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Abstract: Sensor-based human activity recognition can benefit a variety of applications such as
health care, fitness, smart homes, rehabilitation training, and so forth. In this paper, we propose
a novel two-layer diversity-enhanced multiclassifier recognition method for single wearable
accelerometer-based human activity recognition, which contains data-based and classifier-based
diversity enhancement. Firstly, we introduce the kernel Fisher discriminant analysis (KFDA)
technique to spatially transform the training samples and enhance the discrimination between
activities. In addition, bootstrap resampling is utilized to increase the diversities of the dataset for
training the base classifiers in the multiclassifier system. Secondly, a combined diversity measure for
selecting the base classifiers with excellent performance and large diversity is proposed to optimize the
performance of the multiclassifier system. Lastly, majority voting is utilized to combine the preferred
base classifiers. Experiments showed that the data-based diversity enhancement can improve the
discriminance of different activity samples and promote the generation of base classifiers with different
structures and performances. Compared with random selection and traditional ensemble methods,
including Bagging and Adaboost, the proposed method achieved 92.3% accuracy and 90.7% recall,
which demonstrates better performance in activity recognition.

Keywords: activity recognition; wearable sensor; kernel Fisher discriminant analysis; classifier ensembles;
multiclassifier design and evaluation

1. Introduction

Human activity recognition (HAR), as a new research area in the field of pattern recognition,
has become a topic of focus for many scholars. During the past decade, HAR, especially the activities of
daily living (ADL) such as walking, sitting, lying, jumping, and so forth, has attracted much attention
from researchers worldwide. Various HAR systems have been proposed by researchers as a medium
to obtain additional information about people’s activities. By analyzing the information from patients’
activities, doctors have been able to diagnose some chronic diseases [1] as well as develop rehabilitation
plans for Parkinson’s patients [2]. Thus, HAR can provide the elderly with better-quality healthcare.
Moreover, HAR is also important for applications including human–computer interaction, surveillance,
keeping track of athletic activities [3], and so on.

There have been many solutions to HAR. These can be roughly divided into three aspects:
video-based, environment interactive sensor-based, and wearable sensor-based solutions [4].
For video-based solutions, thermal cameras and depth cameras such as Microsoft Kinect and Intel
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SR300 have been utilized in activity recognition and experienced great breakthroughs. For example,
Xia et al. found that it was feasible to use the Kinect for respiratory motion tracking [5]. Qin et al.
presented a novel method for real-time markerless hand gesture recognition from depth images [6].
In [7], thermal and depth cameras have been utilized for multimodal detection of breathing patterns.
A review article on both handcrafted and deep-learning-based action representations for vision-based
HAR was presented in [8]. It compared these two approaches and presented the well-known
public datasets available for experimentation. In general, video-based solutions perform well if,
in a well-controlled environment, it is especially suitable for security (e.g, intrusion detection) and
some tracking applications. One problem of video-based solutions is that people’s privacy may be
violated if the cameras are installed in some places, such as bathrooms and bedrooms, which limits
their application area. Moreover, the performance of video-based solutions may be not robust and
reliable if there is clutter or variable lighting in the environment. Last, but not least, video-based
solutions are relatively expensive [9,10]. Environment interactive sensor-based solutions would
not violate the subject’s privacy and are suitable for recognizing daily living activities in rooms.
However, this approach is generally costly due to the numerous sensors deployed in appropriate
places and is often limited to indoor scenarios [11,12]. This fact hinders such a real-time HAR system
from being scalable.

With the current development of the microelectronics, miniature and flexible sensors such as
accelerometers, gyroscopes, proximity sensors, humidity sensors, and so forth, bring convenience to
the users [13–16]. Compared with video-based solutions, the wearable sensor-based approach has the
advantage of being light and compact, which allows it to collect people’s motion information all the
time and anywhere. This kind of approach is also suitable for both indoor and outdoor environments.
Therefore, the wearable sensor-based approach can be a good candidate for human activity recognition.

Most HAR studies have utilized sensors from multiple body positions to collect human activity
information for recognition [17–19]. These systems achieve good recognition results with indistinguishable
activities. However, they are not suitable for long-term applications because multiple sensors can cause
inconvenience to users. Comparatively, a small number of studies have utilized a single sensor attached
to a subject’s body part, such as the waist, chest, or ankle, to collect activity information [20–23].
This approach is suitable for long-term activity monitoring and achieves good recognition results for
some basic activities such as lying, walking, and running. However, it is not reliable when dealing
with complex and similar activity types such as going downstairs and upstairs. Moreover, it may
work even worse when processing different data recordings of similar activity caused by individual
differences [24,25]. Despite significant research efforts to find out the most effective feature selection
and feature transformation methods for single-sensor-based HAR, improvements in the robustness and
generalization of activity recognition problems with large data variations are still very limited.

As a pattern recognition problem, two aspects could make HAR challenging. First, different
subject-related features such as gender, age, weight, and height make HAR a complex problem.
For example, the adult and the elder do not have the same kind of data when they are walking or
running. Second, the variety of styles with which people perform a certain activity under different
external environments is another challenge [26,27]. These problems require the recognition system
to not only have good recognition accuracy but to also have good generalization ability. Among the
methods that can improve the generalization and robustness performance of recognition systems,
combinations of multiple classifiers have been demonstrated to be very effective [28–30]. However,
due to the redundancy between the base classifiers, there is no guarantee that there will be a
good complementary relationship between all base classifiers, and some basic classifiers may not
contribute to improving system performance. Selecting base classifiers with excellent performance and
complementarity can further improve the performance of the recognition system [31–33]. This approach
is similar to optimizing feature sets to reduce feature dimensions and obtain a more robust feature
set. However, as we know, there are very few studies that have applied this classifier approach for
constructing a recognition system in HAR.
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To address these issues, in this paper, we present a two-layer diversity-enhanced multiclassifier
recognition method. Since accelerometers are commonly used and have been proven to be effective
for human activity recognition [29,34], we only used accelerometer data in this study. Three kinds
of features, including time-domain features, autoregressive (AR) coefficients and frequency-domain
features, were extracted from a sliding window of data. During the experiments, we first investigated
the performance analysis of the effect of training set diversity enhancement on activities that are
easily misrecognized using the whole set of base classifiers. Then, we explored the structure and
performance of each base classifier in the whole set of base classifiers. Last, we validated the
effectiveness of our proposed classifier selection method in activity recognition through a number of
comparative experiments.

