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Abstract: Oscillometric blood pressure (BP) monitors currently estimate a single point but do not
identify variations in response to physiological characteristics. In this paper, to analyze BP’s normality
based on oscillometric measurements, we use statistical approaches including kurtosis, skewness,
Kolmogorov-Smirnov, and correlation tests. Then, to mitigate uncertainties, we use a deep learning
method to determine the confidence limits (CLs) of BP measurements based on their normality.
The proposed deep learning regression model decreases the standard deviation of error (SDE) of
the mean error and the mean absolute error and reduces the uncertainties of the CLs and SDEs of
the proposed technique. We validate the normality of the distribution of the BP estimation which
fits the standard normal distribution very well. We use a rank test in the deep learning technique to
demonstrate the independence of the artificial systolic BP and diastolic BP estimations. We perform
statistical tests to verify the normality of the BP measurements for individual subjects. The proposed
methodology provides accurate BP estimations and reduces the uncertainties associated with the CLs
and SDEs using the deep learning algorithm.

Keywords: blood pressure; oscillometric measurement; statistical analysis; normality; confidence
limit; deep learning

1. Introduction

Blood pressure (BP) is a key consideration when making decisions about the cardiovascular
activity of patients. The oscillometric method has lately been popularly and is utilized in automatic
BP measurement devices that are now readily accessible in the marketplace. Though oscillometric
BP device’s manufacturers rarely disclose algorithms, but the literature mentions that the maximum
amplitude technique is most commonly used to estimate arterial blood pressure (ABP) [1]. The mean
arterial BP is easily estimated via the cuff pressure whereby the oscillation amplitude becomes
maximal utilizing the oscillometric waveform when the cuff pressure matches the average arterial
BP. The compliance of the arterial wall is then maximized, so the ABP volume change with respect to
the maximum change in the arterial pressure and the amplitude of the oscillation signal in the cuff
is also at maximum. Even though the ABP estimation relies on the oscillometric technique, it causes
a variety of errors because the BP signals are characterized by continuous variations. Specifically,
the systolic BP (SBP) and diastolic BP (DBP) are subject to significant and continuous change over
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time [2] in response to physiological oscillations due to factors such as food intake, emotional status,
level of exercise, and disease states, such that they can fluctuate to 20 mmHg for several heartbeats [3].
However, the SBP and DBP are generally estimated at two random instances in time with respect
to the systolic and diastolic ratios (SBPR and DBPR) in the oscillometric waveform envelope [2],
which offers no information on the significant BP fluctuations. There is no established criterion for
determining accurate SBP and DBP or SBPR and DBPR [4]. A journal editorial asserted that there
is an acutely aware of biological fluctuations [5]. The element of accurate BP estimation follows:
the first is the accuracy of the measurement system and the second is the physiological variability.
The first source of uncertainty is represented by BP measurement error according to the ANSI/AAMI
SP 10 standard [6], in which physiological variations of the BP are overlooked by the great majority
physicians. Therefore, oscillometric BP devices generally provide a single parameter with no confidence
limit (CL) to distinguish them from the fluctuations of physiological characteristics [5]. If CL estimates
are applied to the BP monitor, the results of the wide CL estimate on the BP value can be determined
by the unstable BP value. Conversely, a narrow CL estimate can be determined with a stable BP value.
However, since repeatable status to recreate measurements cannot be assured, it is practically and
economically impossible to acquire lots of measurements to one subject utilizing an oscillometric-based
BP monitor [1]. In such a real situation, CL should be estimated using a small number of BP values
measured over a short time. Thus, using the bootstrap technique, a CL estimate can be acquired
using a BP value of a small sample size [1]. Unfortunately, this approach assumes that BP based on
the oscillometric measurement for individual subjects is an independent and identical distribution
(iid), which supposes that the populations for which BP are measured are normally distributed.
The assumption of normality is especially critical when determining CLs for BP measurement for
individual subjects. The normality assumption is a key factor in the reliability of estimations and
statistical tests [7]. Thus, this assumption should be taken seriously because it is impossible to estimate
BP accurately when this assumption does not hold. For this reason, the assumption of normality
should be verified with respect to BP measurements for individual subjects.

