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Abstract: Field pea cultivars are constantly improved through breeding programs to enhance biotic
and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground
Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression.
It is also the primary yield component for peas used as a cover crop and/or grazing. Measuring
AGBM is destructive and labor-intensive process. Sensor-based phenotyping of such traits can greatly
enhance crop breeding efficiency. In this research, high resolution RGB and multispectral images
acquired with unmanned aerial systems were used to assess phenotypes in spring and winter pea
breeding plots. The Green Red Vegetation Index (GRVI), Normalized Difference Vegetation Index
(NDVI), Normalized Difference Red Edge Index (NDRE), plot volume, canopy height, and canopy
coverage were extracted from RGB and multispectral information at five imaging times (between 365
to 1948 accumulated degree days/ADD after 1 May) in four winter field pea experiments and at three
imaging times (between 1231 to 1648 ADD) in one spring field pea experiment. The image features
were compared to ground-truth data including AGBM, lodging, leaf type, days to 50% flowering,
days to physiological maturity, number of the first reproductive node, and seed yield. In two of the
winter pea experiments, a strong correlation between image features and seed yield was observed at
1268 ADD (flowering). An increase in correlation between image features with the phenological traits
such as days to 50% flowering and days to physiological maturity was observed at about 1725 ADD in
these winter pea experiments. In the spring pea experiment, the plot volume estimated from images
was highly correlated with ground truth canopy height (r = 0.83) at 1231 ADD. In two other winter
pea experiments and the spring pea experiment, the GRVI and NDVI features were significantly
correlated with AGBM at flowering. When selected image features were used to develop a least
absolute shrinkage and selection operator model for AGBM estimation, the correlation coefficient
between the actual and predicted AGBM was 0.60 and 0.84 in the winter and spring pea experiments,
respectively. A SPOT-6 satellite image (1.5 m resolution) was also evaluated for its applicability to
assess biomass and seed yield. The image features extracted from satellite imagery showed significant
correlation with seed yield in two winter field pea experiments, however, the trend was not consistent.
In summary, the study supports the potential of using unmanned aerial system-based imaging
techniques to estimate biomass and crop performance in pea breeding programs.
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1. Introduction

Pea (Pisum sativum L.) is an important source of protein in many countries and cultures [1]. Field
peas have been improved through breeding programs [2] to enhance biotic and abiotic stress tolerance,
increase seed yield potential, and improve nutritional quality. Traits such as days to flower, days to
physiological maturity, the number of the first reproductive node [3], seed yield, and canopy volume
are often measured or estimated during field phenotyping. In addition, traits such as the Above
Ground Biomass (AGBM) are also assessed due to its influence on seed yield, canopy closure, and weed
suppression. It is also the primary yield component for peas used as a cover crop and/or forage crop.

Conventional plant phenotyping methods based on field observations and manual data collection
can be time consuming and result in measurement errors. Using remote sensing tools, small to large
breeding trials can be mapped with higher temporal and spatial homogeneity on the field-sampled
data [4]. With the wide range of Unmanned Aerial Systems (UASs) and sensors currently available,
many crops can be phenotyped more efficiently. For example, wheat ear density estimates using a
digital red-green-blue (RGB) camera were similar to estimates made using traditional methodologies [5].
Cameras integrating RGB and near infrared (NIR) sensors have been used to generate vegetation
indices (VIs) such as Normalized Difference Vegetation Index (NDVI) [6-8] and Normalized Difference
Red Edge (NDRE) to assess crop status [9-11]. The combination of RGB bands to compute Green-Red
Vegetation Index (GRVI) can also be used for biomass estimates [12,13], yield monitoring [14],
and canopy volume estimates [15]. These VIs can also be used to phenotype in a high-throughput
manner [16]. Crop biomass has been found to be correlated with NDVI [17-19], and has been used to
build prediction models using machine learning approaches such as support vector machine [20,21],
regression models [22], random forest [23], artificial neural networks [24], and least absolute shrinkage
and selection operator (Lasso) [25]. Nevertheless, much of this work on crop biomass estimation has
only been done in small grains such as barley and forest tree species.

The 3D reconstruction of field plots is also possible based on stereo vision high density data
collected during UAS missions. Such 3D information can be used to generate Digital Surface Models
(DSM) with elevation data in m above mean sea level. The Crop Surface Model (CSM) is computed by
extracting the terrain topography, using the Digital Terrain Model (DTM), from the DSM. The CSM
utilizes ground elevation as a reference, thus providing object information Above Ground Level (AGL)
such as canopy height [26]. In spite of the recent developments in the UAS-boarded geo-location
devices, without a Real Time Kinematics (RTK) module on the UAS, the position may oscillate several
meters in radius. Due to the high cost of the UAS-RTK platforms, an alternative solution to increase the
elevation data accuracy is to use Ground Control Points (GCP) measured with RTK field devices [27].
Highly accurate RTK-corrected data can be used for canopy height measurements, crop volume [28],
biomass [12,13], and crop lodging [26].

Satellite-based remote sensing data also plays a key role in large scale crop monitoring [29], yield
forecasting [30], crop damage assessments [31], crop disease and pest distribution monitoring [32],
irrigation requirement estimations [33], and site-specific management practices [34]. In spite of its
advantages, the use of satellite-based imagery for plant phenotyping has been limited due to its
generally low temporal and spatial resolution. However, recent developments in satellite imagery
can provide sub-meter multispectral imagery with revisit times of less than 5 days. Theoretically,
an image with pixel dimensions lower than the plot length and width can be expected to provide
similar information as UAS data.

Remote sensing methods have been used to phenotype plant height and biomass [35] in crops
including sorghum, barley, and rice with coefficients of determination between ground data (physical
biomass) and VIs of 0.63-0.84, depending on the growth stages and crop types [12,13]. However, in pea
breeding programs, the methods need to be evaluated for feasibility and accuracy. With this goal,
the overall objective in this study was to determine the reliability of utilizing UAS-based image data
(GRVI, NDVI, NDRE, plot volume, canopy height, and canopy coverage) in determining phenological
and agronomic plant traits in winter and spring pea-breeding programs. In addition, a comparison
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between UAS-based and medium-resolution satellite image data with biomass and seed yield was
performed to determine the viability of using orbital imagery data for field plant phenotyping.