The main contributions of this paper are summarized as follows:
(1) A novel multiclassifier recognition framework that considers training set and base classifier

diversity was proposed to enhance the generalization performance of the HAR system and improve
the system’s adaptability to different individuals.

(2) A kernel Fisher discriminant analysis (KFDA) was performed to process the extracted features
to enhance the discrimination between different activities, and bootstrap resampling was utilized to
increase the generalization performance of classifiers by creating diverse training sets.

(3) A classifier selection approach was applied to the field of activity recognition for the first time,
and a novel classifier selection method was proposed to optimize the performance of a multiclassifier
recognition system.

(4) We demonstrated that the proposed method is reliable and accurate for activity recognition by
collecting sensor data from subjects with a great diversity of subject-related features and comparing
the performance of the proposed method to some traditional ensemble methods.

The paper is organized as follows: In Section 2, related works that focus on feature selection and
multiclassifier recognition systems in activity recognition are introduced. In Section 3, we present details
of the proposed activity recognition approach. Following that, Section 4 introduces the experiment
and results. Finally, we draw conclusions in Section 5.

2. Related Work

The fundamental problem of recognition algorithm design is how to improve the generalization ability
and robustness of the recognition system. The performance of the recognition system can be improved by
integrating multiple learning individuals that meet certain conditions. Many researchers currently utilize
multiclassifier schemes to improve the accuracy of HAR. Catal et al. [29] established an activity recognition
model based on a machine learning classifier. It combines the J48, multilayer perceptron (MLP), and logistic
classifiers using the mean method, and the average recognition rate of the model is 97%. Lee et al. [35]
proposed a hybrid expert model based on a smart device to recognize human activity that had a recognition
accuracy of up to 92.56%. Yuan et al. [36] utilized the output of multiple speed learning machines to
perform simple mean algorithm fusion processing, and the final model output recognition accuracy
was 6% higher than that of a single speed learning machine. Cao et al. [37] optimized the deployment of
multisensors by pruning the multiple ensemble classifier. Through the proposed method, the number
and type of multisensor can be appropriately decided. Bayat et al. [38] built an ensemble-learning-based
HAR model which contained three classifiers: MLP, SVM (Support Vector Machine) and LogitBoost
for in-hand phone position. This model achieved 91.15% accuracy when recognizing six activities.
The experiments also showed that the average of the probabilities was better than majority voting as
a fusion method for the proposed model. An ensemble model was built in [39] using AdaBoost in
combination with the decision tree algorithm C4.5 and other base classifiers. The study found that the
AdaBoost–C4.5 ensemble model achieved a higher overall accuracy level of 94.04%. Although the above
studies have improved the recognition accuracy of the classification system, the individual differences
between the classifiers have not been considered. The classifiers participating in the multiclassifier
should not only satisfy the accuracy but also must have certain diversities.
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Some advanced works have concentrated on feature studies in HAR. Ronao et al. [40] applied
data mining technology to mobile phone sensor-based activity recognition and a deep convolutional
neural network was utilized as an automatic feature extractor and classifier. However, this method
requires a relatively large data processing capability for the hardware device. Some studies utilized
feature transformation methods to reduce the feature dimension while also enhancing the distinguishing
ability of feature vectors. For example, [22,41] introduced linear discriminant analysis (LDA) to enhance
the discrimination between different activities and make features more robust to be useful for fast
activity recognition. In order to reduce the influence of the sensor’s varying locations and orientations
on the recognition performance, principal component analysis (PCA) was employed in [42] to realize
location-adaptive activity recognition. Wang et al. [43] proposed a hybrid feature selection method to
reduce feature dimensions. This method combined the traditional feature selection method filter and
wrapper. The experimental results showed that the method fully balances the relationship between
recognition efficiency and accuracy. Motivated by the success of the weightlessness feature, Tao et al. [44]
proposed a new two-directional feature for bidirectional long short-term memory (BLSTM) for incremental
learning in human activity recognition. Experiments on the naturalistic mobile-device-based human
activity dataset suggested that it is superior to other methods. Forster et al. [45] proposed a feature
extraction method based on genetic programming to obtain a feature set that is robust to sensor position.
Experiments on a fitness activity dataset showed that the method achieved an accuracy of 73.4% in contrast
to 70.1% when using one selected standard feature. Wang et al. [46] presented a game-theory-based
feature selection method to select distinguished features and reduce computational cost. The experiments
showed that the proposed method performed better when compared with ReliefF and mRMR.

Table 1 summarizes these activity recognition studies using wearable sensors on multiclassifier
schemes and features.

Table 1. Summary of notable activity recognition studies using wearable sensors on multiclassifier
schemes and features.

