abstract: This paper presents a novel and practical convolutional neural network architecture to
implement semantic segmentation for side scan sonar (SSS) image. As a widely used sensor for marine
survey, SSS provides higher-resolution images of the seafloor and underwater target. However,
for a large number of background pixels in SSS image, the imbalance classification remains an
issue. What is more, the SSS images contain undesirable speckle noise and intensity inhomogeneity.
We define and detail a network and training strategy that tackle these three important issues for SSS
images segmentation. Our proposed method performs image-to-image prediction by leveraging
fully convolutional neural networks and deeply-supervised nets. The architecture consists of an
encoder network to capture context, a corresponding decoder network to restore full input-size
resolution feature maps from low-resolution ones for pixel-wise classification and a single stream
deep neural network with multiple side-outputs to optimize edge segmentation. We performed
prediction time of our network on our dataset, implemented on a NVIDIA Jetson AGX Xavier, and
compared it to other similar semantic segmentation networks. The experimental results show that
the presented method for SSS image segmentation brings obvious advantages, and is applicable for
real-time processing tasks.

Keywords: side scan sonar (SSS); semantic segmentation; imbalance classification; image-to-image
prediction; fully convolutional neural networks; deeply-supervised nets

1. Introduction

Side scan sonar (SSS), among the most common sensors used in ocean survey, can provide
images of the seafloor and underwater target. Target detection based on SSS image has a great
variety of applications in marine archaeological surveying [1], oceanic mapping [2], and underwater
detection [3–5], in which the main task is SSS image segmentation.

Various methods for SSS image segmentation have been proposed, most of which are based on
unsupervised segmentation methods, such as active contour model, clustering segmentation method
and Markov random field (MRF) segmentation method, etc. Generally, the common techniques of
SSS image segmentation include the clustering segmentation method and the Markov random field
(MRF) segmentation method. Specifically, Celik T. et al. [6] utilized clustering algorithm for SSS image
segmentation. Firstly, in their algorithm, the multiresolution representation of the input image was
constructed using the undecimated discrete wavelet transform (UDWT), where the feature vectors
were extracted. Secondly, principal component analysis (PCA) was used to reduce the dimension of
each feature vector. Finally, k-means clustering was used to group feature vectors into disjoint clusters.
No extra prior assumptions were supposed in this algorithm. However, if there is a serious imbalance

Sensors 2019, 19, 2009; doi:10.3390/s19092009 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19092009
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/9/2009?type=check_update&version=2


Sensors 2019, 19, 2009 2 of 15

of data volume or different variances of classes, the clustering effect of k-means is not satisfactory.
In addition, others are based on Markov random field (MRF) [7] and hierarchical Markov random
field (HMRF) [8,9]. These methods for SSS image segmentation can get more ideal results. However,
these methods may be dependent on parameters to a large extent and are not efficient. Supervised
methods are mostly used for SSS image classification, but rarely for SSS image segmentation. As an
example, convolutional neural network (CNN), a very effective and popular supervised methods,
is commonly used for SSS image classification [10–12]. There exist other methods for SSS image
classification by using convolutional neural networks combined with traditional classifiers [13,14].
In [14], the authors extracted the nonlinear features of sonar images by convolutional neural networks,
and then used support vector machine (SVM) to classify targets. And authors prove that there are
significant improvements in target recognition and classification of sonar images by deep learning
method compared with other feature extraction methods. In particular, there are few methods based
on full convolution network for SSS image segmentation.

Recently, convolutional neural networks have derived advances in recognition tasks.
These networks do not only make great progress on tasks for image classification [15–19], but also for
semantic segmentation. In 2015, Long et al. [20] designed fully convolutional networks (FCN) for
semantic segmentation, which could be trained end-to-end on pixel-wise prediction and outperform
the previous best results. Since then, semantic segmentation methods [21–26] based on the fully
convolutional network have been developed rapidly. However, most of them are about natural scenes
image segmentation, biomedical image segmentation [27,28], and satellite image segmentation [29,30].
These previous researches motivated the development of fully convolutional networks used for SSS
image segmentation in this paper.

