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Abstract: Drone base stations (DBSs) have received significant research interest in recent years.
They provide a flexible and cost-effective solution to improve the coverage, connectivity, quality of
service (QoS), and energy efficiency of large-area Internet of Things (IoT) networks. However, as DBSs
are costly and power-limited devices, they require an efficient scheme for their deployment in practical
networks. This work proposes a realistic mathematical model for the joint optimization problem of
DBS placement and IoT users’ assignment in a massive IoT network scenario. The optimization goal is
to maximize the connectivity of IoT users by utilizing the minimum number of DBS, while satisfying
practical network constraints. Such an optimization problem is NP-hard, and the optimal solution
has a complexity exponential to the number of DBSs and IoT users in the network. Furthermore,
this work also proposes a linearization scheme and a low-complexity heuristic to solve the problem in
polynomial time. The simulations are performed for a number of network scenarios, and demonstrate
that the proposed heuristic is numerically accurate and performs close to the optimal solution.

Keywords: resource management; Unmanned aerial vehicles (UAVs); Aerial base stations; Internet
of Things (IoTs)

1. Introduction

The use of drone base stations (DBSs) has been realized as a promising addition to the conventional
wireless networks. DBSs are adopted to achieve multiple objectives. On one hand, they help to
increase the coverage of existing terrestrial networks, such as broadband and cellular networks [1].
On the other hand, they serve as assisting relays to improve the connectivity of ground wireless
devices [2]. In contrast to the terrestrial BSs which are fixed, DBSs have the ability to fly and
deliver network services to any hard-to-reach areas. In addition to the horizontal manoeuvring,
they have the ability to adapt their altitude. This enables them to establish LOS links to ground
users [3]. Moreover, they improve the capacity of networks by serving as mobile hotspots. Along
with the open-air communication, small drones have also proven to be an effective solution for indoor
communications [4].

Internet of Things (IoT) is one exciting application of DBSs. IoT refers to a set of small, uniquely
identifiable devices connected to the Internet. Practical IoT networks are composed of a massive
number of heterogenous devices, which include smart phones, sensors, electronic gadgets and
wearables, network connectivity modules implanted on the vehicles, animals, household electrical
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appliances, medical equipment, and many more. These devices perform tasks in a diverse range
of applications, such as E-health [5], personal healthcare devices [6], radio sensor networks [7],
the intelligent transport system (ITS) [8], smart cities [9], and industrial IoT [10]. The massive nature of
IoT poses some major challenges, including spectrum scarcity, reliability, energy efficiency, high-speed
uplinks, and ultra-low latency. In particular, the IoT devices are highly power constrained and lack
the ability to communicate at longer distances. This becomes a critical issue when these devices are
deployed in areas with poor or no coverage provided by existing terrestrial wireless networks.

In such an IoT scenario, the use of DBSs can be a promising solution. The DBSs can serve the
role of moving data aggregators—in other words, they can fly close to IoT devices, collect their data,
and transmit it to other devices which are out-of-range of the transmitting IoT devices. In addition,
due to their aerial nature, DBSs can be deployed at high altitudes. This helps to mitigate the shadowing
effects and increases the probability of LOS communication between the DBSs and ground IoT devices.
Consequently, the battery-limited IoT devices will be able to communicate with much lower transmit
power. In addition, DBSs also have the ability to change their location based on the activation pattern of
IoT devices. This helps them to support an anticipated number of devices in massive IoT deployment.