In this investigation, our research objective is to use statistical approaches including kurtosis,
skewness, Kolmogorov-Smirnov (KS), and rank tests to examine the normality of BP values based
on oscillometric measurements. We also estimate the SBP, DBP, and CLs of these values based on
the normality for individual subject using a deep learning [8]. Deep learning is one part of machine
learning techniques that models high-level abstractions in data by utilizing multi-layered architecture
with complex nonlinear transformations [9]. However, our BP measurements for individual subjects
are drawn from only a small sample size due to limited measurements available for individual subjects,
which is a disadvantage when using a deep learning that works best with big data [10]. To address
this problem, we first generate artificial features from the original data using a parametric bootstrap
technique for the SBP and DBP estimates. This approach can efficiently represent a very complex
relationship between the feature data acquired from oscillometric signals and those from target BPs.
Then, we utilize the bootstrap technique again to decide the CLs using the estimated target BP for
the deep learning technique. Next, we statistically analyze the normality of the BP measurements.
We believe this to be one of the first studies using statistical analysis for individual BP estimation as
the contributions below:

• We propose a new approach for estimating BP parameters that mitigates uncertainties
(physiological variability), such as the CLs and standard deviation of errors, using the deep
learning technique. To do so, we use a small sample of oscillometric BP measurements and
bootstrap techniques for individual subjects.

• First, we perform the kurtosis and skewness tests to verify the normality of the BP measurements
for individual subjects.

• We then use a rank test to analyze the independence between the artificial BPs estimations.

Figure 1 shows the introduced methodology and we describe the procedure below. The upper
part in the figure shows the first procedure in which the proposed algorithm is trained, and the
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lower part illustrates the validation procedure. We combine these two parts to estimate SBP and
DBP. After bio-signal processing on the BP signals, we obtain the input data from the oscillometric
waveform (OMW) signals and envelopes. We then perform the pre-processing as shown in Figure 1.
Next, we generate the artificial features from the original features and evaluate the normality of
the distribution of all the features. We then build the deep learning model via the two training
processes and perform pre-training and fine-tuning using a back-propagation algorithm [8,10]. In the
second procedure, we use the unseen data set to evaluate the proposed methodology. Using the
deep learning regression model, we estimate the target BP values (SBP and DBP) for the individual
subjects. Subsequently, to determine the CLs of the BPs, we generate artificial BPs using target BP
values generated using the parametric bootstrap scheme. Finally, we fully verify the normality of the
artificial BPs for individual subjects.

Cuff signal,

OMW signal and envelope
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Training DB

OMW signals

OMW signals

OMW signals

OMW signals
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Figure 1. Flow chart of the proposed technique.

In the next Section 2, we explain the experimental data and BP measurement procedures.
In Section 3, we briefly describe the oscillometric BP estimation using the deep learning regression
model. We describe the statistical analysis of the BP estimation and verify the normality of BP values
based on oscillometric measurements in Section 4. In Section 5, we present the results and conclusions.

2. Data Set

This research has been passed by a research ethics committee and all test volunteers agreed
before the BP measurement. The experimental BP data were originally recorded from 85 healthy
people with free from cardiovascular disease, age from 12 to 80, 48 man and 37 women as shown
in Table 1. We obtained five sets of oscillometric BP measurements from each volunteer using
a wrist-mounted blood pressure monitor with the ANSI/AAMI standard protocol [6,11]. We averaged
the readings made by two independent specialists (nurses) to yield the SBP and the DBP target
value [1]. This procedure was repeated four more times to record five measurements. There was
a one-minute break between each measurement. Each volunteer sat comfortably in a chair during
BP measurements, which wound the BP cuff around the volunteer’s left wrist and could be raised to
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a heart level. The reference device, auscultatory BP cuff, was wound around the upper left arm to
match the heart level. The upper left cuff was bloated around the arm so as to occlude the brachial
artery. When the upper cuff was deflated, the blood flow produced Korotkoff (K) signals that could be
heard with a stethoscope placed beside the upper left cuff. The first K signal (K1) that was measured
in mmHg by a manometer of the upper left cuff, was used to predict SBP, while the fifth signal
(K5) was utilized to predict DBP [11]. It was not possible to measure the upper left arm and wrist
BP measurements at the same time due to the difficulty of occlusion of brachial arteries through
upper left arm sphygmomanometers. Thus, nearly 1.5 (min.) after each signal was acqured by the
device of the wrist measurement, two medical staffs concurrently measured SBP and DBP utilizing
a sphygmomanometer.

Table 1. The statistical information about eighty five volunteers.

Statistical Information Value

Age (Male) 12 to 80
Age (Female) 17 to 65

Arm size 25 (cm) to 42 (cm)
Wrist size 13.5 (cm) to 23 (cm)

Deflation rate 3.0 (mmHg/s)
Male 48 of 85 (56.5%)

Female 37 of 85 (43.5%)

In our procedure, we sequentially separated the BP data of the voluntary workers into a learning
set (300 measurements obtained from 60 volunteers with five data sets) and validation set (125 data
acquired from 25 volunteers with five data sets). Then, we repeated this procedure to ensure
that individual volunteers were included only once in the validation procedure. Five BP data in
an individual volunteer constitute only a small number of input data in the learning procedure.
Thus, we also utilized the artificial data generated from the real data. We used the unseen data
to evaluate our methodology. As mentioned above, we obtained our data from the oscillometric
waveforms, which we utilized to create artificial data based on the parameter bootstrap technique [12].