Our network, ECNet, is an efficient convolutional network for pixel-wise SSS image segmentation.
It is mainly driven by SSS image understanding applications which are able to model appearance, shape,
and understand the spatial relationship between target and background. It works with smaller training
data and yields more ideal results. Inspired by SegNet [23], the core of our network architecture is the
encoder–decoder pair. In this network architecture, the encoder splits information into feature maps
to learn rich hierarchical features, and the decoder maps these features into spatial categorization to
perform pixel-wise segmentation. The encoder reduces the resolution of feature map, so the decoding
method would have a decisive influence in the model performance in increasing the resolution back.
Inspired from the work in U-Net [27], SegNet [23], and LinkNet [25], the appropriate decoding method
was determined through a series of experiments.

Considering that the intermediate layers in networks are plentiful of useful fine details, side-output
layers were added to the network to learn nested multiscale feature and effectively utilize features
in intermediate layers. To solve the problem of imbalance classification and improve the network
performance, we use weighted loss, where pixels predicted to be the targets would obtain a larger
weight in the loss function. In experiments, the proposed segmentation network was compared to
U-Net, SegNet, and LinkNet, and the experimental results demonstrate a good segmentation ability
and generalization performance.

The remainder of this paper is organized as follows. We introduce related works on semantic
segmentation of CNNs, the residual building blocks, and a single stream deep network using multiple
side-outputs in Section 2. In Section 3, the network architecture and relevant formulation are described.
In Section 4, we detail the experimental process, where we analyze the data and give some parameters
for the experiment. Section 5 demonstrates experimental results and discusses the design choices.
Finally, we give our conclusions in Section 6.

2. Related Works

Semantic segmentation, fueled by challenging datasets [31–34], is an active research topic.
For sonar image segmentation, there are fewer methods using the fully convolutional network. In
this paper, we rearchitect a network for dense prediction of pixel-wise SSS image segmentation.
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Our network architecture draws on recent promising results of fully convolutional networks for image
segmentation and edge detection [35,36].

One of the strengths of CNN is that its multilayer structure can automatically learn multiple
levels of features. These abstract features are used to decide the class of objects classes within an
image, which is useful for categorization. Since some details of objects are lost, it is difficult to get
the specific outline of objects and the category of each pixel. Hence, it is difficult to achieve image
segmentation for CNN. This situation was improved until the idea of fully convolutional network
appeared in Shelhamer et al. [20]. Pixel level prediction tasks achieve great progress by replacing fully
connected layers by convolution layers and inserting differentiable interpolation layers and a spatial
loss. Thus, fully convolutional networks, which showed effective feature extraction and end-to-end
training, become one of the most popular solutions for semantic segmentation tasks.

Most architectures, particularly designed for segmentation, have an encoder network and a
corresponding decoder network [23,25,27]. The former, learning rich hierarchical features of input data,
is composed of classification networks’ modules, such as VGG [16], GoogLeNet [17], and ResNet [18].
These classification networks achieve good results for dealing with recognition tasks. Among them,
ResNet have proved its superiority in several challenging recognition tasks, such as ImageNet [37] and
MS COCO [38] competitions, and the number of semantic segmentation networks by means of residual
building blocks is increasing. He K. et al. [39] investigated and analyzed the residual building blocks
by a series of ablation experiments. These experiments, emphasizing the key role of skip connections
and the importance of their identity mappings, supported the idea that keeping a “clean” information
path is helpful for making the optimization easier. Based on these experiments, our encoder unit use
“full preactivation unit”, proved to perform better than the baseline counterparts.

Deep learning, especially convolutional neural network (CNN), has active performance in image
preprocessing because of its self-learning ability. In recent years, image denoising methods based
on deep learning have also been proposed and developed. In 2008, Jain et al. proposed a denoising
method based on CNN for processing natural images [40], which can yield similar or even better
results than conventional methods, such as wavelet transform and Markov random field. In 2016,
Mao et al. proposed a deep fully convolutional autoencoder network for image denoising [41]. In this
network, the convolutional layer is responsible for feature extraction, capturing abstract information
from the image content while eliminating image noise or useful information loss. Correspondingly, the
deconvolution layer is used to restore image details.