Author Year Activities
(Number Studied) Classifier and Accuracy Contribution

Catal [29] 2015
Walking, upstairs,
downstairs, sitting,

jogging, and standing (6)

Ensemble J48 decision tree, multilayer
perceptron (MLP) and logistic regression

(72.73%–98.7%)

Examining the power of
ensemble of classifiers for

activity recognition

Lee [35] 2014 Still, walk, and run (3) Mixture-of-experts (ME) model
(92.56% ± 1.05%)

The global–local cotraining
algorithm was used to

train the ME model

Yuan [36] 2014
Walking, running,

standing, ascending and
descending stairs (5)

Average combining extreme learning
machine (ELM) (95.02%)

A novel ensemble learning
algorithm was proposed

Cao [37] 2018
Daily and sports activities

dataset (18)
Opportunity (4)

ELM-based ensemble pruning for sports
activities dataset (0.7848 ± 0.0077),

opportunity dataset (0.9142 ± 0.0098)

Optimizing multisensor
deployment by ensemble

pruning

Bayat [38] 2014
Slow-walk, fast-walk,

aerobic dancing, stairs-up,
stairs-down (5)

MLP, LogitBoost, and SVM classifiers
(91.15%)

Investigating different
fusion methods to obtain

an optimal set of classifiers

Ronao [40] 2016 Stand, walk, stair up, stair
down, run, and lying (6)

Deep convolutional neural network;
94.79% accuracy with raw sensor data

Exploiting the inherent
characteristics of activities

by smartphone sensors

Khan [22] 2010
Three activity states

including activities such as
walking, standing, etc. (15)

Artificial neural nets (97.9%)
Linear discriminant

analysis and a hierarchical
approach

Hassan [41] 2018

Activities including
standing, sitting, walking,
lying down, stand-to-sit,

etc. (12)

Deep belief network (DBN) (97.5%)

Kernel principal
component analysis and

linear discriminant
analysis were performed

to obtain more robust
features
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Table 1. Cont.

Author Year Activities (Number Studied) Classifier and Accuracy Contribution

Chen [42] 2012

Daily activities including
staying still, walking, running,

going upstairs, and going
downstairs (5)

ELM (79.68%)

Principal component
analysis and ELM were

utilized to realize
location-adaptive activity

recognition

Wang [43] 2016 Walking, upstairs, downstairs,
sitting, standing, and lying (6)

k-Nearest Neighbor, KNN (87.8%)
Naïve Bayes (90.1%)

Hybrid feature selection
method for

smart-phone-based activity
recognition

Tao [44] 2016
Jumping, running, walking,

step walking, walking quickly,
down stairs, up stairs (7)

A new ensemble classifier termed
multicolumn bidirectional long

short-term memory (BLSTM); average
error rates: 10.6%

Two-directional feature for
BLSTM-based activity

recognition

Wang [46] 2016 Standing, walking jumping,
bicycling, etc. (9) KNN with 21 features (76.42%)

Game-theory-based feature
selection was used for
selecting distinguished

features

3. The Proposed Framework

Figure 1 shows the workflow of the proposed activity recognition approach. Briefly, the dataset
used in this paper was acquired in our laboratory and the acceleration in three axes from the
TrignoTM wireless system was utilized for the experiment. The approach involved three main modules.
First, after feature extraction from the acceleration in three axes, KFDA was utilized to increase the
discrimination of different activities. This can improve the recognition accuracy of some similar
activities. Second, a bootstrap technique was utilized to create randomized training data after applying
KFDA to transform features, which can improve the generalization performance of the recognition
system and make it more suitable for dealing with subjects with larger diversity. These two steps can
be considered as the data-based first layer of diversity enhancement. Third, the classifier selection
approach based on combined diversity measures was proposed to optimize the multiclassifier system.
The base classifiers that perform better and with more diversities were selected and combined to
recognize activities. The third step can be considered as the classifier-based second layer of diversity
enhancement. In the following subsections, we describe the details of these modules.
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Figure 1. Workflow of the proposed activity recognition approach.

3.1. Feature Extraction

After denoising the signal, we used the sliding window technique to segment the acceleration
signal. Then, features were extracted from each sliding window of 300 samples with 50% overlapping
between consecutive windows. The sampling rate was 150 Hz. These kinds of features include
time-domain features, AR coefficients, and frequency-domain features. For each sliding window,
we calculated the mean value, standard deviation, maximal value, minimal value, median absolute
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deviation, signal magnitude area, and interquartile range as the time-domain features. The model
order of the AR coefficients was set to P = 3 based on [46] in this research; thus, a total of nine AR
coefficients were obtained in each sliding window. In the frequency domain, we applied the fast Fourier
transform (FFT) algorithm to extract the frequency features, which included mean value, skewness,
kurtosis energy, and entropy. The effectiveness of these features for HAR have been proved by many
reseasrch works [46–48]. The block diagram of this module is shown in Figure 2.
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3.2. Kernel Fisher Discriminant Analysis (KFDA)

Fisher discriminant analysis (FDA) is a feature dimension reduction and classification method
developed in the field of pattern recognition. Its core idea is projecting test data into a certain direction
according to different characteristics of the sample and maximizing the interclass dispersion of the
projection of the test data while minimizing intraclass dispersion. Although the traditional Fisher
discriminant has been widely used in activity recognition, when the nonlinearity between variables
is serious, it is difficult to find a suitable direction to maximize the separation of the projection of
test data. For nonlinear classification, the introduction of the kernel function method into Fisher
discriminant analysis has achieved good results. Mika et al. [49] first proposed KFDA, which is briefly
described below.

Suppose that all sample points in the p-dimensional space have C classes: G1, G2, ..., GC, and the
total number of samples is N. The jth (j = 1, 2, ..., C) classes Gj contain Nj samples written as

x1
j, x2

j , · · · , xN j
j .

The sample x∈Rp passes through the nonlinear high-dimensional mappingϕ and the corresponding
mode ϕ(x)∈H. In the high-dimensional feature space H, the intraclass dispersion SW and the interclass
dispersion SB of the training samples are, respectively,

SW =
1
N

C∑
i=1

Ni∑
j=1

[
φ(x j

i ) −mi
][
φ(x j

i ) −mi
]T

(1)

SB =
1
N

C∑
i=1

Ni(mi −m)(mi −m)T (2)

where mi represents the ith sample mean in the feature space H: mi = (1/Ni)
Ni∑
j=1

φ(x j), and m represents

the mean of all sample points in the feature space H: mi = (1/Ni)
C∑

i=1

Ni∑
j=1

φ(x j
i ). In the feature space H,

the Fisher criterion is

J(w) = max
wTSBw
wTSWw

(3)
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where w is any nonzero column vector. The Fisher discriminant finds the best projection vector w
by optimizing Equation (3). Since the feature space H dimension is too high, w cannot be directly
obtained, thus introducing a kernel function.