1.1. Literature Review

Despite the elegant features, DBSs themselves are power-constrained machines. Using drones
for IoT communications can be an expensive solution if they are not optimally positioned. The total
cost of DBS deployment constitutes the flight time, the connection establishment time, disconnection
time, and the cost of drones as a device. Therefore, it is of paramount importance to come up with an
optimal drone placement to serve the maximum number of IoT devices. In the literature, the drone
placement problem for different objectives is considered in a number of published works. In [11],
the authors consider a 2D placement problem with an objective to maximize the network coverage
while minimizing the transmit power. A heuristic is proposed to solve the optimization problem.
The formulated 2D placement problem is further modified for efficient drones deployment in a 3D
scenario. In [12], a backhaul-aware 3D drone placement is considered for a heterogeneous network.
The placement algorithm maximizes the sum-rate and number of served users, considering the limiting
factors, the peak data rate of wireless backhaul, and the bandwidth of DBS. In most of the research,
the free-space path loss model has been considered for DBS deployment; however, in real scenarios,
the IoT devices are scattered everywhere, that is, at indoor or outdoor locations. In [13], the wireless
coverage for indoor users inside the high-rise buildings is considered. The presented model assumes a
single drone. A hybrid path-loss model is proposed, which takes into account the path losses due to
free-space, building penetration, and indoor losses. Particle swarm optimization (PSO) is generally
used to minimize the total transmit power required to cover the indoor users. In [14], a solution was
proposed to maximize the revenue of the cellular network using 3D placement of DBSs. The problem
was formulated as a mixed-integer non-linear problem (MINLP) and solved using a heuristic. In [15],
3D deployment of DBS was considered to study energy-efficient communication in mobile ad hoc
networks. The work proposes an optimal DBS placement that minimizes the UAV-recall-frequency
(UAV-RF), while taking into account the on-board circuit power. The authors also studied the effect of
scattering on the optimal hovering altitude of DBS. Furthermore, the work concludes that minimum
UAV-RF is achieved when the transmit power is equal to the power consumed by the on-board circuit.
Network life can be prolonged by limiting this on-board circuit power. In [16], a mathematical model
is proposed for the optimal number of drones, along with their efficient placement in wireless cellular
networks. The problem is solved using a PSO algorithm. In [17], a heuristic solution was proposed
that minimizes the number of DBSs to provide wireless coverage to a group of distributed TBSs. In [18],
the placement of DBSs was studied to maximize the coverage for users with different QoS requirements.
In [19], a method was proposed for joint radio resource allocation, 3D placement, and user association of
DBSs for IoT networks. As discussed earlier, drones can be used for the assistance of already deployed
networks. In [20], the resource allocation problem for drone-assisted networks was investigated,
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where the drones were utilized to harvest energy to the D2D pairs. Similarly, in [1], the drones were
adopted to assist the TBSs for densification. In [21], the authors proposed a methodology for UAV
trajectory design and radio resource assignment for a vehicle-to-anything scenario. The work proposes
a joint scheduling strategy where a vehicle can be served by both the terrestrial BS (TBS) or DBS,
and the one that provides maximum throughput is selected. The TBSs are selected on the basis of
round robin scheduling, whereas the DBS are selected using both round robin and proportionality
fair scheduling. A heuristic solution is proposed for UAV trajectory planning. DBSs can be used in
a distributed and multi-layered architecture, such as the micro-cell/picocell, macrocell/microcell,
or just macrocell [22]. The DBSs can also function in cooperation, using swarm formation. But as the
DBSs have limited computational, storage, and communication capacities, they are unable to perform
computationally intensive tasks. In order to extend the capacity of DBSs swarms, an DBSs-edge-cloud
computational model [23] was adopted in order to support resource-intensive application, such as big
data, artificial intelligence, and computer vision. An on-demand UAV placement was proposed in [24],
where the users were arbitrarily distributed. The problem was modelled as a Knapsack-like problem,
where a density-aware placement algorithm was proposed to maximize the user coverage subject to
the constraint of the minimum required data rates per user.

In [25], a joint optimization problem was solved for the placement and power allocation (PA) to
improve the performance of the NOMA-UAV network. The objective was to maximize the sum rate of
users. Along with IoT, the body sensor network (BSN) is also among one of the major applications of
5G networks. Both in IoT and BSN, the nodes are very quickly drained due to a number of performed
operations, including registration, removal, and routing. Therefore, an energy-efficient solution is
required to maintain a high transmission capacity. In [26], an efficient approach for device discovery
in 5G-based IoT and BSNs using multiple UAVs was proposed, where significant achieved gains
in energy consumption were claimed. An integrative IoT platform is presented in [27], where the
drones are utilized to serve different IoT devices. [2] studies the role of drones as relays, both for
amplify-and-forward (AF) and decode-and-forward (DF) protocols in the cooperative communication.

To the best of our knowledge, in most existing studies, one aspect of resource allocation is
addressed, in that there are works which focus on DBS assignment alone, or works in which user
association is optimized given a fixed deployment of DBSs. In contrast, this work proposes a
mathematical model that jointly optimizes the DBS placement and resource allocation problem.