The aforementioned models relying on fully convolutional networks have significantly contributed
to the state-of-the-art techniques, but all of them still lose some useful features from middle layers.
In order to utilize the characteristics of the middle layer to the best of one’s ability, we exploit the
approach in holistically-nested edge detection [35]. Holistically-nested edge detection (HED) mainly
solves two problems. One is the end-to-end training and prediction, and the other one is multiscale and
multilevel feature learning. Through their architecture, the authors not only complete the prediction
from image to image, but also perform edge detection by the learned rich hierarchical features from
middle layers. A single stream deep network with multiple side-outputs was considered for multiscale
learning, by which the authors highlight the importance of obtaining edge maps. The side-output
layers were then interpolated behind encoder unit which encourages coherent contributions to improve
the accuracy. It can generate predictions from multiple scales, but there is no significant redundancy of
both representation and computational complexity.

3. Methods

3.1. Network Architecture

Our network architecture is illustrated in Figure 1. The main module of our network is shown
in Figure 1b, where the side-output network are illustrated from top to bottom, the encoder network
consisting of four encoders and the decoder network with the four corresponding decoders. Given
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an input image in Figure 1a, an encoder network made up of residual building blocks extracts the
feature maps. Three side-output layers are connected to the last layer of encoder1–3 to get relevant
side-outputs of different scales. In ECNet, the inputs of decoder1–3 are the sum of the corresponding
encoder outputs and the previous decoder outputs. Each decoder takes advantage of the max-pooling
indices, stored by the corresponding encoder during the max-pooling operation. The decoders use
these indices to achieve up-sampling operation on their input feature maps. The inputs of decoder4
are only from encoder4. Then, the main outputs are obtained after decoder1. By doing this, spatial
information lost during the encoder operations are recovered and coarse high-level feature maps can
be refined. Finally, these three side-outputs and the main outputs are combined together, before being
averaged to get the final prediction map in Figure 1d.
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Figure 1. An illustration of the ECNet architecture. Three side-output layers are placed behind
encoder1-3. Deep supervision is performed on each side-output layer, conducting the side-outputs to the
predictions we expect. Our encoder–decoder module has no fully connected layers in encoder–decoder
module. In addition to the inputs of the decoder4, the inputs of the other decoders are the sum of the
corresponding encoder outputs and the latest decoder outputs. A decoder performs an up-sampling
operation on its input based on the pooling indices the corresponding encoder provide. The feature
maps of the final decoder output are given as inputs to a sigmoid classifier to complete the pixel
level classification.

The architecture of an encoder unit is illustrated in Figure 2a. This encoder is composed of a
residual block and a convolutional block. In order to enhance the expressive ability of the encoder
network and to make the whole model easier to learn and optimize, each encoder unit uses skip
connection referencing full preactivation unit [39]. Then, each residual block outputs are passed through
one convolutional block to fit the layers dimension. Layers within encoder block are shown in Figure 2a.
Here, conv means convolution with the kernel size of 3. MaxPooling represents down-sampling by a
factor of 2, which is achieved by means of performing max-pooling operations. "Batch normalization
(BN), followed by ReLU nonlinearity [42,43] is placed ahead of convolutional layer. Layer details for
decoder unit are shown in Figure 2b. MaxUnpooling denotes the nonlinear up-sampling operation by
the max-pooling indices received from the corresponding encoder. The decoder1 outputs are fed to a
classifier to independently estimate class probabilities for each pixel, as seen in Figure 2, used as the
main output. Table 1 contains the information about the feature maps used in each of these blocks.
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Table 1. The number of input and output feature maps.

Block
Encoder

Decoder
A b

1 3 64 32
2 64 128 64
3 128 256 128
4 256 512 256

In general, spatial information is lost in the encoder due to pooling or convolution operations.
Therefore, the decoder should map low-resolution features to input resolution for pixel-wise
classification. The decoding method thus plays a key role in the model performance. There are
many kinds of existing encoding methods, such as U-Net [27], SegNet [23], and LinkNet [25]. U-Net
decoding method creates an up-sampling stage according to the corresponding down-sampling
stage in the original network. Feature fusion is then performed using channel connection with the
corresponding stage. This one provides more perspective, but it leads to an increase in the number of
channels affecting the computational efficiency. In SegNet, the decoding network uses the max-pooling
indices stored and transmitted from the corresponding encoder for up-sampling to obtain a sparse
feature map. This method has fewer parameters to fit. In LinkNet, the outputs of the encoder are
directly added to the inputs of the corresponding decoder. The decoding method, bypassing spatial
information, improves performance along with a significant decrease in processing time. In this way,
information which would have been lost using other decoding methods is here retained, and no
additional parameters and operation are required in learning this information.