k(x, z) =
〈
φ(x),φ(z)

〉
(4)

Equation (4) indicates that any two inner product vectors in the high-dimensional space H can be
represented by a kernel function. Then, the optimal solution w in Equation (3) can be expressed as

w =
N∑

i=1
αiφ(xi), where α = (α1, α2, ..., αN)T is a column of vectors, so in the high-dimensional feature

space H, the Fisher criterion becomes

J(α) = max
wTSBw
wTSWw

= max
αTKBα

αTKWα
(5)

In the formula, KB and KW are calculated as follows:
KB = 1

C(C−1)

C∑
i=1

C∑
j=1

(µi − µ j)(µi − µ j)
T

µi =

 1
Ni

Ni∑
j=1

k(x1, x j
i ), · · · , 1

Ni

Ni∑
j=1

k(xN, x j
i )

T
 KW = 1

C

C∑
i=1

1
Ni

Ni∑
j=1

(ξ j − µ j)(ξ j − µ j)
T

ξ j = (k(x1, x j), k(x2, x j), · · · , k(xN, x j))
T

Therefore, the problem of Equation (5) is transformed into maximizing K−1
W KB and its corresponding

eigenvector. In practical applications, KW is often not guaranteed to be nonsingular. Therefore, KW

+ σI is often used to replace KW, where σ is a positive number and is usually σ = 10−7, and I is the
identity matrix.

In the kernel Fisher discriminant method, the selection of the kernel function is very important.
There are many kinds of kernel functions, and the most common ones are the linear kernel function,
polynomial kernel function, radial basis function, and sigmoid kernel function. However, there is
no good method for constructing an optimal kernel, and there is no deep theoretical research. In the
literature [50], through experimental research, it was found that the radial basis function (RBF) has
better classification ability under the default parameters. In this study, the RBF kernel function was
used:

k(x, z) = exp(−
‖x− z‖2

δ2 ) (6)

In the formula, the parameter δ is positive, and the selection of δ is an optimization problem.
In this study, the cross-validation method was used to select the parameter δ. The 3D feature plots for
the four activities before and after applying the KFDA are shown in Figure 3.



Sensors 2019, 19, 2039 8 of 24
Sensors 2019, 19, x FOR PEER REVIEW 8 of 23 

 

 

                (a)                                          (b) 

Figure 3. Features without and with kernel Fisher discriminant analysis (KFDA) operations. (a) 3D 
feature space representation on original features (x1 is the mean value of the y-axis, x2 is the standard 
deviation of the x-axis, x3 is the standard deviation of the y-axis); (b) 3D space representation of the 
first three KFDA-based features. 

3.3. Bootstrap Resampling  

Bootstrap resampling or the bootstrap technique is a uniform sampling method that is put back 
from a given training set. Each time a sample is selected, it may be selected again and added to the 
training set. Obtaining samples by this method is simple, convenient, and easy to implement [51]. In 
the ensemble classifier, diversity (classifiers should be independent, that is, containing uncorrelated 
errors) between base classifiers is a very important condition for constructing an ensemble classifier. 
A number of studies have proved that utilizing bootstrap resampled data to train base classifiers can 
improve the generalization of a recognition system, such as the bootstrap aggregation neural 
networks proposed by Zhang [52]. Unlike these works, our study not only utilized the bootstrap 
technique to obtain different training subsets from the original samples but also considered the 
diversities of base classifiers. Therefore, a diversity-measure-based classifier selection approach was 
proposed to further increase the diversity of base classifiers. Figure 4 illustrates bootstrap resampling 
with replacement. In this particular realization, data sample 6 was sampled twice, but data sample 5 
was not sampled. 

 

Figure 4. Dataset after being processed by bootstrap resampling. 

3.4. Classification Algorithm 

This research utilized the extreme learning machine (ELM) as a base classifier since it is widely 
used in sensor-based activity recognition research and many studies have demonstrated its good 
generalization ability [53,54]. As a single hidden layer feed-forward neuron network (SLFN), the 
input weights and biases of ELM can be randomly selected. Figure 5 shows the structure of ELM. In 

Figure 3. Features without and with kernel Fisher discriminant analysis (KFDA) operations. (a) 3D
feature space representation on original features (x1 is the mean value of the y-axis, x2 is the standard
deviation of the x-axis, x3 is the standard deviation of the y-axis); (b) 3D space representation of the
first three KFDA-based features.

3.3. Bootstrap Resampling

Bootstrap resampling or the bootstrap technique is a uniform sampling method that is put back
from a given training set. Each time a sample is selected, it may be selected again and added to the
training set. Obtaining samples by this method is simple, convenient, and easy to implement [51].
In the ensemble classifier, diversity (classifiers should be independent, that is, containing uncorrelated
errors) between base classifiers is a very important condition for constructing an ensemble classifier.
A number of studies have proved that utilizing bootstrap resampled data to train base classifiers can
improve the generalization of a recognition system, such as the bootstrap aggregation neural networks
proposed by Zhang [52]. Unlike these works, our study not only utilized the bootstrap technique to
obtain different training subsets from the original samples but also considered the diversities of base
classifiers. Therefore, a diversity-measure-based classifier selection approach was proposed to further
increase the diversity of base classifiers. Figure 4 illustrates bootstrap resampling with replacement.
In this particular realization, data sample 6 was sampled twice, but data sample 5 was not sampled.
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3.4. Classification Algorithm

This research utilized the extreme learning machine (ELM) as a base classifier since it is widely
used in sensor-based activity recognition research and many studies have demonstrated its good
generalization ability [53,54]. As a single hidden layer feed-forward neuron network (SLFN), the input
weights and biases of ELM can be randomly selected. Figure 5 shows the structure of ELM. In this
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study, each neuron in the input layer corresponded to one feature in the feature set and m neurons in
the output layer, respectively, corresponded to the activities to be recognized.
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For any N different samples (Xj, tj), j = 1,2, . . . N, where x j = [x j1, x j2 · · · x jn]
T is the jth sample,

each sample contains n-dimensional features, and t j = [t j1, t j2, · · · t jm]
T is the encoded class label.