3. Deep Learning-Based Regression Estimator

3.1. Features Obtained from Oscillometric Signals

We extract informative features from the oscillometric waveform signals [4] and build envelopes
after processing the signals of the oscillometric BP measurements for estimating the reference BP
values. We then utilize these estimates as the reference BPs in the proposed deep learning algorithm.
More details regarding these features can be found in [4] for the interested readers.

3.2. Artificial Data Obtained Using Bootstrap

Since we have only five BP measurements for individual subjects, we create artificial input data
utilizing the bootstrap technique as in [1,12], which is a technique for improving the exactness of
estimates using a limited data set for situations in which traditional approaches are ineffective for use in
enhancing the exactness [1,12]. Here, we assume X = [x1, ..., xN ] to be a random data of the distribution
T with unknown values [θ, σ]. We then approximate T by T̂(θ̂, σ̂|X), where we define the average

and standard deviation by E(θ|X) ' θ̂ = x̄ = 1
N ∑N

n=1 xi and E(σ|X) ' σ̂ =
√
[ 1

N−1 ∑N
n=1(xn − x̄)2],

respectively, where T̂ ' N (θ̂, σ̂) is approximated by a Gaussian distribution, that is known as the
parametric bootstrap technique [12]. We utilize this parametric way to create the artificial features
Ξ̂∗ = [θ∗1 , θ∗2 , ..., θ∗B], which we acquire from the real input data X.
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3.3. KS Analysis for Data

To use the artificial feature distribution with confidence, we fully evaluate the normality of
each feature. First, we conduct the KS test to verify the normality of each artificial data distribution.
Thus, we suppose that T∗ is a distribution of an artificial input data [θ∗1 , θ∗2 , ..., θ∗N ], where N is the
size of replication. We present the probability of measuring the equality between the distribution of
artificial input data and hypothesis [11]. Based on the test results, we clearly confirm the distribution of
the artificial feature to be a cumulative distribution function (CDF) as shown in Figure 2, which shows
the plots of the distribution of artificial features that fit the normal distribution. As the size of N
replication increases, the distribution more closely adheres to a normal distribution [1]. If the results
of the every artificial input data in KS test set to 0, as represented in Table 2, we can not reject the
null hypothesis at the α (=0.05) significance level. Moreover, we note that all p values of the KS test
are greater than the α (=0.05) significance level. In addition, if the KS test values ks are greater than
the critical values cv, the null hypothesis will be rejected. Thus, we accept the null hypothesis that
distributions of the artificial features follow Gaussian distributions [13].
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Figure 2. The cumulative distribution function (CDF) of artificial input data using the bootstrap
technique with replication size (N = 100), where artificial input data are examples acquired from
a volunteer with 5 samples [11,14].
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Table 2. The hypothesis h values are represented from the artificial feature using the bootstrap approach
with the number of replications (N = 100), where p is the p-value, ks denotes the statistical value of the
Kolmogorov-Smirnov test, and cv is the threshold value. Other features show similar results.

Feature/Test Values h p ks cv

MAP 0 0.900 0.056 0.134
AR 0 0.904 0.055 0.134
AE 0 0.885 0.057 0.134
EL 0 0.716 0.068 0.134

MA 0 0.599 0.075 0.134
σ1 0 0.996 0.040 0.134
σ2 0 0.949 0.051 0.134

MAPL 0 0.969 0.048 0.134

We also validate the consistency and convergence of the artificial features obtained by bootstrap
method [12]. Thus, our artificial features should fit well with real features using the bootstrap
convergence for the sample mean based on the theorem [15] as

Theorem 1. If E(x2) < ∞, then

‖ T∗{
√

n(θ̂∗ − θ̂) ≤ x} −T{
√

n(θ̂ − θ) ≤ x} ‖∞−→ 0 (1)

where T∗ represents the conditional distribution based on the bootstrap technique using the real feature X and
‖ · ‖∞ is supx∈R | · |.

Therefore, it can be confirm that the distribution of
√

n(θ̂∗ − θ̂) is close to
√

n(θ̂ − θ) [15].

β(θ) = E
(

θ̂(X)− θ)
)

(2)

where β is a bias and θ is the real feature. If the bias is close to zero, the estimate is considered to be
almostly unbiased. Thus, we calculate the bias and standard error of the artificial feature as follows:

β(θ̂∗(·)) = 1
N

N

∑
b=1

θ̂∗b −E(θ|X) (3)

=E(θ|X∗)−E(θ|X)
=θ̂∗ −E(θ|X)
∼=E
(

θ̂∗(X∗)− θ̂(X)
)

where β(θ̂∗(·)) is the prediction error (i.e., bias).