2. Materials and Methods

2.1. Study Area

The winter pea field experiments were located at the Washington State University’s Spillman
Agronomy Farm near Pullman, Washington, USA (46°41'54.71” N; 117° 8'45.22"” W). Data were
collected at 365, 784, 1268, 1725, and 1948 accumulated degree days (ADD), corresponding to
15 May, 30 May, 19 June, 5 July, and 16 July 2018, respectively. ADD were calculated at a 0 °C base
temperature [36] from 1 May 2018. The winter pea experiments from the United States Department of
Agriculture (USDA) Agricultural Research Service winter pea breeding program were: 1821 (Austrian
Winter Pea Advanced Yield Trial), 1821cc (Cover Crop Winter Pea Advanced Yield Trial), 1822 (Food
Quality Winter Pea Advanced Yield Trial), and 1823 (Food Quality Winter Pea Preliminary Yield Trial).
The experimental design of each trial was a randomized complete block design with three replicates.
Experiments 1821cc, 1821, 1822, and 1823 had 5, 10, 20, and 20 entries, respectively. The plot size was
approximately 1.5 m x 5.0 m (Figure 1a). The planting date was on 11 October 2017, and seedlings
emerged 15 to 30 days later. In all the winter pea experiments data collected included days to 50%
flowering (F50), leaf type: normal (Af) or semi-leafless (af), days to physiological maturity (PM),
number of the first flowering node (FN), and seed yield (SY); additionally, in experiments 1821 and
1821cc, AGBM data were collected at flowering (1268 ADD). Flowering, an important trait evaluated in
breeding programs, refers to the appearance of reproductively receptive flowers on plants. During this
time, pollen is transferred to the stigma, the ovules are fertilized, and seed development commences.
A plot is ‘flowering” when 50% of the plants have flowers that are at anthesis. For AGBM estimation,
50% of each plot was harvested and fresh weight was measured. In order to evaluate the accuracy
of the DSMs, at 1268 ADD ground truth canopy height (CHgr) measurements were taken from 18
randomly selected plots (3 plants/plot) within the field area of winter pea experiments.

: (b)

1821 1822 1821ce

5 125 20m

5 20m  40m

Figure 1. Experiments and plot dimensions for (a) winter and (b) spring field pea sites.

The spring pea field was located in the Plant Materials Center of the USDA, Washington, USA
(46°43'12.83" N; 117° 8'33.88"" W). The plant materials in this experiment were the USDA Pea Single
Plant Derived Core Collection (PSP), a genome wide association mapping population that has been
previously phenotyped and genotyped [37]. The 307 accessions were planted in a randomized complete
block design with three replications. This experiment was planted on 14 May 2018, plots consisted of
two, 1.2 m long rows (Figure 1b). Once the plants reached 50% flowering, CHgr, lodging, and leaf
type were measured, and AGBM (as total dry weight) was assessed through destructive sampling of



Sensors 2019, 19, 2031 4 of 23

the entire plot. Lodging was measured as the ratio of the height of the canopy divided by the total
length of the plant, i.e., the closer the ratio is to 1.0, the more erect (less lodged) the plants are. Data
collection occurred on 28 June (1231 ADD), 5 July (1424 ADD), and 12 July (1648 ADD). ADD was
calculated from the planting date.

2.2. UAS Data Collection

In the winter and spring pea experiments, a total of 10 GCPs were uniformly distributed over
each experimental area, including the field edges to minimize the planimetry error [38]. A marker
stake was placed at each GCP location and remained in place throughout the season. Prior to each
flight, boards (0.8 m x 0.5 m) that could be seen in the resulting UAS images were placed at each GCP
position. The coordinates of each point were recorded at the end of the experiment with a RTK system
based on SPS850 Global Navigation Satellite System receivers from Trimble Inc. (California, USA),
which integrates a 450-900 MHz transmitter/receiver radio and a 72-channel L1/L.2/L2C/L5/GLONASS
GPS receiver.

RGB data was collected with a DJI-Phantom 4 Pro (Shenzhen, China) using its original 20 MP
resolution, 25.4 mm CMOS camera with lens characteristics of 84° field of view and 8.8 mm/24 mm
(35 mm format equivalent). D]I-phantom 4 Pro is powered with 6000 mAh LiPo 2S battery and the
speed during data acquisition was 2 m/s; it works with the Global Navigation Satellite System (GNSS:
GPS and GLONASS constellations) with average horizontal and vertical accuracies of ~0.5 m and
~1.5 m, respectively. The high-density data were collected in a double grid pattern with 90% overlap
(both directions) at 20 m AGL (0.005 m of ground sample distance/GSD) to generate high accuracy
digital surface models. As high-density images were collected from different angles (more points
of view for each object on the field), it was expected that the process would improve the quality
of the 3D reconstruction. The multispectral information was captured using a Double 4K camera
(Sentera LLC, Minneapolis, USA) of 59 x 40.9 x 44.5 mm dimensions with 12.3 MP (0.005 m GSD)
resolution of five spectral bands. The central wavelength and full-width half maximum data for R,
G, B, red edge (RE), and NIR spectral bands were 650 nm and 64 nm, 548 nm and 44 nm, 446 nm
and 52 nm, 720 nm and 39 nm, and 839 and 20 nm, respectively. This sensor was mounted on an
ATI-AgBOT™ (ATI LLC., Oregon, USA) quadcopter with 1012 400 kv motor and dual 6000 mAh
batteries; its positioning system is 3DR uBlox GPS (UAV Systems International, Las Vegas, USA) that
works with a 3 V lithium rechargeable battery at 5 Hz update rate and a low noise regulator of 3.3 V.
The multispectral data were collected in a single grid pattern with 80% frontal overlap and 70% side
overlap, also at 20 m AGL. A white reference panel (0.25 m x 0.25 m; Spectralon Reflectance Target,
CSTM-SRT-99-120) (Spectra Vista Cooperation, New York, USA) was placed on the field for radiometric
correction during image processing.