All samples belong to m different activities, and the ELM mathematical model with L hidden neurons
can be expressed as

L∑
i=1

βig(wi · x j + bi) = t j, j = 1, · · ·N (7)

where g(x) is the excitation function; in this paper, the softmax excitation function was used. wi, bi,
and βi are the input weight, hidden element offset, and output weights of the ith hidden neuron node,
respectively. The input weights and hidden element offsets were randomly initialized from the range
of [−1, +1]. Equation (7) can be written in matrix form:

Hβ = T (8)

where β represents the output weight, T is the corresponding coding class label, and H is the hidden
layer output matrix:

H =


g(w1 · x1 + b1) · · · g(wL · x j + bL)

... · · ·
...

g(w1 · xN + b1) · · · g(wL · xN + bL)


N×L

(9)

Since the neural network system is linear, the β output weight is obtained by the following
equation:

β = H†T (10)

where H† is the generalized inverse matrix of H.

3.5. Diversity Measures and the Proposed Classifier Selection Method

The main aim of multiple classifiers is to improve the generalization capability and classification
performance of the recognition system. Most studies have combined all the trained base classifiers
without considering the relationship of the base classifiers. However, there may be poor performance
and redundant base classifiers affecting the performance of the recognition system. Therefore, in this
research, our goal was not to utilize all base classifiers to establish an ensemble recognition system but
to perform a performance and diversity analysis using the proposed classifier selection method on the
base classifier and then selectively combine the base classifiers. Figure 6 shows the comparison of a
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direct combination method and a selection-based combination method. The diversity measures we
utilized in this research are described below.
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3.5.1. Diversity Measures

Disagreement Measure

Skalak proposed the disagreement measure from the concept of diversity [55]. The larger the
disagreement measure, the greater the diversity between the base classifiers. The disagreement measure
for the two base classifiers Ci and Ck can be expressed by the following formula:

Disik =
N01 + N10

N11 + N10 + N01 + N00
(11)

where N00 represents the proportion of samples when classifiers Ci and Ck recognize errors,
N11 represents the proportion of samples when classifiers Ci and Ck recognize correctly, N10 represents
the proportion of samples when classifier Ci recognizes errors while classifier Ck recognizes correctly,
and N01 represents the proportion of samples when classifier Ci recognizes correctly while classifier Ck
recognizes errors. The formula of disagreement measure extended to L classifiers can be expressed as

Disav =
2

L(L− 1)

L−1∑
i=1

L∑
k=i+1

Disik (12)

Cunningham’s Entropy

“Entropy” was originally a physical quantity in information theory that was used to measure the
uncertainty of the source. Cunningham et al. [56] extended this concept to apply it to the diversity
measure of classifiers:

Ent =
1
N

N∑
i=1

1

L−
⌊

L
2

⌋
− 1

min(l(xi), L− l(xi)) (13)

where N is the number of test samples, L is the number of base classifiers, and l(xi) represents the number
of base classifiers that correctly classify sample xi. Ent∈[0, 1], and the value of Ent is proportional to the
diversity between the base classifiers.



Sensors 2019, 19, 2039 11 of 24

Coincident Failure Diversity

Partridge et al. [57] proposed the principle of generalized diversity and consistent failure diversity
for non-one-to-one diversity metrics. The latter is more commonly used in the corresponding research.
The definition of consistent failure diversity is as follows:

CFD =


0, P0 = 1, 0

1
1−P0

L∑
i=1

L−i
L−1 Pi P0 < 1

(14)

where P0 represents the probability that all the base classifiers are correctly classified, and Pi represents
the probability that the ith base classifiers in the L base classifiers that make up the ensemble classifier
are classified correctly. The larger the value of CFD, the greater the diversity between the base classifiers.

3.5.2. The Proposed Classifier Selection Method

Similar to feature selection, the selection of base classifiers can eliminate redundant or poorly
performing classifiers, reduce computational burden, and optimize the relationship between base
classifiers in a multiclassifier recognition system. Unlike most studies on selecting base classifiers based
on only one diversity measure, the proposed classifier selection method proposed in this paper was
based on the above three diversity measurement methods. The accuracy rate and the diversity of base
classifiers were considered as the two selection principles. Based on these two principles, we ranked
all the base classifiers and selected the top n base classifiers to construct a multiclassifier recognition
system. Figure 7 shows the flowchart of the proposed classifier selection method. The experiments
were implemented in Matlab 2012a.

The proposed base classifier selection procedure can be summarized as follows:
Step 1: The T ensemble base classifiers are supervised trained with different training data subsets.
Step 2: The validation dataset is utilized to find out the base classifier c with the highest recognition

accuracy among all the base classifiers and put base classifier c in set D and rank first.
Step 3: The base classifier e is selected from the remaining candidate base classifier set T. The base

classifier e should satisfy the criterion of minimizing the index of θ = Disav + ENT + CFD with the
previously selected base classifier (in set D). Then, put base classifier c in set D and rank second.

Step 4: Then, select base classifier e repeatedly until all base classifiers are selected into set D.
The order in which each classifier is selected is the ranking result.