Ŝ∗e =

√√√√( 1
N − 1

N

∑
b=1

(θ̂∗ − θ̂∗(·))2

)
(4)

where Ŝ∗e represents the standard error using the parametric bootstrap and θ̂∗(·) is N−1 ∑N
b=1 θ̂∗b .

We find that the bias of the artificial features are very small in the exemplary sample and that the
standard error Ŝe

∗ acquired from the bootstrap technique more closely approximates θ̂ than Ŝe = σ̂,
thus the bootstrap technique can be utilized as a good producer for increasing the number of samples
for the artificial features as shown in Table 3. Therefore, The artificial features are found to be very
close to the real features. We also find that the CLs of the artificial features include all artificial and real
features as shown in Table 3. The remaining features represent very similar results as shown in Table 3.
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Table 3. An exemplary result (second volunteer) representing an validation between the normalized
artificial features and normalized original features for consistency and convergence [12].

Features θ̂ θ̂∗ CL∗
L CL∗

U β(θ̂∗(·)) Ŝe Ŝe
∗

TSBP 95.4 (3.4) 95.5(1.6) 92.3 98.9 0.1 3.36 1.59
TDBP 64.8 (3.6) 64.7(1.7) 61.3 68.6 −0.1 3.63 1.70
MAP 0.3703 (0.07) 0.3707(0.03) 0.031 0.045 0.0004 0.07 0.03
AR 0.4960 (0.05) 0.4930 (0.03) 0.440 0.547 −0.003 0.047 0.025
AE 0.0670 (0.007) 0.0680 (0.003) 0.061 0.074 0.001 0.008 0.003
EL 0.0480 (0.023) 0.0478 (0.010) 0.029 0.068 −0.0002 0.023 0.01

3.4. Deep Learning Based Regression

We can see that the deep learning estimator is essentially based on the distributed representation,
which implies that we can describe the obtained data by the interactions of various components
at different levels [9]. We organize our deep learning estimator in two training procedures,
with a pre-learning and tuning with respect to the target BPs. The pre-learning phase consists
of deep learning, which calculate the highest layer to the lowest layer. The deep learning is
a probability generation model that consists of several hidden layers. The top two layers consist
of non-directional connections, whereas the hidden layers compose a top-down acyclic structure,
where the units in the lower layer represents the input vectors, which are subsequently connected
to two layers known as the restricted Boltzmann machine (RBM) [8]. The RBM is a basic component
of the deep learning that contains several hidden layers. Our model of deep learning is given as
P(X∗, s1, s2, ..., sl) = P(X∗|s1)P(s1|s2) · · · P(sl−2|sl−1)P(sl−1, sl), where the probabilities of the
condition layers P(si|si+1), si represent the hidden units at layer i, and X∗ denotes the re-sampled
input data. We can define a probability as follow:

P(X∗, s) =
1
Q

exp−s′WX∗−cTX∗−bTs (5)

where Q denotes the partition function, c denotes the bias of the input data, b is the bias of the hidden
units, and W is the weight values. Thus, we can define the conditional probability of a layer, given the

other by P(si|si+1) = sigm
(
−c − ∑ni+1

k=1 Wsi+1
k

)
, where sigm(x) is 1/(1 + exp(−x)), c = [ci

j] and

denotes the bias for unit j of layer i, and W = [Wi
kj] is the weight matrix for layer i. To connect

an input layer with a hidden layer, we use the Gaussian-Bernoulli RBM (GBRBM) [8], because we
assume the artificial input data to follow an asymptotic normal distribution. Then, we stack multiple
Bernoulli-Bernoulli RBMs (BBRBMs) behind the first GBRBM [8]. Next, we train the second BBRBM
by using the hidden layer of the first GBRBM [8]. In the learning procedure, we use pre-learning to
initialize weights and biases and use them like an efficient starting point [9] to fine-tune by stochastic
gradient descient. We use the minimum mean squared error function to estimate the cost function [16]
as follows:

Ω(W, c) =
1
B

B

∑
n=1

D

∑
d=1

(
Ŷ∗dn (W, c)− Yd

n

)2

(6)

where Ω is a loss function; Ŷ∗dn (W, c) and Yd
n denote the dth hypothesis and target BP data at the

sample index n, respectively; D and B represent the size of data and the size of batch, respectively;
and (Wi, ci) is the weight and bias values learned at the ith layer. Then, we can iteratively update the
estimated weights and bias, as follows:(

Wi
n+1, ci

n+1

)
= −ε

∂Ω

∂
(
Wi

n, ci
n
) + η

(
Wi

n, bi
n
)
, 1 ≤ i ≤ H + 1 (7)

where ε is a learning rate, η denotes a momentum value, H is the size of hidden layers, and H + 1 is
the output layer.
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4. Statistical Analysis for BP Estimation