2.3. Satellite Data Acquisition

A multispectral 1.5 m-GSD SPOT-6 satellite image was acquired from AIRBUS Defense & Space
(Leiden, The Netherlands). The image captured on 3 June 2018 (close to 784 ADD) is composed by four
spectral bands with the following range: R (625-695 nm), G (530-590 nm), B (455-525 nm), and NIR
(760-890 nm). The original image was atmospherically corrected, but not geo-referenced. The satellite
information was not used for spring pea plot evaluation for three reasons: (1) at 1.50 m GSD, it was not
possible to differentiate between plots (~1.20 X 0.30 m), (2) at the time of the data capture, the plants in
the spring pea trials were in early growth stages and small, and finally (3) alternative satellite images
matching the UAS data collection dates were unavailable.

2.4. UAS-Based Imagery Analysis

Pix4D™ software was used to create the mosaics and DSM from both sensors (RGB and
multispectral) through the 3D map template. During the stitching process, each RTK-GCP was fixed
by identifying its position with 10 to 15 checkpoints representing GCP location on individual images
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(both fields and all data points). For the winter pea experiments, 5 RGB, 5 multispectral and 5 DSM
mosaics were generated; while 3 RGB, 3 multispectral and 3 DSM mosaics were generated for the
spring pea experiment. The white reference panel (99% reflectance in RGB-RE-NIR spectral range)
imaged during each data collection was used to correct the image pixels in each band. Following this,
using the “Array” command in AutoCAD (version 2018), the polygons representing each winter pea
plot were digitized in a *.dxf format and further translated into ".shp. As the spring pea plots did not
present a uniform grid pattern, they were directly digitized in ~.shp format using Quantum GIS (QGIS,
version 2.18.22). Each plot was labeled with plot ID based on experimental details.

The green-red vegetation index, normalized difference vegetation index, and normalized difference
red edge index were computed using the following equations.

B (G-R)
GRVI = CiR (1)
. (NIR—R)
NDVI= NIRRT R) @
_ (NIR-RE)
NDRE = {NIRTRE) ©)

where R, G, RE, and NIR represents the reflectance in the red, green, red edge, and near infrared bands.
The DSM (in m above the mean sea level) was obtained from the stitched image data. To extract the
CSM, with the canopy height (in m AGL) information, the DTM was created based on the interpolation
of elevation data over bare soil points, and subtracted from the DSM (Equation (4)).

CSM = DSM - DTM @)

Using data from the winter pea field plots at 1268 ADD as reference, an assessment of the quality
of the RTK geo-rectification was performed by estimating the vertical position error (VPE) and the
horizontal position error (HPE) [39,40] of the rectified and non-rectified mosaic images from the two
sensors (RGB and multispectral). The HPE was calculated using Equation (5). The VPE was estimated
as the sum of the changes in elevation among adjacent points calculated with the non-rectified image
(AZNR) subtracted from those calculated with the rectified image (AZR) (Equation (6)).

2 2
HPE — —VEE:NE 5)

(L1, AZR- Y] | AZNR)
VPE = - ©)

where HPE and VPE are horizontal and vertical position errors, EE and NE are East and North direction
errors, AZNR and AZR are elevation differences from non-rectified and rectified images, and total
number of samples (n) is 4 (Figure 2). The AZ is the sum of absolute difference in the elevation between
two contiguous points (AZ+AZy+AZ3+AZy, Figure 2).

From the CSM, the UAS-based CH (CHyas), Canopy Coverage (CC) and Plot Volume (PV) were
estimated. The CSM was segmented into two categories where pixels above 0.15 m AGL were classified
as “canopy”, and pixels below 0.15 m AGL were classified as “non-target canopy” to eliminate weeds
and other noises from the crop of interest. The 0.15 m was set as empirical threshold selected manually
based on observations. The count of “canopy” pixels of a single plot was multiplied by the pixel area
(e.g., 25 % 107° m?) to get the CC (m?). The PV (m3) was computed by multiplying the CHyag with CC.
The binary image (non-canopy and canopy) was also used as a soil mask image.
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Figure 2. Graphical exemplification of AZ’s.

With the “Zonal Statistics” plugin in QGIS, the mean (as relative vigor) and sum (as absolute
vigor) statistics of the three VIs, CHyas, CC, and PV were extracted and recorded in the attribute table
of the plot polygons, where each plot was differentiated based on its specific ID. In order to verify the
consistency of the data across time, the three VIs and the CHyag were plotted as a function of the ADD
and compared with a reference dry matter curve [41].

In addition to the features specified above, lodging assessment was performed in spring pea.
The changes in the CHyj45 between first and second data points, and between the first and third data
points were employed to calculate the lodging in spring pea. When a plot lodges, not only does
the CH decrease, but the CC increases, due to an increase in surface area. For these reasons, both
features were utilized during lodging estimation. For the lodging estimation between data points 1
and 3, the difference in absolute CC values was multiplied with the differences between CHjj4s data
(Equation (7)).

Lodging' ™ = [(CH{;5) - (CH3 45)] X [(€CY) - (cCP)] @)

where 1 and 3 represent data collected at time points 1 and 3, 1231 ADD and 1648 ADD, respectively.
Green band (from RGB orthomosaic) frequencies were plotted for the two leaf types in the spring
and winter peas. Additionally, the mean and the standard deviation of the green reflectance were
also computed as indicators of greenness and its variability. This processing was carried with the
multispectral mosaic collect at 1231 ADD in the spring pea plots and 1268 ADD in winter pea plots.

2.5. Satellite-Based Imagery Analysis

Using the “Georeferencer” tool in QGIS, the satellite image was rectified to the correct location.
First, based on satellite archive Bing imagery (Bing aerial with layers) displayed with the “Open Layers”
plugin, the original image was geo-located to its respective region with an error that would oscillate
between 1-5 m. Second, the specific location of the winter pea experimental field was corrected to
a sub-meter accuracy using the UAS RTK-mosaics as reference by matching the corner points of the
field. In order to increase the resolution of the multispectral data from 6.0 m GSD to 1.5 m GSD,
a pan-sharpening processing, based on a higher resolution panchromatic band, was performed in Erdas
Imagine (version 14.1, Hexagon Geospatial) using the high pass filtering algorithm, which presented
the clearest contrast between soil and vegetation pixels, compared with other methods like principal
component analysis, hyperspectral color sharpening, and Brovey transform. GRVI and NDVI were
computed with the satellite image following Equations (1) and (2). The mean and sum statistics were
extracted from the plot polygons layer created for low altitude satellite imagery.