Our decoding method leveraged the combination of the max-pooling indices from SegNet and
direct connection from LinkNet. In this paper, experiments prove that our method provides more
accurate segmentation results.

Each of the last layers in encoder1–3 is followed by a 1 × 1 conv layer in the side-output module.
Then, a deconv layer up-samples the feature maps to get original image size back. Finally, a sigmoid
layer is followed to get the outputs and loss in side-output layers. As encoder units have different
sizes of receptive field, our network can learn multilevel information, in particular object-level and
low-level, which is useful for semantic segmentation. Table 2 is a summary of the receptive fields
and strides configuration. The outputs of each side-output layer are multiscale, where the smaller the
side-input size, the larger the receptive field.
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Table 2. The receptive field (rf) and stride size (s_size) in encoder module used in ECNet.

Block Encoder1 Encoder2 Encoder3 Encoder4

rf 8 22 50 106
s_size 2 4 8 16

3.2. Formulation

We denote our input dataset by D =
{
(Xn, Yn), n = 1, . . . , N

}
, where sample image Xn ={

X(n)
i j ; i = 1, . . . , w, j = 1, . . . , h

}
denotes the raw input image with the width (w) and the length (h), and

Yn =
{
Y(n)

i j ; i = 1, . . . , w, j = 1, . . . , h; Y(n)
i j ∈ {0, 1}

}
represents the related ground truth binary map for

image Xn.
Each encoder is composed of a residual block and a convolutional block. More concretely, the entire

set of standard network layer parameters in residual block and a convolution block are represented as
wL and w, respectively. The functions of convolution block compute outputs yi by

yi = F(xi, wi) (1)

where, F determines the layer type: A batch normalization layer, a ReLU nonlinearity for an activation
function, and a matrix multiplication for convolution. Each residual block can be expressed in a
general form:

XL+1 = XL +
2∑

I=1

F(XL, wLi) (2)

where, XL and XL+1 denote the respective inputs and outputs of the L-th residual block.
We represent the entire set of network layer parameters as Θ. Suppose there are M side-output

layers in the network. Each of them is assigned with a classifier, so the corresponding weights can be
defined as

(
θ(1), . . . ,θ(M)

)
v Θ. Since most areas of the image are the seabed reverberation areas and

only a few are the object-highlight areas, the imbalance classification issue cannot be avoided in SSS
image datasets. To solve this problem, the following class-balanced cross-entropy loss is computed in
this paper. Loss function used in the main-output layer is as follows:

lmain(Θ) = − 1
n

[
n∑

i=1

(
αyi log P(yi = 1

∣∣∣X; Θ) + (1− α)(1− yi) log P(yi = 0
∣∣∣X; Θ)

)]
+ λR(Θ) (3)

where, n represents the number of training samples in each batch and α = |Y−|/(|Y−|+ |Y+|),
1− α = |Y+|/(|Y−|+ |Y+|) corresponds to the ratio of background pixels over all the pixels. |Y+| and
|Y−| represent the number of target pixels and background pixels from the ground truth, respectively.
P(yi = 0

∣∣∣X; Θ) ∈ [0, 1] is calculated using sigmoid function on the activation value at pixel i, in order
to obtain the main-output map predictions Ŷmain. R stands for the regularization term, and λ is the
hyperparameter of the regularization. Similarly, the loss function of the side-output is represented
as follows:

l(m)

side

(
Θ,θ(m)

)
= −

1
n

[
n∑

i=1

(
αyi log P

(
yi=1

∣∣∣X; Θ,θ(m)
)

+(1− α)(1− yi) log P
(
yi = 0

∣∣∣X; Θ,θ(m)
))]

+ λR
(
Θ,θ(m)

)
.