1.2. Contribution

The main contributions to this work are as follows.

• Firstly, a mathematical model is presented that jointly optimizes the resources used by IoT devices.
The objective of the optimization problem is to minimize the ratio of the number of DBSs to the
connected IoT devices. The proposed model is developed by adopting a realistic air-to-ground
(A2G) path loss model;

• The formulation of the proposed model considers the practical network constraints, which
include: (a) the DBS deployment budget, (b) the network’s QoS requirements, and (c) the DBS
battery-life prolongevity;

• A low-complexity heuristic is proposed to solve the optimization problem;
• The simulation results are carried out for a number of network scenarios and validate the

accuracy of the proposed solution. The results’ comparisons show that the proposed algorithm’s
performance is close to that of the optimal solution.

2. System Model and Problem Formulation

Figure 1 illustrates an example of a massive IoT network spread over a metropolitan city.
In practical situations, hundreds of heterogenous IoT devices are deployed over large geographical
areas. These devices perform tasks in a wide variety of applications, including smart homes,
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remote asset control in industries, connected vehicles, wearable gadgets, smart shops, smart airports,
tele-medicine, environmental monitoring, and disaster management. Such massive IoT deployment
results in enormous growth of internet traffic, and requires existing cellular networks to undergo major
architectural changes.

IoT 

devices

RRH 

(BS)

Potential 

Drone-BS 

placement 

locations

Figure 1. Proposed system model of an Internet of Things (IoT) network spread. It consists of N
heterogeneous IoT (mobile and stationary) users spread over a metropolitan area with M potential
locations for DBS placement.

In a general IoT network, the IoT user equipments (UEs) are able to communicate with each other
through wireless resources provided by TBSs, equipped with remote radio heads (RRHs). The RRHs
are then connected to each other through high-speed communication links. Due to their mobility,
it may be that a massive number of IoT devices are active in a given geographical area for a limited
time. In such a situation, the DBSs come handy and provide a cost-effective solution to complement the
TBSs and improve the connectivity and energy efficiency of IoT networks. DBSs can also help to restore
communications in areas where terrestrial infrastructure has been collapsed after a disastrous situation.

Consider an IoT network which serves a total of N IoT devices (In the following text, the word IoT
devices is used interchangeably with IoT users or simply users) in a given geographical area. The area
is divided into M potential candidate locations where DBS can be deployed. Due to their mobility,
DBSs are able to move from one location to another in order to fulfil the connectivity requirements.
Let’s say the triplet (x̄i, ȳi, hi) denotes the location of DBS i in a 3D system, where x̄i, ȳi are its position
coordinates in a X-Y coordinate system, and hi is its height. This work assumes a constant height h for
all DBSs deployed in the network. A DBS can potentially occupy any discrete location between (0, 0, h)
and (x̄max, ȳmax, h).

The DBS placement algorithm is aimed at determining the optimal number and position of DBSs
which maximizes the connectivity for a given set of IoT users. An air-to-ground (A2G) path loss model
is assumed in this work, and discussed as follows.

2.1. Air-to-Ground (A2G) Path Loss Model

As shown in Figure 1, the exact locations of the IoT devices and the approximate locations of
the obstacles, such as high-rise buildings, are known, along with the environment (e.g., urban, rural,
suburban). However, due to a lack of complete information, the probabilistic approach is adopted.



Sensors 2019, 19, 2157 5 of 16

The probability of line-of-sight (LoS) and non-line-of-sight (NLOS) between DBSs placed at location m
and the IoT device at n are given as [28]:

Pnm
LoS =

1
1 + a exp(−b[θmn − a])

, ∀m, n (1)

Pmn
NLoS = 1− Pmn

LoS, ∀m, n (2)

where a and b are the constants, and their values depend on the carrier frequency fc and type of
environment, such as rural, urban, or dense urban [28]. θmn is the elevation angle between the DBS m
and the IoT device n, and is equal to tan−1 h

rmn
, where h is the altitude of DBS and rmn is the horizontal

distance between DBS m, and the IoT device n is given as:

rmn =
√
(x̄n − x̄m)2 + (ȳn − ȳm)2 + h2, ∀m, n (3)