2.6. Statistical Analysis

Pearson’s correlation matrix between the ground truth and UAS-based data, averaged by entry,
was calculated in RStudio (Version 1.1.423). For spring peas, the correlations were calculated using
plot-by-plot comparisons, since the replicates of the same entry were not always harvested on the same
day. Using RStudio, the least absolute shrinkage and selection operator algorithm [25] was employed
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to predict AGBM using the well-correlated image features. To assess the Lasso prediction accuracy,
using 85% of the original dataset, a cross-validation of the mean absolute error and the correlation
coefficient (1) between the estimated and actual values were computed. The features were centered
and scaled using the ‘preProcess’ function for comparable coefficient generation, where mean data
was subtracted from each value of vegetation indices and divided with standard deviation. With the
winter pea data, the resulting coefficients from Lasso were used to estimate the AGBM in experiments
1822 and 1823 where ground truth AGBM data were not available.

3. Results and Discussion

3.1. UAS-Based Position Data Accuracy

The horizontal and vertical dilutions of precision (HDOP and VDOP) representing the GCP
coordinates reading accuracy are shown in Table 1. The horizontal and vertical position errors using
RGB and multispectral mosaic images without RTK rectification were higher than those with RTK
rectification (Table 2).

Table 1. Horizontal and vertical dilutions of precision that estimate GCPs position accuracy on winter
and spring pea sites.

GCP Winter Pea Spring Pea
HDOP (m) VDOP (m) HDOP (m) VDOP (m)
1 0.005 0.006 0.010 0.010
2 0.005 0.010 0.018 0.011
3 0.009 0.008 0.008 0.014
4 0.007 0.007 0.008 0.009
5 0.007 0.006 0.009 0.011
6 0.005 0.001 0.006 0.010
7 0.008 0.006 0.005 0.009
8 0.008 0.002 0.011 0.008
9 0.007 0.011 0.007 0.011
10 0.007 0.007 0.008 0.008

Table 2. Horizontal and vertical positioning errors from RGB and multispectral imageries (with its
respective flight parameters differences) with and without RTK rectification, based on 1268 ADD time

point data.
Mosaic Flight Parameters Without RTK Rectification With RTK Rectification
Grid Pattern  Overlap (%) HPE (m) VPE (m) HPE (m) VPE (m)
RGB Double 90-90 2.051 0.819 0.028 0.050
Multispectral Single 80-70 1.834 0.633 0.048 0.079

After image rectification, the correlation coefficient between CHgr and CHyags increased for both
RGB- and multispectral-CSMs (Table 3). The differences between CHgr and CHyag can be attributed
to human error during ground truth data collection, and some variances in the grid pattern and
overlap percentages, since the resolution and the flight altitudes of sensors were similar. Despite
observing higher accuracy and correlation between CHgt and CHyas, the use of a double grid pattern
and high overlap percentage may not be necessary to monitor research plots with simple geometry,
such as in evaluated winter and spring pea breeding experiments. This will in-turn save battery life
(thus increasing flight time and efficiency), data storage space, and image processing time. The use
of the double grid pattern and higher overlap percentages with RTK-GPS rectification are necessary
for monitoring and 3D mapping of more complex crop geometry, such as plant architecture with
thin and narrow canopies (e.g., apple orchards and grape vineyards). Furthermore, the centimeter to
sub-centimeter accuracy in the horizontal and vertical positions obtained with the RGB mosaic suggest
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its functionality to generate accurate plot length data, which is an important trait frequently monitored
in breeding programs to estimate yield per unit area.

Table 3. Correlation between CHgr and CHyag for the CSMs obtained from RGB and multispectral
imageries (with its respective flight parameters differences) with and without RTK rectification, based
on 1268 ADD time point data. All correlation coefficients were significant at P < 0.001.

Mosaic Flight Parameters Without RTK With RTK
Grid Pattern Overlap (%) r (CHgt & CHyas) r (CHgt & CHyas)
RGB Double 90-90 0.93 0.97
Multispectral Single 80-70 091 0.96

3.2. Winter Pea Growth and Development

The average vegetation index and plot volume data across different time periods in winter pea
showed a similar pattern as the reference dry matter curve [41]. At the beginning of the season,
the three VIs values were about 0.30 units. At 784 ADD, the GRVI and NDVI indices increased, while
the CH and PV averaged approximately 0.24 m and 0.20 m?, respectively (Figures 3 and 4). The GRVI,
CHyas, and PV continued to increase until 1268 ADD; however, the NDVI changed marginally, which
could be due to saturation. After 1268 ADD (flowering), the VIs decreased as the plants approached
physiological maturity and senescence. Similarly, the CHyas and PV also decreased at the end of
the season because of maturity and crop lodging. While a similar pattern was observed with NDVI
and GRVI data, the NDRE data were low, which could be due to less abiotic stress in winter pea
experiments during the season.

The data validates the generic vegetative growth stages, where the crop canopy vigor increases
and reaches maximum photosynthetic activity at flowering, resulting in a higher NIR reflection and
absorption in visible wavelengths, which can be observed from the increase in VI values from 365 ADD
to 1268 ADD. During the seed development and pod filling stage that represents the translocation of
photo-assimilates to the seeds after flowering, there is a decrease in leaf biomass accumulation, which
can be observed with a decrease of VI values.
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Figure 3. Average and standard deviation of GRVI, NDVI, and NDRE data acquired from winter field
pea experiments (a) 1821, 1821cc, (b) 1822, and 1823 at different growth stages compared with a dry
matter curve obtained from Reference [41].
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Figure 4. Average and standard deviation of UAS-based canopy height and canopy volume data
acquired from winter field pea experiments (a) 1821, 1821cc, (b) 1822, and 1823 at different growth
stages compared with a dry matter curve obtained from [41].