Step 5: According to the ranking result P, select the top n base classifiers to construct a recognition
system by majority vote.
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4. Experimental Results and Analysis

4.1. Experimental Setup and Experimental Dataset

In the experiment, we used a TrignoTM wireless electromyogram (EMG) acquisition instrument
produced by Delsys Company as the activity information collection equipment, as shown in Figure 8a.
TrignoTM is a high-performance, high-precision biosignal acquisition device which integrates the data
acquisition function of myoelectricity and acceleration. It has been widely used in medicine, sports,
and engineering. In this study, we only used the inertial information of human activity acquired by its
accelerometer. The acceleration was accurate to ±6 G with a resolution of 0.016 (G is the gravitational
constant), and the accelerometer worked at a sampling rate of 150 Hz. In the data collection process,
the effects of individual differences such as age, height, and weight on the signal distribution were
taken into account. Therefore, 10 subjects (5 male, 5 female) with different physical characteristics were
selected to participate in the experiment. Their age, height, and weight statistics are shown in Table 2.
To capture day-to-day variations and signals in different environments, each subject was required to
wear a sensor at the same position on the waist (as shown in Figure 8b) and perform five trials for
each activity on different days and in environments. Figure 8c shows the process of data collection.
Before the start of each experiment, we checked that the sensor was fixed in the same position as the
previous subject and a strap was used to secure the sensor to the waist to prevent movement during
the collection process. Each subject followed the sequence of the activity numbers in the left column of
Table 3 and performed each activity for about 20 s. The total time of each activity is listed in the right
column of Table 3. We expected that by doing this, the activities performed by the subjects would be
more similar to their styles in real life and we would be better able to verify the performance of our
proposed method. Figure 9 shows the acceleration signals from three subjects with large individual
differences as they went up stairs. It can be found from Figure 9 that individual differences had a large
influence on the amplitude and trend of the acceleration signal. We used the leave-one-out (LOO)
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strategy to evaluate the proposed method. The verification was repeated 10 times and each dataset
from a subject was used once for testing. We obtained the final result by calculating their average.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 23 

 

three subjects with large individual differences as they went up stairs. It can be found from Figure 9 
that individual differences had a large influence on the amplitude and trend of the acceleration signal. 
We used the leave-one-out (LOO) strategy to evaluate the proposed method. The verification was 
repeated 10 times and each dataset from a subject was used once for testing. We obtained the final 
result by calculating their average. 

 
 

 
Figure 8. The experimental platform and sensor placement: (a) signal acquisition device, (b) the 
placements of the collection node, and (c) the process of data collection. 

Table 2. The statistics of subjects for the experiments. 

 Age Hight (cm) Weight (kg) 
Range 20–38 160–178 45–85 
Mean 29.6 166 65.6 

Std 6.7 5.6 13.5 

 

(b) 

(c) 

(a) 

Figure 8. The experimental platform and sensor placement: (a) signal acquisition device,
(b) the placements of the collection node, and (c) the process of data collection.

Table 2. The statistics of subjects for the experiments.

Age Height (cm) Weight (kg)

Range 20–38 160–178 45–85

Mean 29.6 166 65.6

Std 6.7 5.6 13.5
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Figure 9. The triaxial accelerometer data of “go up stairs” from three subjects with large individual
differences: (a) Male, 177 cm, 83 kg; (b) Female, 162 cm, 45 kg; (c) Male, 172 cm, 60 kg.

Table 3. Activities performed in the experiments.

Activity Number Sum (in Seconds) Activity Number Sum (in Seconds)

1 walk (W) 1342 5 go up stairs (GU) 1123

2 stand (S) 1253 6 sit on a chair (SC) 879

3 jump (J) 976 7 run forward (R) 1143

4 go down stairs (GD) 1034 8 lie (L) 769

4.2. Performance Measures

This study used the performance measures accuracy and recall, which are also commonly used in
the field of activity recognition. These two measures can be expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Recall =
TP

TP + FN
(16)

where the variables TP, TN, FP, and FN, respectively, represent the number of true positive, true negative,
false positive, and false negative outcomes in a given experiment.

4.3. Experimental Results

4.3.1. PCA-Based Features versus FDA-Based Features versus KFDA-Based Features

We analyzed the advantages of feature transformation and the effectiveness of the proposed
KFDA technique for similar activities that are easily misrecognized. PCA, which is most commonly
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used in the field of activity recognition [9,45], was chosen as the comparative method of feature
transformation. In the comparative experiment, the test dataset was utilized to analyze the activity
recognition performance of three kinds of features: PCA-based, FDA-based, and KFDA-based features.
Figure 10 presents the results obtained by using PCA-based features as well as the results obtained by
using our proposed KFDA-based features and comparative FDA-based features. The comparative
experiments were performed under the conditions of using a multiclassifier system which contained
20 base classifiers without selection. For the parameter settings of the classification algorithm, the input
weights and biases for each base ELM were randomly initialized from [−1, +1] and the number of
hidden neurons was 20.
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Figure 10. Performance comparison: (a) accuracy comparison of the different feature selection methods
and (b) recall comparison of the different feature selection methods.

It can be observed from Figure 10 that the PCA-based features had the worst performance, with 81.4%
accuracy and 80.8% recall on the testing data. In terms of features with selection, FDA-based features had
better performance compared with original features, with 86.1% accuracy and 84.8% recall on the testing
data. KFDA-based features achieved the best performance, with 92.3% accuracy and 90.7% recall on
the testing data. After applying the KFDA, the total accuracy and recall of the recognition system were
significantly increased, which reflected the effectiveness of the proposed KFDA features. Similar results
can be observed from the training dataset.

Additionally, in order to gain better insight into the different performances of the three kinds of
features in activity recognition and to analyze the proposed KFDA feature transformation method
to enhance the feature set distinguishing ability, a corresponding confusion matrix was constructed.
Tables 4–6 present the confusion matrix of activity recognition results that were obtained with PCA-based
features, FDA-based features, as well as the results obtained with our proposed KFDA-based features.

Table 4. Confusion matrix for human activity recognition (HAR) using 20 base classifiers based on
principal component analysis (PCA) features.

W S J GD GU SC R L

W 458 6 6 28 24 17 19 6

S 5 449 4 6 6 1 10 2

J 9 6 371 22 34 12 12 7

GD 31 6 17 399 5 17 11 3

GU 21 6 26 4 395 4 11 5

SC 13 3 9 10 2 432 15 3

R 15 9 13 9 14 16 441 5

L 2 1 0 0 1 3 2 350
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Table 5. Confusion matrix for HAR using 20 base classifiers based on Fisher discriminant analysis
(FDA) features.