The expressions for path loss for LOS and NLOS communication are given as LLoS,mn = Y + σLoS

and LNLoS,mn = Y + σNLoS, respectively. Here, Y = 10α
(

4π fcrmn
c

)
[28], where c is the speed of light, α

is the path-loss exponent, and σLoS and σNLoS are average additional losses which occur in addition
to the free-space propagation loss. The values of σLoS and σNLoS depend on the environment. Finally,
the average path loss can be represented as a function of DBS height and coverage circle, as:

L(xm, ym, hm) = Pmn
LoSLmn

LoS + Pmn
NLoSLmn

NLoS, ∀m, n (4)

and the average channel gain can be computed as:

gmn = L(xm, ym, hm)
−1, ∀m, n (5)

Using the channel gain computed above, the signal-to-noise ratio (SINR) for a downlink channel
between a DBS m and IoT user n can be computed as:

SINRmn =
Pmgmn

∑
u∈Iint

Pugun + σ2 (6)

where Pm is the transmit power of DBS m, Iint is the set of interfering DBSs, and σ is the
background noise.

2.2. Variable Definition

The main notations and variables used in this work are listed in Table 1. This work considers an
IoT network composed of N IoT devices and M candidate locations for DBS placement. Let’s say x is a
DBS placement vector of size M, given as:

x = (x1, x2, · · · , xM) (7)

where an entry xi in x is a binary “1” when a DBS is placed at location i, and “0” otherwise. Similarly,
let’s say Y is the user-DBS connectivity matrix of size N×M. An entry ynm of Y is a binary “1” when a
user n is connected to a DBS placed at potential location m, and “0” otherwise.

2.3. System Constraints

The DBS deployment problem modelled in this work considers the following practical constraints.
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2.3.1. Minimum Users Connectivity Constraint

To achieve the QoS requirements of the IoT network, a certain minimum percentage β of total IoT
devices must be served. Mathematically,

N

∑
n=1

M

∑
m=1

ymn ≥ βN (8)

where β ∈ [0, 1].

2.3.2. User Connectivity with Deployed DBS Constraint

According to this constraint, an IoT user must be connected to a potential location where DBS has
actually been deployed. Mathematically,

ymn ≤ xm, ∀n ∈ {1, · · · , N}, m ∈ {1, · · · , M}, (9)

Equation (9) means that if a DBS is placed at a certain location, m (i.e., xm = ‘1’ in x), then a user may or
may not be connected to it (i.e., entries in the m-th row of Y can be “0” or “1”). However, if a DBS is
not placed at location m (i.e., xm = ‘0’), then no user can be connected to this location (i.e., all entries in
row m of Y must be equal to “0”).

2.3.3. Single DBS Connectivity for a User Constraint

A user/device can be connected to one DBS at most. Mathematically, this constraint can be
formulated as:

M

∑
m=1

ymn ≤ 1, ∀n (10)

since rows of Y correspond to the DBSs and its columns correspond to users, ∑M
m=1 ymn indicates the

number of DBSs to which the user n is simultaneously connected. According to (10), this sum must be
less than or equal to “1” for each IoT user in the network.

2.3.4. Maximum and Minimum Capacity of DBS Constraint

Each DBS in the network is a resource-limited device, and is capable of serving a certain maximum
number γmax of users. Mathematically:

N

∑
n=1

ymn ≤ γmaxxm, ∀m ∈ {1, · · · , M} (11)

According to Equation (11), if a DBS is assigned at location m (i.e., xm = ‘1’), then the total number
of users connected to it (i.e., ∑N

n=1 ymn) must be upper-bounded by γmax. Similarly, a DBS must be
connected to a certain minimum number γmin of users to justify its deployment cost. Mathematically:

N

∑
n=1

ymn ≥ γminxm, ∀m ∈ {1, · · · , M} (12)

2.3.5. DBS Deployment Budget Constraint

The DBS deployment incurs a cost, which includes the costs of flight time and connection
establishment. The total deployment cost of all DBSs assigned must not exceed a certain available
budget. Mathematically, this constraint can be modeled as:

M

∑
m=1

cmxm ≤ Cmax (13)
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where Cmax is the maximum available budget for DBS deployment, and cm is the deployment cost of a
single DBS placed at location m.