4.1. CL Estimation

Our goal in estimating the CLs is to utilize the bootstrap algorithm to identify the uncertainty
(physiological variability) and to provide the CLs of five BP estimations obtained from the deep
learning regression model for individual subjects. First, we describe the bootstrap principles of the
nonparametric and parametric approaches. The basic idea is to generate many artificial BP estimates by
resampling real BP estimates, X = [x1, ..., xn], utilizing n independent measurements from an unknown
probability distribution T to generate a CL for µ̂(X). In addition, we assume X to be a random data
of the distribution T with unknown parameter [µ, σ]. As such, we sample the artificial sample X∗

from T̂(µ̂, σ̂|X) using the Monte-Carlo approach, whereby [µ̂, σ̂] is generally the maximum likelihood
estimate from X = [x1, ..., xn]. Therefore, when N → ∞, we can approximate a Gaussian distribution
as given by F̂(µ̂∗, σ̂∗|X∗) ∼= N (µ, σ).

In our approach, we an also obtain the CLs using the bootstrap technique, which was estimated
utilizing the BP target values in the deep learning technique. First, the estimated BP (Y∗) values is as
given in line 1 of the Algorithm 1. We then acquire two matrices as given by the following:

MS∗(i | ŶS∗
i ) =

[
[sj

i,b]
T , ..., [sj

i,b]
T] (8)

MD∗(i | ŶD∗
i ) =

[
[dj

i,b]
T , ..., [dj

i,b]
T] (9)

where Equations (8) and (9) obtain using the lines 4 and 5 of below algorithm, here, S and D indicate
SBP and DBP, respectively, and ∗ denotes the resampled data from the bootstrap technique. We then
vertically calculate each column, as lines 7 and 8 of the algorithm, to acquire the average of each
column. We then perform ascending sorts as shown in lines 10 and 11. The sorted values are
given as Ξ̂S∗ = [θ̂S∗

1 , θ̂S∗
2 , · · ·, θ̂S∗

N ], supposing θ̂S∗
α is the 100α th percentile of N bootstrap replications

[θ̂S∗
1 , θ̂S∗

2 , · · ·, θ̂S∗
N ]. We obtain the percentile interval θ̂S∗

lower, θ̂S∗
upper of the 1− 2 · α, from this bootstrap

technique, as follows:
[θ̂S∗

lower, θ̂S∗
upper] = [θ̂S∗

α , θ̂S∗
1−α]. (10)

Algorithm 1: CL using bootstrap based on deep learning.

Procedure CL (Ŷ∗)

1. For i← 1, B ŶS
i = {ŝ1, ..., ŝn} and ŶD

i = {d̂1, ..., d̂n}
2. µ̂S

i =
1
n ∑n

j=1 ŝj and µ̂D
i = 1

n ∑n
j=1 d̂j

3. E(µ̂S
i, σ̂S

i | ŶS
i) and E(µ̂D

i , σ̂D
i | ŶD

i )

4. MS∗(i | ŶS
i) = µ̂S

i + σ̂S
i × RANDN(n, N)

5. MD∗(i | ŶD
i ) = µ̂D

i + σ̂D
i × RANDN(n, N)

6. For b← 1, N do

7. θ̂S∗(i, b | ŶS
i) = 1

n ∑n
j=1 sj

i,b

8. θ̂D∗(i, b | ŶD
i ) = 1

n ∑n
j=1 dj

i,b

9. End For

10. Ξ̂S∗
i = SORT

[
θ̂S∗(i, b | ŶS

i)
]

11. Ξ̂D∗
i = SORT

[
θ̂D∗(i, b | ŶD

i )
]

12. End For

End Procedure
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Where B is the number of volunteers, and n and N denote the number of measurements and
replications, respectively, for individual subjects. Due to the physiological characteristics of individual
subjects and the cost of the experiment, it is difficult to obtain many BP measurements. Therefore,
we estimate CLs utlizing the bootstrap method based on the deep learning algorithm.

4.2. Computing and Testing for Kurtosis and Skewness

To verify the normality of the artificial BP measurements for individual volunteers, we conduct
kurtosis and skewness tests [17], and determine whether the distribution of the artificial BP
measurements that resample a normal curve is an approximately Gaussian distribution. We compute
the artificial sample mean and variance as follows: µ̂∗ = 1

N ∑N
b=1 θ̂S∗

b and σ̂∗2 = var(Ξ̂S∗).
Ξ̂S∗ = [θ̂S∗

1 , θ̂S∗
2 , · · ·, θ̂S∗

N ]. We use Equations (11) and (12) to estimate the kurtosis and the standard error
of the kurtosis.

kurt(Ξ̂S∗) =

[
E(Ξ̂4

S∗)− 4µ̂∗E(Ξ̂3
S∗) + 6µ̂∗2σ̂∗2 + 3µ̂∗4

σ̂∗4

]
(11)

sekurt(Ξ̂S∗)
=

(
24n(n− 1)2

(n− 2)(n− 3)(n + 5)(n + 3)