(4)

So, the following objective function is considered:

L
(
Θ,θ(m)

)
= βlmain(θ) +

M∑
m=1

βml(m)

side

(
Θ,θ(m)

)
(5)
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where, (β, β1, . . . , βm) are some trade-off parameters introduced for loss function from both the
main-output and side-output, which are represented here as a series of hyperparameters. Then, the
objective function below is minimized by stochastic gradient descent:(

Θ,θ(m)
)
= argmin

(
L
(
Θ,θ(m)

))
. (6)

Given an input image Xn, predictions are obtained from both the main output Ŷmain and side-output
Ŷ(m)

side . During testing, we can select main output Ŷmain or generated maps by further aggregating Ŷ f as
final output. The Ŷ f is defined as follows:

Ŷ f = Average
(
Ŷmain, Ŷ(1)

side, . . . , Ŷ(M)

side

)
(7)

4. Experiment

The experimental scheme of our SSS image segmentation process is provided in Figure 3.
Accordingly, this section is arranged as follows: The collection method of dataset images is described
and the SSS image preprocessing stage is shown in Section 4.1; the method used to get the ground
truth of dataset is introduced in Section 4.2; the implementation details and parameters setup of the
experiments are described in Section 4.3.
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4.1. SSS Image Preprocessing

SSS data are collected by dual-frequency side-scan sonar (Shark-S450D) in Fujian, China, where
some of the data are in Figure 4. For the original SSS image, the proposed method can be used to
get better performance with only some simple preprocessing. This also shortens the processing time.
Therefore, we removed middle waterfall and performed bilinear interpolation on the raw SSS image.
In Figure 5a, the results after these operations are provided.
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4.2. Dataset

The ground truth for images is essential to use supervised method for SSS image segmentation.
We used LabelMe, an image annotation tool developed by the MIT, to manually label images. In the
corresponding ground truth image (shown in Figure 5b), the blue and the black color denote the object
and the background areas, respectively.

The data image (shown in Figure 5a) and its corresponding labelled image (shown Figure 5b)
were then cut at the size of 240 × 240 and with a stride of 50. We selected samples with target pixel ratio
exceeding 5% to form a dataset. We selected 70% of its images as our training set, and the other 30% as
our test set. In the training set, about 20% of the data were randomly selected as a validation set. More
precisely, the dataset consisted of 3528 training images, 882 validation images, and 959 testing images.

Some challenging factors existed in the dataset, which are illustrated in Figure 6. Figure 6a
illustrates a clear and standard SSS image. In Figure 6b, some target pixels are clear and others are weak.
In Figure 6c, the images are dark. In Figure 6d, the target pixel areas are discontinuous. In Figure 6e,
target pixels are weak and unclear. In Figure 6f, there is strong noise.
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Figure 6. Examples of SSS image: (a) Clear and standard; (b) some target pixels are obvious and others
are weak; (c) dark; (d) discontinuous; (e) weak and unclear; (f) noises.

In addition to analyzing some challenging factors in the dataset, the number of target and
background pixels in the dataset were also compared, shown in Figure 7. There is a clear serious
category imbalance in the dataset, which brings huge challenges to the model performance.



Sensors 2019, 19, 2009 9 of 15

Sensors 2019, 19, x FOR PEER REVIEW  8 of 14 

 

4.2. Dataset 

The ground truth for images is essential to use supervised method for SSS image segmentation. 
We used LabelMe, an image annotation tool developed by the MIT, to manually label images. In the 
corresponding ground truth image (shown in Figure 5b), the blue and the black color denote the 
object and the background areas, respectively. 

The data image (shown in Figure 5a) and its corresponding labelled image (shown Figure 5b) 
were then cut at the size of 240 × 240 and with a stride of 50. We selected samples with target pixel 
ratio exceeding 5% to form a dataset. We selected 70% of its images as our training set, and the other 
30% as our test set. In the training set, about 20% of the data were randomly selected as a validation 
set. More precisely, the dataset consisted of 3528 training images, 882 validation images, and 959  
testing images. 

Some challenging factors existed in the dataset, which are illustrated in Figure 6. Figure 6a 
illustrates a clear and standard SSS image. In Figure 6b, some target pixels are clear and others are 
weak. In Figure 6c, the images are dark. In Figure 6d, the target pixel areas are discontinuous. In 
Figure 6e, target pixels are weak and unclear. In Figure 6f, there is strong noise. 

In addition to analyzing some challenging factors in the dataset, the number of target and 
background pixels in the dataset were also compared, shown in Figure 7. There is a clear serious 
category imbalance in the dataset, which brings huge challenges to the model performance.  