2.3.6. Maximum User-DBS Distance Constraint

A user can only be connected to a DBS if its distance to the DBS location lies within a certain
maximum value dmax. Mathematically,

ymn · dmn ≤ dmax (14)

where dmn denotes the distance between an IoT device n and the DBS placed at location m.

2.4. An Optimization Model for Drone-BS Deployment for Maximal Coverage

Given the network scenario and practical constraints mentioned above, this work considers the
following mathematical model for DBS placement.

min
xm∈{0,1},
ymn∈{0,1},
∀n,m

No. of DBSs︷ ︸︸ ︷
M

∑
m=1

xm

N

∑
n=1

M

∑
m=1

ymn︸ ︷︷ ︸
No. of connected IoT devices

subject to:

Constraints (8)–(14)

(15)

The optimization problem of (15) is an integer fractional optimization model. The numerator of
the objective function denotes the total number of DBSs deployed, whereas the denominator denotes
the total number of IoT users served by the network. Therefore, the optimization goal is to obtain
maximum network connectivity with the minimum number of DBSs, while satisfying the practical
network constraints.

2.5. Linearization of Optimization Problem

This work linearizes the fractional optimization problem of (15) using the method proposed in [29].

Let us consider two variables t = {∑N
n=1 ∑M

m=1 ymn}−1 and α = max
[
1, min(∑N

n=1 ∑M
m=1 ymn)

−1
]
,

where ymn ∈ {0, 1} and ∑N
n=1 ∑M

m=1 ymn > 0. Therefore, α = max[1, 1] = 1. Now the optimization
problem (15) can be rewritten as:

min
xm∈{0,1},
ymn∈{0,1},

0≤t≤1
∀n,m

α
M

∑
m=1

xmt

subject to:

Constraints (8)–(14)

α
N

∑
n=1

M

∑
m=1

ymnt = 1

(16)

The objective function in (16) can be expanded as,

min α[x1t + x2t + . . . + xMt] (17)
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and constraint α ∑N
n=1 ∑M

m=1 ymnt = 1 in (16) can be expanded as,

min α[y11t + y12t + . . . + y1Nt + y21t + . . . + y2Nt + . . . + yM1t + . . . yMNt] = 1 (18)

Let’s say that z1 = x1t, z2 = x2t, . . . , zM = xMt and w11 = y11t, w12 = y12t, . . . , wMN = yMNt.
As shown in [29], the multiplication of a binary variable a with a continuous variable b, that is, c = ab,
can be represented as linear inequalities, such as:

c = ab⇒


(i) b− c ≤ 1− a

(ii) c ≤ b

(iii) c ≤ a

(iv) c ≥ 0

, (19)

In (17) and (18), there are M and M + N multiplications of the continuous variable t with binary
variables xm and ymn, respectively. By using (19), these multiplications can be converted into linear
inequalities. Therefore, the optimization problem (16) can be restated as:

min
xm ,ymn∈{0,1},

zm ,wmn≥0,
0≤t≤1
∀n,m

α
M

∑
m=1

zm

subject to:

Constraints (8)–(14)

α
N

∑
n=1

M

∑
m=1

wmn = 1

t− zm ≤ 1− xm, ∀m

zm ≤ t, ∀m

zm ≤ xm, ∀m

t− wmn ≤ 1− ymn, ∀m, n

wmn ≤ t, ∀m, n

wmn ≤ ymn, ∀m, n

(20)

3. Proposed Solution

The linear programming optimization problem of (20) is solvable optimally by using a Branch
and Bound (B&B) algorithm. However, the worst case complexity is exponential to the product of the
sizes of the binary variables x and Y. This work proposes a low-complexity greedy heuristic for joint
DBS placement and the user association problem. Algorithm 1 shows the main computation steps of
the proposed solution, whose main symbols and notations are listed in Table 1. The algorithm receives
as inputs, the values of N, M, γmax, γmin, and dmax. For simulation purposes, the network area is
represented as a grid with discrete potential DBS locations, and where the users are evenly distributed.
A matrix d of dimensions N ×M is obtained, whose entry dnm denotes the distance of an IoT user n
from DBS location m. During the initialization phase, the important variables are initialized, which
include the DBS placement vector x, user-DBS association matrix Y, a vector c of size M which denotes
the number of users served by each DBS, and a vector t of size N which denotes the number of DBSs
connected to each user. A binary matrix W of dimensions N ×M is also computed, which shows all
possible connections between users and DBSs. An entry wn,m of W is equal to “1” only if the distance
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between the user n and location m is less than the maximum distance Dmax, and is “0” otherwise.
The execution of the proposed algorithm is divided into five phases, which are discussed below.