3.3. Correlation between Image Features and Performance Traits

In couple winter pea experiments, a strong correlation between image features (GRVI, NDVI,
NDRE, CHyas, CC, PV) and seed yield was observed, especially at 1268 ADD. At 1268 ADD, most
image features were also correlated with FN (Table 4). In experiment 1823, at 1268 ADD, high
correlation coefficients between image features and F50, PM, and SY were observed. In experiment
1822, high correlations between image features and SY were observed starting earlier in the season.
In general, imaging between 1268 ADD (flowering) and 1725 ADD (pod development) is recommended
for capturing yield differences. There were no significant differences between sum and mean vegetation
index values.

The lower correlations found at early stages (365 ADD) could be attributed to the distortions caused
by the brightness of bare soil within the plots [42]. To overcome this limitation, Badgley et al. [43]
proposed the NIR vegetation reflectance indicator (NIRv), where 0.08 is subtracted from the product of
the total NIR and NDVI, which represents the proportion of the digital number of a pixel attributed to
the vegetation. In the present study, when NIRv was used, an increase in the correlations between NIRv
with SY and AGBM at 365 ADD (Table 5) was observed, which did not affect relationships at 1268 ADD
(high canopy cover). This suggests the importance of NIRv usage as an indicator for UAS-based ABGM
predictions under high soil exposure environments or early growth stages.
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Table 4. Correlation coefficients (r) between VIs, CHyas, CC, and PV with plant features (F50, PM, FN, and SY) in winter pea experiments 1821, 1821cc, 1822, and 1823.

ADD Image Feature 1821 (n =10) 1821cc (n=5) 1822 (n = 20) 1823 (n = 20)
SY SY F50 PM FN SY F50 PM FN SY
GRVI Sum -0.07 0.65 0.15 -0.23 0.18 0.71 *** 0.47 * 0.43 0.25 0.47 *
Mean -0.32 0.66 0.07 -0.27 0.07 0.59 ** 0.24 0.32 0.20 0.15
NDVI Sum 0.26 0.64 0.20 -0.23 0.34 0.82 *** 0.55* 0.45* 0.24 0.60 **
Mean 0.10 0.42 0.20 -0.27 0.34 0.81 *** 0.48 * 0.42 0.20 0.54*
365 NDRE Sum 0.35 0.60 0.21 -0.21 0.36 0.81 *** 0.61 ** 0.48 * 0.31 0.67 **
Mean -0.22 0.64 0.26 -0.21 0.30 0.67 ** 0.57 ** 0.59 ** 0.44 0.51*
CHuyas 0.12 0.45 -0.09 -0.48 * -0.06 0.45 * 0.12 0.05 0.01 0.09
CC 0.19 0.65 0.14 -0.26 0.26 0.72 *** 0.40 0.35 0.25 0.42
PV 0.15 0.46 -0.06 -0.34 -0.04 0.46 * 0.29 0.26 0.17 0.29
Sum -0.34 0.83 0.33 -0.08 0.51* 0.90 *** 0.66 ** 0.59 ** 0.44 0.68 **
GRVI Mean -0.60 0.62 0.32 -0.07 0.52* 0.89 *** 0.58 ** 0.63 ** 0.43 0.59 **
NDVI Sum 0.20 0.40 0.02 0.11 -0.22 -0.16 -0.10 -0.19 -0.26 0.12
Mean -0.18 0.22 0.04 0.18 -0.11 -0.05 -0.34 -0.16 -0.26 0.05
784 NDRE Sum 0.31 0.64 0.37 0.02 0.57 ** 0.87 *** 0.73 *** 0.59 ** 0.42 0.76 ***
Mean -0.36 -0.08 0.08 0.07 0.48 * 0.66 ** 0.52* 0.67 ** 0.27 0.68 ***
CHyas -0.05 0.52 0.09 -0.25 0.32 0.71 *** 0.18 0.34 0.23 0.36
CC 0.38 0.86 0.41 -0.12 0.54 * 0.94 *** 0.67 ** 0.53* 0.44 0.80 ***
PV 0.06 0.68 0.13 -0.19 0.35 0.76 *** 0.38 0.41 0.28 0.57 **
GRVI Sum —-0.56 0.83 0.34 0.08 0.59 ** 0.971 *** 0.75 *** 0.73 *** 0.56 * 0.83 ***
Mean -0.75* 0.68 0.33 0.09 0.56 * 0.90 *** 0.63 ** 0.77 *** 0.54* 0.75 ***
NDVI Sum -0.07 0.92* 0.46 * 0.09 0.67 ** 0.95 *** 0.74 *** 0.74 *** 0.59 ** 0.87 ***
Mean -0.16 0.69 0.42 0.16 0.62 ** 0.92 *** 0.68 ** 0.78 *** 0.52 % 0.85 ***
1268 NDRE Sum 0.59 0.85 0.54 * 0.14 0.68 ** 0.94 *** 0.77 *** 0.68 *** 0.53* 0.91 ***
Mean 0.60 0.32 0.60 ** 0.10 0.65 ** 0.87 *** 0.76 *** 0.71 *** 0.41 0.88 ***
CHuyas 0.47 -0.29 0.52* 0.02 0.58 ** 0.88 *** 0.69 *** 0.83 *** 0.65 ** 0.78 ***
CC 0.59 0.98 ** 0.53 * 0.05 0.68 ** 0.98 *** 0.71 *** 0.71 *** 0.63 ** 0.84 ***
PV 0.51 0.42 0.52* 0.03 0.59 ** 0.92 *** 0.76 *** 0.78 *** 0.62 ** 0.82 ***
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Table 4. Cont.