 
Figure 6. Examples of SSS image: (a) Clear and standard; (b) some target pixels are obvious and others 
are weak; (c) dark; (d) discontinuous; (e) weak and unclear; (f) noises. 

 
Figure 7. The number of pixels in dataset. 

  

16,581,762
4,145,440 5,530,370

186,631,038

46,657,760 49,708,030

0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08
1.20E+08
1.40E+08
1.60E+08
1.80E+08
2.00E+08

Training Set Validation Set Test Set

The number of pixels in dataset

Target Pixels Background Pixels

Figure 7. The number of pixels in dataset.

4.3. Experimental Parameters

Models were all trained by a NVIDIA Quadro M5000 card, which provides sufficient computational
power and resources to compute the model weights. Then, in order to ensure that these models can
achieve real-time processing for on-board applications, the experimental tests concerning the prediction
time were then performed on an embedded platform, NVIDIA Jetson AGX Xavier.

To implement our model on an NVIDIA Quadro M5000 card, stochastic gradient descent (SGD)
was used with the global learning rate of 1e−3 and momentum of 0.9 and 0.999. We trained the variable
parameters until the training loss converges using PyTorch [44]. The hyperparameters and the values
were fixed as follows: Mini-batch size (8), weight decay (0.0002), loss-weight βm (1) for each side-output
layer, and loss-weight β (1) for main-output layer. Prior to each epoch process, it was necessary to
shuffle the training set and then take each mini-batch out of the epoch in order to ensure that each
image was used only once in an epoch. After that, each image was normalized. The model which
performed the best on the validation set was finally obtained.

5. Results and Discussion

We compared different models’ performances, using four common performance metrics [20]:
Pixel accuracy (Pixel Acc.), measuring the proportion of pixels accurately predicted to the total pixels,
mean accuracy (Mean Acc.) which is the average of the prediction accuracy over all categories, mean
intersection over union (IU), and frequency weighted IU (f.w. IU). These last two metrics define the
variations on region intersection over union (IU) used in target detection. IU is the overlap ratio
between the candidate bound and the ground truth bound. In other words, IU is the ratio between the
intersection and the union. The mean IU was calculated as follows:

U =
|C∩G|
|C∪G|

(8)

where, |C∩G| corresponds to the intersection of candidate bound (C) and ground truth bound (G),
and |C∪G| represents their union. Mean IU was calculated for each class and then averaged, both of
which were calculated using the ground truth and the segmentation results. Frequency weighted IU is
an elevation of mean IU, which can set weights for each class according to their relative frequency.
The pixel accuracy (Pixel Acc.) was obtained using the equation below:

Pixel Acc =
∑

i
uii/

∑
i

∑
j
ui j (9)
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the mean accuracy was calculated as follows:

Mean Acc = (1/k)
∑

i

uii∑
j ui j

(10)

the mean IU was obtained using the equation below:

mean IU = (1/k)
∑

i

uii∑
j ui j +

∑
j u ji − uii

(11)

and the function of frequency weighted IU (f.w. IU) was:

f.w. IU =
∑

i

(∑
j
ui j/

∑
k

∑
j
ui j

) uii∑
j ui j +

∑
j u ji − uii

(12)

where, k represents the number of classes. The symbol ui j corresponds to the number of samples
belonging to category i in ground truth and are classified in class j in segmentation results.

Our decoder unit is shown in Figure 2b, and a detailed comparative study of different decoding
methods is provided in this section. In order to verify the proposed decoding method, we carried out
the following experiment: Keeping the proposed network structure unchanged and testing different
decoding methods. Table 3 shows their comparison results. Our decoding methods provide a more
detailed and accurate segmentation than others in our architecture.

Table 3. Comparison of different decoding methods in our architecture. (The best results are bold)

Decoding Method Pixel acc. (%) Mean acc. (%) Mean IU (%) f.w. IU (%)

U-Net 91.09 75.75 64.71 85.38
SegNet 90.79 73.57 63.21 84.86
LinkNet 91.01 74.40 63.94 85.17

Ours 91.62 77.05 66.18 86.10

In the previous section, six challenging factors of SSS images were analyzed. Figure 8 shows
the corresponding segmentation results. Generally speaking, the model we propose can yield better
results. However, when the SSS image is too dark or the target pixel is very unclear, the segmentation
of the SSS image performs worse than ideal. ECNet is also compared with overall architecture of
U-Net, SegNet and LinkNet in our dataset. Table 4 lists the relative comparison results.