Algorithm 1 Heuristic for efficient drone placement

1: Inputs: N, M, γmax, γmin, β, R, dmax

2: Initialization: ∀n ∈ {1, · · · , N}, m ∈
{1, · · · , M}

3: Ynm ← 0, xm ← 0, cm ← 0, tn ← 0

4: Wnm ←

1, if Rnm < dmax

0, otherwise
5: Step I: Allocation to users with single

connection option
6: tn ← ∑N

n=1 Wn,m′ , ∀m′ ∈ {1, · · · , M}
7: for i ∈ {1, · · · , N} do

8: if ti == 1 then

9: k← f ind(Wi,: == 1)
10: Yi,k ← 1, xk ← 1, ck ← ck + 1
11: end if
12: end for
13: Step II: Allocation of users with connections

options to multiple drones
14: for i ∈ {1, · · · , N} do

15: if ti > 1 then

16: f lag← 0
17: k ← f ind(Wi,: == 1), j ← f ind(x ==

1)
18: [I, ˘]← sort(c)
19: for j = 1 : len(I) do

20: aj ←

1, if Ij ∈ k

0, otherwise
21: end for
22: if ∑

len(a)
j=1 aj > 0 then

23: I′ ← f ind(a == 1)
24: for q← 1 : len(I′) do

25: s← I′q
26: if cIs < γmax then

27: Yi,Is ← 1, xIs ← 1, cIs ← cIs + 1
28: f lag← 1
29: break
30: end if
31: end for
32: if f lag == 0 then

33: k← k \ I
34: if k == ∅ then

35: W(i,:) ← 0
36: f lag← 1
37: end if
38: end if
39: end if
40: if f lag == 0 then

41: Yi,k1 ← 1, xk1 ← 1, ck1 ← ck1 + 1

42: end if
43: end if
44: end for
45: Step III: Check for under utilized drones
46: ∇← f ind(((c < γmin) · x) == 1)
47: Y:,∇ ← 0, x∇ ← 0, c∇ ← 0
48: p← ∑N

i=1 Yi,:
49: u′ ← f ind(p == 0)
50: b← round(β · N)
51: t← ∑N

i=1 ∑M
j=1 Yi,j

52: for i← 1 : len(u′) do

53: if t < b then

54: f lag← 0
55: [I, ˘]← sort(c)
56: for j← 1 : M do

57: if f lag == 0 then

58: if c˘j < γmax and Wu′ i ,˘j
== 1 then

59: Yu′ i ,˘j
← 1, x˘j ← 1, c˘j ← c˘j + 1

60: f lag← 1
61: t← ∑N

ii=1 ∑M
jj=1 Yii,jj

62: end if
63: end if
64: end for
65: end if
66: end for
67: Step IV: Connect all unconnected users
68: t← ∑N

i=1 ∑M
j=1 Yi,j

69: p← ∑N
i=1 Yi,:

70: u′ ← f ind(p == 0)
71: for i← 1 : len(u′) do

72: if t < b then

73: r← R(i,:)
74: f lag← 0
75: k← Wu′ i ,:
76: for j← 1 : len(k) do

77: if f lag == 0 then

78: [lv, li]← min(r)
79: rli ← inf
80: [lv, li]← min(r)
81: if Wu′ i ,li > 0 then

82: Yu′ i ,li ← 1, xli ← 1, cli ← cli + 1
83: end if
84: end if
85: end for
86: end if
87: end for
88: Step V: Remove all under-utilized drones
89: du ← f ind((c < γmin) · x == 1)
90: Y:,du ← 0, xdu ← 0, cdu ← 0
91: t← ∑N

i=1 ∑M
j=1 Yi,j

92: Outputs: Y, x
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Table 1. List of notations and variables of this work.