) 1
2

(12)

We use Equations (13) and (14) to estimate the skewness and the standard error of the skewness
as follows:

skew(Ξ̂S∗) =

[
E(Ξ̂3

S∗)− 3µ̂∗E(Ξ̂2
S∗) + 2µ̂∗3

σ̂∗3

]
(13)

seskew(Ξ̂S∗)
=

(
6n(n− 1)

(n− 2)(n + 1)(n + 3)

) 1
2

(14)

Therefore, we evaluate the normality based on the z-scores for kurtosis and skewness, as given by
the following, respectively:

zkurt =
kurt(Ξ̂S∗)− 0

sekurt(Ξ̂S∗)
(15)

zskew =
skew(Ξ̂S∗)− 0

seskew(Ξ̂S∗)
(16)

where we set α to 0.05, and then z-scores to verify that we have an approximately Gaussian distribution.
Based on this outcome, we consider further joint testing for kurtosis and skewness. With normality,
the null hypotheses for these situations are expressed as follows:

H0 : kurt(Ξ̂S∗) = 3 and skew(Ξ̂S∗) = 0. (17)

4.3. Normality Test Using KS

The KS one-sample test is a technique for evaluating the correspondence between two sets of
values [13]. The null hypothesis states that the artificial BP measurements have approximately Gaussian
distributions. The alternative hypothesis is that the distributions of the artificial BP measurement are
not approximately normal. We set the frequency level at α (=0.05). To conduct the KS test, we begin
with a decision about the relative empirical distribution F̂(Ξ̂S∗), based on the observed artificial
measurements. This test can be used to find a two-tailed probability p to determine if the artificial BP
measurements are statistically similar or different by utilizing the point at which these two distributions
exhibit the greatest divergence [17]. The p value less than the significant level indicates the distribution
of artificial BP data that is not Gaussian. The p value greater than the significant level indicates the
distribution of artificial BP data that is sufficiently Gaussian.
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The KS test is based on the empirical distribution function [13] and uses a cumulative
distribution function (CDF) T(x) = P(X1 ≤ x) (CDF) of the true underlying distribution of the
data. Here, to simplify the following equations, we assumed that x ≡ θ̂S∗, X1 ≡ θ̂S∗

1 and X ≡ Ξ̂S∗.
We can define an empirical CDF in the following:

T∗N(x) = PN(X ≤ x) = N−1
N

∑
b=1

I[−∞,x](Xb ≤ x) (18)

where I[−∞,x](Xb ≤ x) represents an indicator equal to 1 if (Xb ≤ x) and equality to 0 otherwise,
which determines the sample points ratio below level x. The law of large numbers is described such as

N−1
N

∑
b=1

I[−∞,x](Xb ≤ x) −→ E
[
I[−∞,x](Xb ≤ x)

]
= P(X ≤ x) = T(x) (19)

The ratio of the BP data in the set [−∞, x] is close to the probability of this set.

Theorem 2. If T(x) continues, the distribution of the least upper bound is not rely on the unknown distribution
P in the BP sample:

‖ T∗N(x)−T(x) ‖∞−→ 0 (20)

Therefore, this approximation remains uniformly across all x ∈ R, where ‖ · ‖∞ is supx∈R | · |.
The result of Equation (16) demonstrates that the T∗N converges on the distribution of T in that the
sup-norm of the difference has a probability of zero.

4.4. Independence Test Based on Rank

Next, we assume the N bivariate observations Ξ̂S∗ = [θ̂S∗
1 , θ̂S∗

2 , · · ·, θ̂S∗
N ] and Ξ̂D∗ = [θ̂D∗

1 , θ̂D∗
2 , · · ·, θ̂D∗

N ]

for each individual subject (i) to be random resamples from the BP estimation results generated by
the proposed approach, as shown in the algorithm. That is, the member of the [Ξ̂S∗ , Ξ̂D∗ ] set were
mutually independent and identically distributed in the bivariate population. We suppose that
T

Ξ̂S∗ ,Ξ̂D∗ are joint distribution functions for the bivariate population of the [Ξ̂S∗ , Ξ̂D∗ ] set. Unlike other
approaches, the Spearman rank-order correlation method deals with the relationship between two
populations [13]. That is, this approach addresses how one population changes with respect to another.
We obtain the z-value of a correlation coefficient (CORR) r and the CORR r for a large sample using
the Spearman rank-order test [13]. As shown below, the null hypothesis indicates that there is no
correlation (independence) between the artificial SBP and DBP measurements.