Compared with other networks, our proposed network reduces the receptive field. This could
lead to a decrease in the model performance, because the maximum size of the targets able to be
detected is thus reduced, potentially missing bigger targets. However, because the target area of the
sonar data is small, it has a small impact on the sonar images, as proved by the experiments. As shown
in Table 4, ECNet outperforms LinkNet and SegNet in four measures, while U-Net performs slightly
better than ECNet in pixel accuracy, mean IU, and f.w. IU. LinkNet, SegNet, and U-Net all have larger
receptive fields than ECNet, so that reducing the receptive field has a small impact on SSS images
with smaller target areas. From this, we are inclined to the view that it is critical to adjust the model
structure to make it easier to optimize, which may be one of the reasons why U-Net performs best.
Our approach, reducing the number of parameters and model size, makes our model take up the less
computing resources on an embedded platform, which is critical for being applied in real-time tasks.
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Table 4. Comparison of different architectures performance in dataset. (The best results are bold)

Model Pixel acc. (%) Mean acc. (%) Mean IU (%) f.w. IU (%)

U-Net 92.68 75.02 67.13 87.23
SegNet 91.99 73.69 65.22 86.29
LinkNet 91.45 73.63 64.28 85.64

Ours 91.62 77.05 66.18 86.10
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Figure 8. The test results on different data in the test set. From left to right, the images are the original
SSS images, their corresponding ground truth and prediction results, respectively. Row1 (a1 and a2):
clear and standard. Row2 (b1 and b2): some target pixels are obvious and others are weak. Row3 (c1
and c2): dark. Row4 (d1 and d2): discontinuous. Row5 (e1 and e2): weak and unclear. Row6 (f1 and
f2): strong noise.

The inference speed of ECNet and existing networks of semantic segmentation on NVIDIA Jetson
AGX Xavier were reported. Our default image resolution was set to 240 × 240, and Table 5 reports the
number of parameters, the size of the model, and the inference time for a single input. As indicated
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from the numbers provided, ECNet uses less memory and performs faster. Furthermore, it can
provide real-time performance on NVIDIA Jetson AGX Xavier, which can be employed for real-time
inspection application.

ECNet realizes the best trade-off between effectiveness and efficiency according to Tables 4 and 5.
Although U-Net has a slightly higher accuracy than our network, ECNet is much faster. Moreover,
our model is much smaller than others. Since our model is simple and efficient, it can be easily applied
in various tasks.

Table 5. Comparison of different architectures implementation on NVIDIA Xavier. (The best results
are bold)

Model Parameters Model Size Time

U-Net 31.0 M 124.1 MB 87.6 ms
SegNet 28.4 M 113.8 MB 93.9 ms
LinkNet 21.6 M 86.7 MB 29.4 ms

Ours 4.7 M 18.7 MB 27.9 ms

The segmentation of the SSS image is less ideal when the SSS image is too dark or the target
pixel is very unclear. In a further study, authors can add an image enhancement process for SSS
images, such as increasing image brightness, adjusting image contrast, and histogram equalization.
The network performance can be improved through data augmentation, such as rotating the images to
different angles and cropping the largest rectangle in them, or flipping images at each angle. It is worth
mentioning that our model and strategy, based on HED approach, still have not clearly considered
neighboring pixels information. In the future, authors would like to explore how to optimize the model
using the context between neighboring pixels.

6. Conclusions

In this paper, we presented a novel neural network architecture designed for semantic segmentation
of SSS images, where a novel encoder was designed to learn rich hierarchical features. Additionally,
we took advantage of a single stream deep network using side outputs after each encoder to learn
useful features from middle layers. To consider the influence of the imbalance classification problem,
the model made use of weighted loss, where the target pixels resulted in a larger weight in the loss
function. Finally, ablation studies were performed to compare different decoding methods. These show
that skip architecture in our decoding method provides the best compromise between computational
efficiency and accuracy.

ECNet allows to perform predictions much faster and more efficiently, which makes it possible to
effectively utilize the limited resources on embedded platforms. There is no doubt that the ECNet can
be more broadly applied to real-time tasks.
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