Notation Explanation

N Total no. of IoT users
M Total no. of potential locations for DBS placement
x Binary indicator vector of size M for DBS placement
Y Binary matrix of size N ×M, which indicates achieved associations between users and DBSs
β Constant which indicates the minimum percentage of users that must be serviced by the network

γmin(γmax) Minimum (Maximum) number of users that each DBS must (could) serve
cm Cost of DBS deployment at location m

Cmax Maximum deployment cost of all DBSs
dnm Distance between user n and DBS location m
dmax Maximum coverage distance of a single DBS
W A matrix of dimensions N ×M which indicates potential DBS associations for each user
R A matrix of dimensions N×M which contains the distance between IoT users and DBS locations
t A column vector of size N indicating the possible number of DBS connections for each user
c A row vector of size M which indicates the total number of connected users for each DBS

f ind(x) Function which returns the indexes where its argument x is true
sort(c) Sorts the vector c in descending order and returns values and indexes
∇ Vector of size M which stores the indexes of under-utilized DBSs
u′ Vector which stores the indexes of unconnected users

len(x) Returns the size of vector x
min(r) Returns the minimum value and its indexes from the vector r

: Operator indicating complete row or column in a matrix

3.1. Phase I: Allocation of Users within the Coverage Area of a Single DBS

In the first phase, those users are assigned which are located within the coverage area of a single
DBS location. Step 8 obtains the total number of DBS connections possible for each user n ∈ {1, · · · , N}.
This is done by adding all entries at row n of W and storing the result at the corresponding row in
vector t. In the next step, for the loop runs for N iterations, if the possible number of DBS connections
of user i (i.e., ti) is equal to “1” during each iteration, then the corresponding index of DBS is obtained
from W (i.e., column index) and stored in k. The k-th entry in x is set to “1” to mark a DBS placement
at potential location k. Similarly, the entry yi,k is set to “1” in Y to mark an association between user i
and DBS location k. Finally, the count value of connected users for DBS k is updated in c.

3.2. Phase II: Allocation of Users within the Coverage Area of Multiple DBS Locations

During this phase, those users are assigned which are located in the coverage area of multiple
DBS locations. In Step 17, for loop runs for N users (iterations), for each user i, the number of its
potential DBS connections (i.e., ti) is obtained. If this value is greater than “1”, then Step 20 obtains the
indexes of all potential DBSs for user i and stores them in vector k. In addition, the indexes of those
DBSs already deployed are obtained from x and stored in vector j. The function f ind(·) returns the
indexes where the argument is true. In Step 21, the non-zero entries of c are sorted in descending order
and stored in vector λ along with their indexes in vector I. In Steps 22–24, a binary vector a is obtained
which has non-zero entries for the indexes of all DBSs which have already been deployed, and can
also be assigned to user i. The indexes of these DBSs are obtained in Step 26. Among these potential
DBSs for user i, the DBS connected to maximum number of users is selected, provided it satisfies the
maximum capacity γmax criteria. Such user-to-DBS assignment is done in Steps 26–34, along with the
update of variables x, Y, and c. A temporary f lag variable is set whenever a user is assigned. If all
the existing DBSs are fully up to their maximum capacity, then the flag is still 0 at the end of Step 34.
Steps 35–42 exclude the indexes of deployed DBSs from the potential connections for user i. If the
result is a null vector φ, it means that the user i cannot be connected to any DBS other than existing
DBSs which are already full. Such a user is not assigned by the network as shown in Step 38, which
places a “0” at all DBS indexes in W for user i. In the third case, a user may have potential connection
to one or multiple locations where no DBS has already been deployed. In such a case, a new DBS is
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placed at the location with the smallest available index, and user i is associated to it. This is done in
Steps 43–47 by updating the corresponding entries of x, Y, and c.

3.3. Phase III: Check for Under-Utilized Drones

In Step 50, the indexes are stored in∇ for all DBSs that remain under-utilized after the association
steps of phase I and II. These DBSs are removed in Step 51 by disassociating their connected users
and setting the relevant entries of Y, x, and c to “0”. In Steps 52–53, the indexes of unconnected users
are obtained and stored in vector u′. Step 54 computes b, that is, the minimum number of users that
must be serviced, whereas Step 55 computes t, that is, the number of users that have been serviced
so far. If the number of served users is less than the minimum users to be served, it is executed until
both these numbers become equal. During each iteration of the loop, that is, in Steps 56–70, one of
the unconnected users is selected from the list u′ and assigned to an existing DBS with the highest
utilization, with the condition that the DBS is not overcrowded and belongs to the set of DBSs that
have potential connections for the user. The user-DBS association is marked by updating the relevant
entries of Y, x, and c.