ADD Image Feature 1821 (n =10) 1821cc (n=5) 1822 (n = 20) 1823 (n = 20)
SY SY F50 PM FN SY F50 PM FN SY
GRVI Sum 0.50 0.78 0.57 ** 0.31 0.71 *** 0.87 *** 0.77 *** 0.83 *** 0.52* 0.79 ***
Mean 0.27 -0.65 0.56 * 0.41 0.69 *** 0.81 *** 0.75 *** 0.85 *** 0.54 % 0.78 ***
NDVI Sum 0.56 0.90 * 0.63 ** 0.35 0.77 *** 0.88 *** 0.78 *** 0.87 *** 0.57 ** 0.80 ***
Mean 0.38 -0.31 0.63 ** 0.41 0.75 *** 0.79 *** 0.79 *** (0.88 *** 0.58 ** 0.70 ***
1725 NDRE Sum 0.35 0.07 0.69 *** 0.43 0.73 *** 0.54* 0.79 *** 0.81 *** 0.54* 0.53 *
Mean -0.22 -0.59 0.62 ** 0.50 * 0.68 *** 0.25 0.74 *** 0.74 *** 0.50 * 0.41
CHuyas 0.70 * -0.65 0.79 *** 0.13 0.61 ** 0.76 *** 0.80 *** 0.73 *** 0.76 *** 0.71 ***
CC 0.67 * 0.90 * 0.67 ** 0.12 0.69 *** 0.91 *** 0.71 *** 0.76 *** 0.60 ** 0.82 ***
PV 0.67 * -0.50 0.77 *** 0.14 0.61 ** 0.74 *** 0.85 *** 0.72 *** 0.70 *** 0.74 **=*
GRVI Sum -0.07 -0.44 0.60 ** 0.58 ** 0.61 ** 0.14 0.70 *** 0.74 *** 047 * 0.30
Mean -0.15 -0.17 0.33 0.75 *** 0.51* 0.08 0.66 ** 0.87 *** 0.72 *** 0.47 *
NDVI Sum 0.52 0.44 0.70 *** 0.45* 0.76 *** 0.63 ** 0.80 *** 0.87 *** 0.56 * 0.59 **
Mean 0.20 -0.41 0.62 ** 0.58 ** 0.61 ** 0.20 0.76 *** 0.84 *** 0.59 ** 0.37
1948 NDRE Sum 0.30 0.60 0.32 0.25 0.12 -0.15 0.71 *** 0.84 *** 0.61 ** 0.35
Mean -0.11 0.56 -0.04 -0.18 -0.29 -0.33 0.06 0.24 0.33 -0.15
CHyas 0.58 -0.13 0.62 ** -0.02 0.49 * 0.74 *** 0.55* 0.48 * 0.71 *** 0.54*
CC 0.61 0.97 ** 0.67 ** 0.16 0.71 *** 0.87 *** 0.69 *** 0.75 *** 0.65 ** 0.79 ***
PV 0.55 0.88 * 0.64 ** 0.00 0.52* 0.77 *** 0.67 ** 0.54 * 0.70 *** 0.64 **

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; *** Significant at the 0.001 probability level.
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Table 5. Correlation coefficient between NIRv and NDVI-sum with SY and AGBM obtained at 365

ADD and 1268 ADD.
Feature Experiment 365 ADD 1268 ADD
NIRv NDVI-Sum  NIRv NDVI-Sum
1821 0.53 0.26 -0.22 -0.07
Sy 1821cc 0.97 ** 0.64 0.79 0.92*
1822 0.67 ** 0.82 *** 0.92 *** 0.95 ***
1823 0.76 *** 0.60 ** 0.87 *** 0.87 ***
1821 0.78 ** 0.75* 0.75 ** 0.77 **
AGEM 1821cc 0.96 * 0.75 0.88* 0.94 *
* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; *** Significant at the 0.001
probability level.

According to the Reference [41], the high yielding genotypes have a larger leaf area index that
leads to accumulation of more biomass during flowering. This is validated by the strong correlations
found between leaf area index related image features such as CC and yield at 1268 ADD. Furthermore,
an increase in the correlations with the phenological traits was detected in the winter pea experiments
at 1725 ADD during pod development and maturity. These stronger correlations are attributed to the
contrasting canopies characteristics among early and late F50 and PM plots that were easily captured
with remote sensing data (Figure 5).

I:l = Late F50 and PM genotypes
|:| = Early F50 and PM genotypes

Figure 5. Early and late F50 and PM entries marked on RGB image acquired from experiments 1822
and 1823 at 1725 ADD.

The FN is also related to the flowering time in the sense that lower FN [44] can be associated
with earlier F50 and senescence in winter pea. This can explain the high correlations between FN and
GRVI-mean, CHyas, and PV at 1725 ADD and 1948 ADD, when image features from lower FN entries
with early F50 and senescence could be differentiated from higher FN entries. Additionally, the impact
of FN on yield can also be captured with VIs in winter pea, where earlier flowering entries may have
more reproductive nodes per plant and therefore higher seed yield (Figure 6).
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Figure 6. Plots of experiments 1822 and 1823 in an ascendant NDVI order, and its comparison with F50,
PM, FN, and SY at 1268 ADD.

At 1231 ADD, in the spring pea experiment, PV was significantly correlated with CHgr (Table 6).
The CHyas, GRVI, and NDVI were correlated with CHgy at 1231 and 1648 ADD. Estimations based on
elevation data, such as CHyas and PV demonstrated high correlation with the CHgt measurements in
spring pea in most cases, which could be because these features were correlated with F50, FN, and SY
as found in some winter pea experiments.

Table 6. Spring pea correlation coefficients (r) between VIs, CHyas, and PV with CHgr.

Image GRVI NDVI NDRE

ADD Feature

CHyas CcC PV

Sum Mean Sum Mean Sum Mean

1231 (n = 159) CHgr 0.69* 075** 049* 073** 042 0.61* 0.80** 0.26 0.83 ***
1424 (n = 128) CHgt 0.31 0.29 0.18 0.20 0.16 0.10 0.20 0.16 0.28
1648 (n = 32) CHgr 0.64 *** 0.55*  0.54** 0.41* 0.05 0.14 0.77 *** 0.08 0.67 ***

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; *** Significant at the 0.001
probability level.