H0 :
[
T

Ξ̂S∗ ,Ξ̂D∗ (ζ̂, η̂) ≡ T
Ξ̂S∗ (ζ̂)TΞ̂D∗ (η̂), ∀(ζ̂, η̂)

]
. (21)

The level is the frequency set at α(= 0.05), so there is a 95% confidence that the statistical difference
of any observed BP measurement will be real and not due to chance. The asymptotic approximation
utilizes r’s normality. When the null hypothesis is true, we obtain the expected value and variance
of r. Thus, the expected value and variance of r are given by E(r) = 0 and var(r) = 1/N− 1 under
H0, respectively.

5. Experimental Results and Comparison

We evaluated a protocol-based on BP measurement algorithm to ensure that the mean error (ME)
is less than ±5 mmHg and that the error of standard deviation (SDE) is less than 8 mmHg [6]. For all
BP measurements according to the British hypertension protocol (BHS) [18], we identified a % of the
mean absolute error for three groups: 5 mmHg or less, 10 mmHg or less, and 15 mmHg or less. If 60%
of the error measurements of BP algorithm is within 5 mmHg, 85% are within 10 mmHg, and 95% are
within 15 mmHg, the algorithm can be classified as grade A.
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5.1. Statistical Analysis

Based on this configuration in Table 4, the mean errors in SBP and DBP values acquired from the
deep learning method were compared with those acquired from the previous algorithms, as shown
in Table 5. The error of the standard deviation obtained by the deep learning method was found to
be 6.3 mmHg and 5.45 mmHg in the SBP and DBP. These results represent superior performance
compared to previous algorithms. The results of the BHS protocol indicate that the deep learning
method acquired better BP estimates when compared to the results of the previous methods as
presented in Table 6.

Table 4. Parameters, [8,9] of the deep learning algorithm.

Number of the Hidden Unit in Three Layers: [(11, (32), (32), (32), 4)]

Size of input vector X 11
Size of output vector Y 2

Number of sample over each pseudo feature 100
Number of sample over each original feature 5

Number of hidden layers 3
Number of hidden unit on the layers 16 to 256

Number of ensemble 50
Learning rate for weight 0.001

Learning rate for biases of visible units 0.01
Learning rate for biases of hidden units 0.01

Momentum rate 0.9
Activation type sigmoid type function

Maximum epoch in the pre-training 200
Maximum epoch in the fine-tuning 200

Initial weights and biases randomly between (−1, 1)

Table 5. Mean error (ME) and standard deviation of error (SDE) relative to the reference auscultatory
method obtained with the conventional maximum amplitude algorithm (MAA) [1], neural networks
(NN) [4], support vector regression (SVR) [14] and deep neural network’s (DNN) regression model [10],
where the results are the average values for our test data.

mmHg MAA NN SVR DNN

Test SBP DBP SBP DBP SBP DBP SBP DBP

ME 0.07 −0.89 0.25 −0.22 −0.51 0.17 0.36 −0.61
SDE 9.28 7.76 7.48 6.80 7.20 6.18 6.30 5.45

Table 6. Grading of the proposed algorithm based on the BHS standard using the results of MAA, NN,
SVR, and DNN on (5× 85 = 425) measurements.

SBP DBP Standard (SBP/DBP)
Tests Absolute difference (%) Absolute difference (%) BHS

≤5 mmHg ≤10 mmHg ≤15 mmHg ≤5 mmHg ≤10 mmHg ≤15 mmHg Grade

MAA 47.06 85.88 96.47 56.47 88.24 97.65 C/B
NN 53.88 85.65 95.53 66.12 94.12 98.82 B/A
SVR 62.59 86.12 95.53 74.12 93.65 96.94 A/A

DNN 69.18 88.71 97.18 76.24 93.17 98.12 A/A

According to the overall performance evaluation results, we can conclude that the proposed
technique reduces the ME’s variance and increases the performance confidence level. As described
in the introduction, the CLs of SBP and DBP acquired by deep learning method were narrower than
those acquired by the previous methods as shown in Table 7. Although the CLs results obtained by
the proposed method were wider than those obtained by [1], we noted differences of 2.0 mmHg and
1.6 mmHg in the SDEs of the CLs for the SBP and DBP, between the deep learning algorithm and the
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conventional method [1]. Thus, we can argue that the uncertainties of the SDEs were reduced when
using the deep learning estimator.

Table 7. Summary of the CL of the SBP and DBP for nurse measurements, the proposed DNN regression
model and the conventional methods, n (=85) is the number of subjects and SDE is a standard deviation
of error; L and U are the lower and upper limits, respectively.