W S J GD GU SC R L

W 528 2 3 13 8 5 2 3

S 3 458 2 3 4 3 8 2

J 2 1 447 6 8 5 2 2

GD 11 2 5 452 3 10 5 1

GU 14 7 9 2 432 1 6 1

SC 9 4 4 12 2 442 9 5

R 6 8 2 4 7 14 476 5

L 1 1 1 0 1 1 2 352

Table 6. Confusion matrix for HAR using 20 base classifiers based on KFDA features.

W S J GD GU SC R L

W 531 2 3 10 8 5 2 3

S 3 461 2 3 4 2 6 2

J 2 1 450 5 6 5 2 2

GD 10 2 4 456 3 9 4 1

GU 12 5 8 2 439 1 5 0

SC 8 3 3 12 1 446 9 5

R 5 9 3 2 6 12 480 5

L 1 1 1 0 1 1 1 353

According to Table 4, we can observe that when using PCA-based features, there were many
misrecognitions between walk (W) and go down stairs (GD), walk (W) and run forward (R), jump (J) and
go down stairs (GD), jump (J) and go up stairs (GU), run forward (R) and go up stairs (GU), and run
forward (R) and walk (W). It can be observed from Table 5 that after applying FDA, the discrimination
of activities increased, such as activity W to GD, activity W to R, activity J to GD, activity J to GU,
and activity R to GU and GD. From Table 6, it can be seen that it was much easier for the KFDA-based
features to distinguish the activity W from lie (L), activity J from stand (S), activity J from L, activity
GD from L, and activity R from J. The number of activities that were difficult to recognize by PCA- and
FDA-based features, such as activities between GD and W, R and W, J and R, and J and sit on a chair
(SC), also decreased significantly when using KFDA. This indicates that the KFDA-based features contain
more discriminant and valuable information than the original features and PCA-based features in human
activity recognition.

4.3.2. The Performance of Base Classifier

We analyzed the performance of each base classifier in the multiple classifier recognition system
when they were trained with the bootstrap technique in the situation where the KFDA-based features
were utilized. This helped us to determine the performance of the base classifier and analyze the
performance correlation of the base classifier. A multiple classifier system consisting of 20 base classifiers
was developed. Similar to the previous section, the input weights and biases for each base ELM were
also randomly initialized from [−1, +1]. The base classifiers with different hidden neurons from [5, 30]
were utilized and analyzed by experiments, and the highest accuracy was used as the base classifier
hidden neuron selection criterion on the training dataset. Figure 11 shows the number of hidden neurons
of base classifiers trained using the bootstrap technique. It can be seen that some base classifiers required
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more than 20 hidden neurons, while some base classifiers required only about 10 hidden neurons.
This indicates that the structure of the “best” base classifier changed according to the training data and
the base classifiers obtained by bootstrap technique training had different neural network structures.
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Figure 11. The number of hidden neurons in the base classifiers.

Figure 12 shows the accuracy and recall values on the training and testing data from the 20 different
base classifiers. As can be seen from Figure 12, the basic classifier showed inconsistent performance on
the model construction data (training data) and test data, which may have been due to the large difference
in data distribution between the training and test sets. For example, base classifier 10 gave the best
performance on the training data, with an accuracy of 83.86% and recall of 83.26%, but its performance
on the testing data was not the best. The base classifier with the best performance on the testing data was
from base classifier number 8, with an accuracy of 82.2% and recall of 81.92%, but its accuracy and recall
on training data were 81.2% and 80.62%, which were not optimal. Similar observations can be made for
other base classifiers. This demonstrates the poor generalization performance and nonrobust nature of
single classifiers when dealing with an activity dataset, especially with differences.
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Figure 12. The accuracy and recall for each base classifier: (a) the accuracy of each base classifier in
training data, (b) the recall of each base classifier in training data, (c) the accuracy of each base classifier
in testing data, and (d) the recall of each base classifier in testing data.

4.3.3. The Influence of Base Classifiers with or without Selection

The previous section experimentally proved that the base classifier trained by the bootstrap
technique has different and unreliable performances on the training and testing datasets. Therefore,
constructing a classifier-selection-based multiclassifier recognition system is critical to improving the
performance of activity recognition. Thus, we verified the effectiveness of the proposed classifier
selection method based on activity recognition through comparative experiments. First, we evaluated
the diversities of the 20 base classifiers obtained and ranked the base classifiers by the method proposed
in Section 3.5. Table 7 shows the results of diversities and rankings of 20 base classifiers of the
multiclassifier system.

Table 7. Diversity values for base classifiers in the multiclassifier system.

Classifier C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Diversity 0.634 0.275 0.876 0.403 0.852 0.605 0.247 0 0.284 0.786

Ranking 8 19 4 13 5 9 20 1 18 6

Classifier C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Diversity 0.389 0.685 0.372 0.968 0.417 0.322 0.587 0.914 0.462 0.303

Ranking 14 7 15 2 12 16 10 3 11 17

In order to verify the effectiveness of the proposed classifier selection method, we conducted
several comparative experiments, including fusion of the whole set of 20 base classifiers; fusion of 15,
10, and 5 base classifiers selected by using the proposed method; and fusion of randomly selected 15,
10, and 5 base classifiers. Table 8 shows the comparison of the results from the experiment.
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Table 8. The performance of fusion for all and selection of 15, 10, and 5 classifiers.