3.4. Correlation between Image Features and AGBM

In the winter pea experiments, strong correlation between GRVI-sum, NDVI-sum, and NDRE-sum
with AGBM were found at 1268 ADD (Table 7). The correlation was lower between AGBM with
NDVI and NDRE mean values. The elevation-based features were not significantly correlated to
AGBM. However, in the spring pea experiments, better correlations between image features and AGBM
were found, especially at 1231 ADD. The variability in F50 among the accessions in the spring pea
experiment could have contributed to higher correlation with remote sensing data (Table 7). The major
finding from the spring pea dataset was that the PV extracted from images was consistently correlated
with AGBM, which could be useful in breeding programs.
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Table 7. Correlation coefficient (r) (with its respective n) between VIs, CHyas, and PV with AGBM in
the winter (1268 ADD only) and spring pea experiments.

GRVI NDVI NDRE

Crop Season CHyas CcC PV

Sum Mean Sum Mean Sum Mean
Wint Exp. 1821 (n = 10) 0.40 0.22 0.77 **  0.82** 0.74 * 0.70 * 0.34 0.60 0.57
Inter Exp. 1821cc (n = 5) 0.94 * 0.86 0.94 * 0.85 0.96 * 0.64 -0.39 0.48 0.33

1231 ADD (n =159) 0.84*** 0.71** 0.77** 0.70** 0.74** 0.66*** 0.68*** (.56 ** (.81 ***
Spring 1424 ADD (n=128) 0.82*** 050 ** 0.64** 029 ** (.72** (051 ** (044** (059** (.77 ***
1648 ADD (n=32) 0.54* 0.85** 0.38*  0.83** 0.35 0.79** 043*  0.64** 0.77 **

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; *** Significant at the 0.001
probability level.

3.5. AGBM Prediction with Model Development

With the winter pea data, the Lasso method was implemented using highly correlated image
feature data at 1268 ADD to predict AGBM. The results from this model showed a R? of 0.99 at F < 0.001
significance with four features. The resulting equation for AGBM estimation is defined as:

AGBMg = {[(GRVIgym #a') + (NDVIgyy + b') + (NDREgy #c') + (CC+d")| + €'} [L5E*  (8)

where a1 to ¢ represent the coefficients generated by Lasso for GRVI-sum (a1 = 1.56), NDVI-sum (by =
—0.83), NDRE-sum (c; = 0.75), CC (d; = —0.01), and the intercept (¢; = 8.85) of the function. To cross
validate, the equation (Equation (8)) was used to estimate the AGBM in the complete data set from
experiments 1821 and 1821cc at 1268 ADD. The correlation coefficient between estimated and actual
AGBM was 0.60 (P < 0.001) (Figure 7), with a mean absolute error of 2.82 kg.

With the spring pea data, the Lasso method was implemented using the information from PV,
GRVI (sum), NDRE (sum), and NDVI (sum and mean) at 1231 ADD as the best correlated scenarios.
The results from the model showed a R? of 0.74 at F < 0.001 significance with five features. The equation
for AGBM estimation is defined as (Equation (9)):

AGBMEgt = {[(GRVIsy *a?) + (NDVIgyy, * 1) + (NDVIygeay * %) + (NDREgy #d%) + (PV #¢2)| + 2} [1.OE®  (9)

where a; to d, represent the coefficients for GRVI-sum (a, = 7.80), NDVI-sum (b, = 2.46), NDVI-mean
(cp =4.98), NDRE-sum (dy= 4.98) and PV (e; = 10.73), and the intercept (f, =87.83) of the function.
During validation with the complete data set at 1231 ADD, the correlation coefficient between the
estimated and the actual AGBM was 0.84 (P < 0.001) (Figure 7) with a mean absolute error of 19.28 g.
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Figure 7. Estimated and actual AGBM correlation in the (a) winter and (b) spring field pea experiments.
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In both pea types, sum data of GRVI, NDVI, and NDRE were variables that made a strong
contribution to the AGBM estimations; alongside PV and mean NDVI in spring pea and CC in winter
pea, that had an impact on the predictions. Equation (8) was used to estimate the winter pea AGBM
based on 1268 ADD data. The estimated AGBM values for the 20 entries are plotted in Figure 8.
The entries with the lower AGBM estimations had low canopy cover and low vegetation index values.
In experiment 1822, entries 6 to 9 and 20 had AGBM estimations above the average; while, entries 12
and 14 to 18 were clearly below the average. However, in experiment 1823, the AGBM estimated for
the majority of the entries were close to or below average, except for entries 1, 3, 4, 12, 15, 17, and 18.
The higher AGBM accumulation entries predicted in field pea experiments shared a lower EN, F50,
and PM, and higher SY. The results presented in this study need to be integrated with multiple season
data in order to create a larger data-pool to build a robust machine learning prediction method.
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Figure 8. AGBM estimation for the 20 entries in experiments (a) 1822 and (b) 1823 using Lasso
method with image data acquired at 1268 ADD, and (c and d) its respective NDVI maps highlighting
the three replicates of the entries with the lowest (outlined in black) and highest (outlined in red)
AGBM estimations.
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3.6. Leaf Type Characterization

The GRVI, and average and standard deviation of green bands from spring and winter pea field plots
are presented in Figure 9. The average green reflectance data in semi-leafless entries were higher in the
winter pea plots than spring pea plots, while GRVI values showed an opposite pattern. In winter pea, the
variation in greenness was clearly different between experiments, which could be resulting from different
pigmentation (anthocyanin), but not between leaf types. Higher variability was detected in the normal
leaf type. Based on green band average, the leaf type was classified with 90%, 73%, and 87% accuracy in
winter pea experiments 1821, 1821cc, and 1822, respectively, and with 74% accuracy in spring pea.

mmmm Green band average Greenband SD = = GRVI
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Figure 9. Green band average and SD, and the GRVI of af and Af leaf types at 1231 ADD and 1268
ADD in spring and winter peas.

Further investigation of leaf type characterization as well as pigmentation (chlorophyll,
anthocyanin) and differences in anatomical and morphological structures is needed. The leaf type
influences the total leaf area (hence biomass) and also strongly affects lodging tolerance. When the
correlation analysis between GRVI-sum with AGBM was calculated by leaf type, the correlation
coefficients increased (Table 8). Thus, it may be important to integrate leaf type classification with
remote sensing data analysis for more robust variety selection.

Table 8. Correlation coefficients (1) between GRVI-sum with AGBM by leaf type (af and Af) in spring
peas at 1231 ADD. All correlations were significant at P < 0.001.