BP (mmHg) SBP (SDE) DBP (SDE) SBP L (SDE) SBP U (SDE) DBP L (SDE) DBP U (SDE)
95%CI 95%CI

MAAST [1] 13.2 (8.0) 9.4 (5.8) 106.7 (14.3) 120.2 (16.5) 62.4 (10.4) 71.7 (11.0)
MAAGUM [1] 13.9 (7.9) 10.0 (5.4) 106.4 (14.3) 120.5 (16.4) 62.0 (10.4) 72.1 (10.9)
PMAENPB[1] 2.8 (3.3) 1.7 (2.4) 112.4 (13.9) 115.7 (14.1) 66.7 (10.5) 68.2 (9.9)

DNNBoot 5.5 (1.3) 4.2 (0.8) 107.4 (12.7) 113.0 (12.6) 64.5 (8.3) 68.6 (8.4)

To evaluate normality with respect to the individual BP measurements, we statistically analyzed
the kurtosis, skewness, KS, correlation test results with their associated standard deviations (std)
using the artificial BP measurements based on the results of the deep learning algorithm. Kurtosis is
a measure of a population that identifies how flat or peaked it is in terms of a Gaussian distribution.
The kurtosis for a Gaussian distribution is 3. Therefore, a kurtosis value greater than 3 indicates
a heavy-tailed distribution and a kurtosis value of less than 3 indicate a light-tailed distribution.
As shown in Figure 3 and Table 8, the kurtosis results for the SBP and DBP estimations were 2.99
and 3.01, which means that the distributions of the artificial BP measurements were almost normal.
The skewness of a population can be represented as measure of its horizontal symmetry with respect
to a Gaussian distribution. The skewness of a Gaussian distribution is 0 and symmetric data have
a skewness of almost 0. The negative value is skewed to the left and the positive value to the right.
We confirmed that the symmetric distributions of the artificial BP measurements were −0.01 and 0.01,
respectively, for the SBP and DBP estimations, which indicates that they were very close to 0 for the
number of bootstrap replications (N = 1000), as shown Figure 3 and Table 8.

Table 8. Statistical results such as skewness, kurtosis, Kolmogorov-Smirnov (KS), Spearman’s
correlation between the SBP and DBP estimations, where the results are the average values for our
test data.

Tests KS Test Normality Test

α (=0.05) h (std) p (std) ks (std) cv (std) Kurtosis (std) Skewness (std) corr (std)

SBP 0 (0) 0.78 (0.2) 0.02 (0.00) 0.04 (0.00) 2.99 (0.14) −0.01 (0.08) 0.01 (0.03)
DBP 0 (0) 0.79 (0.2) 0.02 (0.01) 0.04 (0.00) 3.01 (0.16) −0.01 (0.07) 0.01 (0.03)



Sensors 2019, 19, 2137 13 of 15

Figure 3. Scatter histograms of BP estimation based on the parametric bootstrap approach with
replication numbers (N = 1000) using the results of the deep learning estimator, where the upper plot
(a) is an example obtained from one subject and the bottom plot (b) is another example acquired from
different subject.

We performed a KS test to verify the each distribution’s normality and showed that these were
very similar to the normal distribution [19]. As the number of N bootstrap replications became large,
the distribution of the artificial BP measurement was close to a Gaussian distribution. We confirmed
the distribution of the artificial BP measurement to be a Gaussian distribution based on the test results,
which represent the cumulative distribution function (CDF) of the artificial BP measurements versus
the theoretical CDF of a Gaussian distribution, as shown in Figure 4.

Moreover, we confirmed that the hypothesis results h for the mean artificial BP measurements
were 0 for the SBP and DBP estimations. These results indicate that we accepted the null hypothesis at
the 0.05 significance level. In addition, we could not reject the null hypothesis because the ks (=0.02)
values were less than the critical values cv (=0.04). Also, our p (=0.78) and (=0.79) KS test values
were greater than the α (=0.05) significance level for SBP and DBP, as shown in Table 8. Therefore,
we accepted the normality of the distribution of the artificial BP measurements for individual subjects.
In addition, we obtained CORR rs (=0.01) and rd (=0.01) values based on the asymptotic normality
between the artificial SBP and DBP measurements and acquired variances of 0.0009 and 0.0009 for rs

and rd using the independence based on rank as described the last column in Table 7, respectively.
Therefore, these results are clearly close to the expected values and variances. Thus, we did not reject
H0 (independence) at the α = 0.05 level.
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Figure 4. Cumulative distribution functions (CDFs) of selected artificial BP estimations obtained from
the parametric bootstrap approach with replication numbers (N = 100) based on the results of the deep
learning regression model. Note that the upper plot (a,b) are the examples obtained from one subject
with 5 BP estimations and the bottom plot (c,d) are the examples acquired from another subject with
5 BP estimations.

6. Conclusions

The main contribution of this paper was our verification of the normality of the BP data,
using only five samples, using various statistical methodologies for individual subjects. We clearly
determined the independence of the artificial SBP and DBP estimations using the deep learning model
based on the distribution-free test of rank. The proposed methodology also provides accurate BP
estimations and reduces uncertainties such as the CLs and SDEs, as determined by the deep learning
regression estimator. In the near future, we will pursue additional non-normally testing using a new
subject populations.
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