Combination Rule Nr Classifiers Accuracy% Recall%

Fusion 20 93.15 92.35

Selection 15 93.08 92.78

Selection 10 93.37 93.17

Selection 5 89.68 88.68

Random 15 84.68 84.32

Random 10 85.56 84.47

Random 5 82.43 81.67

From Table 8, it can be found that the performance of the recognition system composed of the
classifiers selected in this paper was better than that of the random selection system. This can be
reflected from the performance comparison of three different sets of base classifiers. For example,
when using the random selection method to fuse 15 base classifiers, the system achieved 84.68% accuracy
and 84.32% recall. However, when utilizing the proposed classifier selection method, the accuracy was
93.08% and the recall rate was 92.78% with the top 15 base classifiers involved. A similar situation
can be observed when 5 and 10 base classifiers were combined. In addition, it can also be found
that the number of base classifiers was not the only factor that determined the performance of the
multiclassifier system. For example, the performance of the multiclassifier system composed of all
20 base classifiers was not optimal. Moreover, in both the random selection and proposed selection
methods, the performance of the multiclassifier obtained by fusing 15 base classifiers was not as good
as that when fusing 10 base classifiers. These can be explained considering two facts: the random
selection of the base classifier does not take into account the diversity and performance between the
base classifiers. There may be redundancy between some base classifiers (e.g., training sets are similar)
or data imbalances (e.g., training data are biased toward one category). These cause the classifier
selection to perform better than the full ensemble.

In order to better demonstrate the advantages of using the proposed method to rank and fuse
the base classifiers, we tested the performance of the multiclassifier recognition system composed of
different numbers of base classifiers according to the ranking results of the proposed method. Figure 13
shows the accuracy and recall values of the recognition system with different numbers of base classifiers
under the test dataset. In Figure 13, the first bar in each figure represents the 20 base classifiers with
the highest classifier accuracy using the test data, and the second bar represents that the first 2 base
classifiers were combined according to the ranking result of Table 7, and the last (20th) bar means that
all 20 base classifiers were combined.
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Figure 13. Performance of the multiclassifier system under different numbers of base classifiers:
(a) accuracy of the multiclassifier system and (b) recall of the multiclassifier system.

It can be seen from Figure 13 that with the combination of more base classifiers, the performance
index of the recognition model gradually increased. When the number of combined base classifiers
was 11, the two performance indexes were at the optimal values, with an accuracy of 94.29% and a
recall of 94.15%. After that, as the number of base classifiers increased, the two performance indicators
gradually reduced and converged to a stable value. This may be due to the fact that the base classifiers
added in the top ranking had huge diversity and could form a complementary relationship with the
classifier that had the highest accuracy. However, the classifiers at the bottom of the ranking may have
had redundancy and reduced the overall diversity and performance of the multiclassifier system.

According to the above experimental results, the recognition system consisting of 11 base classifiers
was selected for comparison with two commonly used ensemble learning methods: Bagging and
AdaBoost. In addition, the base classifier with best performance and the SVM classification algorithm,
which is most commonly used for activity recognition, were utilized as being representative of the
single classifier. The experimental comparison results are shown in Table 9.

Table 9. Recognition performance comparison of different methods.

Method Best Base ELM SVM Bagging Adaboost Proposed Method

Number of classifiers 1 1 11 11 11

Accuracy % 81.85 83.42 85.38 88.63 94.28

Recall % 80.18 83.29 84.72 87.69 93.89

It can be seen from Table 9 that the accuracy of the proposed method in the test set was 94.28%,
which was 10.86, 12.43, 8.9, and 5.65 percentage points higher than the SVM, single ELM, Bagging,
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and AdaBoost algorithms, respectively. The recall rate of the proposed method on the test set was
93.89%, which was 10.6, 13.71, 9.17, and 6.2 percentage points higher than the SVM, single ELM,
Bagging, and AdaBoost algorithms, respectively. Compared with the single ELM with the best
performance and SVM, Bagging linearly combined 11 base classifiers and the recognition performance
was greatly improved. This further demonstrates that multiclassifier schemes can improve the
performance of HAR. However, the redundancy between the generated base classifiers of Bagging may
incorporate some invalid decisions and influence the final recognition results. AdaBoost performed
weighted integration of the base classifiers by assigning a large weight to the base classifier with large
diversity. Therefore, the AdaBoost algorithm had better recognition performance compared with the
Bagging algorithm, and the accuracy and recall rate increased by 3.25% and 2.97%, respectively. The
proposed algorithm had optimal recognition performance. This may have been because it adopted an
ensemble method that considered not only the accuracy but also the diversity of the base classifier;
so, the multiclassifier recognition system established by the proposed method could complement the
performance between the base classifiers and achieve better recognition results.

5. Conclusions

The inertial signals obtained by the same kind of activity under different conditions (e.g., different
environments and individual differences) exhibit different characteristics. The absence of a fixed and
standardized activity poses a challenge to activity recognition. In order to improve the recognition
accuracy and increase the generalization performance of recognition algorithms, this paper proposed a
novel activity recognition approach using a single triaxial accelerometer.

There were three critical components in our proposed approach. First, after extracting three
different kinds of features from the acceleration sensor, the feature set was mapped to the new subspace
by using KFDA technology to enhance the degree of discrimination of feature vectors under different
activities. Second, for activity recognition, we proposed a multiclassifier system which contained
ELM as the base classifier trained by the bootstrap technique. Third, the base classifiers trained by
the bootstrap technique were ranked and selected based on their performance and diversity before
combination. Comparative experiments with PCA- and FDA-based features showed that KFDA-based
features can improve the classification accuracy effectively. In addition, it can be concluded from the
experiments that the base classifiers have different structures and performances in activity recognition
problems when they are trained by the bootstrap technique. Based on this, the proposed classifier
selection method was utilized to optimize the classifier ensemble and showed a superior advantage
compared with combining all base classifiers and the random selection method in the experiments.
Apart from these comparative experiments with random selection, the proposed method also showed
better performance with traditional ensemble methods, including Bagging and Adaboost.

As future work, we plan to use the EMG acquisition function of the sensor used in this paper and
multisignal fusion technology to build a feature set and construct a multiclassifier recognition system
with different kinds of classification algorithms. Additionally, we will attempt to use compressed
sensing and deep learning methods, such as the deep belief network and the convolutional neural
network, to construct two-layer diversity-enhanced activity recognition modules and engage in testing
our proposed method by using datasets obtained from more body positions.
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