Entries AGBM
All Plots (n = 159) 0.84
af (n =10) 0.89
Af (n =149) 0.86

3.7. Lodging Estimation

Despite the small size of spring pea plants and the plots, the use of elevation data was promising
for monitoring lodging. It is hypothesized that the relationships will grow stronger with larger plot
sizes, where the changes in CH and CC between time points can be captured with ease. Lodging is
influenced by stem strength as well as the weight of the developing pods, and can be defined as a
change in the vertical height of plants producing its inclination [45] and can be estimated based on
decrease in CH and increase in CC (Figure 10) across time points. Lodging assessments based on the
detection of changes in CH between dates 1 to 2 and 1 to 3, correlated with ground truth lodging
observations with 7 of 0.58 and 0.57, respectively. Furthermore, including the absolute CC value for the
lodging estimation between dates 1 and 3 (Equation (7)), the correlation coefficient increased up to 0.70.
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Figure 10. (a) Lodging estimation based on the differences between CH data acquired at multiple days,
(b) sample image showing non-lodged plots with lower canopy cover, and (c) sample image showing
lodged plots with higher canopy coverage.

3.8. Comparison with Satellite Data

The GRVI data extracted from the satellite images were not significantly correlated with AGBM
and seed yield in experiments 1821 and 1821cc (Table 9). In experiments 1822 and 1823, the correlations
between GRVI and NDVI mean, and SY were significant but lower than those using UAS data.
The lower spatial resolution of the satellite image and spectral mixing (canopy and soil) on the field
edges resulted in a poor relationship between image features and ground-reference data.

Table 9. Correlation coefficients (r) between UAS-based (1268 ADD) and satellite-based (887 ADD)
GRVI and NDVI (sum and mean) with AGBM and SY in the winter pea experiments.

Fz;l::::e Experiment Source GRVI-Sum NDVI-Sum GRVI-Mean = NDVI-Mean
1821 UAS 0.40 0.77 * 0.22 0.82 **
AGBM (n =10) Satellite -0.12 -0.21 0.43 0.07
1821cc UAS 0.94 * 0.94 * 0.86 0.85
(n=>5) Satellite -0.11 0.21 0.44 0.26
1821 UAS -0.56 -0.07 -0.75* -0.16
(n =10) Satellite -0.56 0.06 0.35 0.56
1821cc UAS 0.83 0.92* 0.68 0.69
(n=5) Satellite 0.63 0.12 0.81 0.03
SY 1822 UAS 0.91 ** 0.95 ** 0.90 *** 0.92 **
(n = 20) Satellite 0.39 0.29 0.63 ** 0.46 *
1823 UAS 0.83 *** 0.87 *** 0.75 *** 0.85 ***
(n = 20) Satellite -0.26 -0.35 0.46 * -0.16

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; *** Significant at the 0.001
probability level.
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The decrease in the satellite image resolution was not directly proportional to the decrease on its
relationship with ground reference data. As an example, decreasing the resolution of an UAS image,
by resampling its pixel size with the nearest neighbor method, to the level of the satellite image [46]
SPOT 6 (1.50 m), resulted in an image in which the field edge was un-recognizable. At the same
resolution, the satellite image provided more details of the field (Figure 11), which could be the reason
for the significant correlations between satellite image features and seed yield obtained with the 1.5 m
satellite image resolution.

Figure 11. Comparison between the (a) RGB satellite image (1.50 m GSD) with (b) UAS original image
and (c) UAS image resampled at a pixel size of 1.50 m GSD. The blue polygon highlights plots with low

crop cover that can be identified in the satellite image but not in the UAS resampled image.

In the future, satellite data is anticipated to have higher spectral and spatial resolution. The actively
sensed data from orbital Synthetic Aperture Radar sensors offers new opportunities for plant
phenotyping [47], because of its feasibility for crop phenology monitoring [48,49], crop height [50],
and lodging estimations [51]. Furthermore, the anticipated launch of the FLuorescence EXplorer
satellite mission, will provide sun-induced crop fluorescence spectral data that will create new research
opportunities [52,53].

4. Conclusions

In this study, the potential of UAS-based imaging techniques to estimate biomass and crop
performance in pea breeding programs was evaluated. In winter pea experiments, a strong correlation
between all the image features and seed yield was observed at flowering; while at pod development
and maturity, an increase in the correlations with phenological traits was detected. Spectral data
was also found to be useful in leaf type identification. Overall, elevation based remote sensing
data was highly correlated with CHgr and was also suitable for lodging assessment in spring pea;
furthermore, in some winter pea experiments, this type of information was correlated with F50, FN,
and SY. These results were obtained regardless of the use of flight plans with double grid pattern and
high overlap percentage.

AGBM was found to be highly correlated with image features at 1268 and 1231 ADD (flowering)
in the winter and spring peas, respectively. The Lasso model developed with selected image features
was able to estimate AGBM with a high level of accuracy. The proposed methods and feature extraction
can be used for evaluating biomass in forage breeding trials as well. The satellite imagery needs to be
further explored for phenotyping applications.
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Abbreviations

ADD accumulated degree days

Af normal leaf type

af semi-leafless leaf type

AGBM above ground biomass

AGL above ground level

CcC canopy cover

CHcgr ground truth canopy height

CHyas canopy height estimated from unmanned aerial system
CSM crop surface model

DSM digital surface model

DTM digital terrain model

F50 days to 50% flowering

FN first flowering node

GCp ground control point

GRVI green red vegetation index

GSD ground sample distance

HDOP horizontal dilutions of precision

HPE horizontal positioning error

Lasso least absolute shrinkage and selection operator
NDRE normalized difference red edge index
NDVI normalized difference vegetation index
NE North direction error

NIR near infrared

NIRv NIR vegetation reflectance indicator

PM days to physiological maturity

PV plot volume

RE red edge

RGB image red-green-blue (digital camera) image
RTK real-time kinematic

SY seed yield

UAS unmanned aerial system

USDA United States Department of Agriculture
VDOP vertical dilutions of precision

VI vegetation index

VPE vertical positioning error

AZNR elevation differences from non-rectified images
AZR elevation differences from rectified images
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