3.4. Step IV: Association of All Unconnected Users until Now

In this phase, the users which remain unconnected in the previous phases are associated to the
DBSs. Their indexes are obtained in u′ in Step 75. The for loop of Steps 76–92 performs user-DBS
association on the basis of distance. For each user i ∈ u′, its distances from all the DBS locations are
obtained from matrix R and stored in r in Step 78. In Step 79, the list of potential DBS connections for
the users is obtained and stored in k. In Steps 82–86, among all potential DBSs for the user, the DBS
with the minimum distance is selected. The user association to this DBS is marked in Step 87 by
updating the relevant matrices.

3.5. Step V: Remove All Under-Utilized Drones

Finally, the under-utilized drones are removed by disassociating the users connected to them,
and the total number of connected users is computed. The outputs of the algorithm are the user-DBS
association matrix Y and the DBS placement vector x.

3.6. Complexity

The main advantage of the proposed method is its low computational complexity, where the
complexity is calculated in terms of flops. The complexity of the initialization phase (Steps 2–4)
is 5MN. The complexity of Steps 6–12 is 2MN + 4N. The worst case complexity of Steps 14–44
is M2N + 11MN + 13N, and Steps 46–66 have a worst case complexity equal to 2M2 + M2N + 9M,
where Steps 68–87 have a complexity 6MN + 9N and Steps 89–91 have a complexity equal to 5M+ MN
flops. The worst case complexity of the proposed heuristic overall is 0(M2N), whereas the complexity
of the optimal algorithm is 2NM2

. This clearly demonstrates that the proposed solution is fairly
applicable for practical, large-area IoT networks.

4. Results and Discussion

This section presents the simulation results of proposed solution. As discussed earlier, the network
area is visualized as a grid with discrete points which represent the potential DBS locations, and the
users are evenly distributed on the grid. The simulations are carried out for a variety of realistic
network scenarios with grid sizes of 3× 3, 4× 4, and 5× 5 DBS locations, with the total number of
users N ranging from 50 up to 200 and β = 0.2 and 0.8. The optimization goal is to minimize the
utility function of (15), which is represented as a ratio between the number of deployed DBSs and the
number of connected users. The performance of the proposed heuristic is compared with the optimal
algorithm. As discussed earlier, β is the minimum fraction of users that must be serviced. This means
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that for a larger β, more drones need to apparently be deployed. Similarly, if the grid size is smaller,
it would be difficult to service a larger β percentage of users. These facts have been proven through a
number of simulations, and the results are discussed below.

Before going into the simulation analysis, let’s try to analyze the objective function. The objective
function is the ratio of the total number of deployed drones to the total number of connected users.
The objective is to minimize this ratio. From the basic mathematical theory, it can be easily observed
that this ratio (objective function) could be minimized if:

• The numerator is decreased, keeping the denominator fixed;
• The denominator is increased, keeping the numerator fixed;
• The numerator is decreased, and at the same time, the denominator is increased.

In this objective function, the numerator represents the total number of deployed drones, whereas
the denominator represents the total number of connected users. Therefore, from the analysis above,
either a smaller number of drones have to be deployed, keeping a fixed number of connected users,
or more users need to be connected with a smaller number of drones. The third option is to decrease
the number of drones, and increase the number of connected users at the same time.

In Figure 2, the performance results are reported for different grid sizes and β = 0.2. Figure 2a
plots the value of objective function (15) for different grid sizes and the number of users. A number of
trends can be observed from the plot. The value of objective function achieved by optimal and heuristic
algorithms increases with grid size, keeping other parameters constant. This is due to the fact that
greater grid size means a greater number of potential locations. This increases the probability of greater
DBS deployment. Moreover, for a given grid size, the value of the utility function and the performance
gap between the two algorithms decrease with an increase in the number of users. This trend is due to
the fact that as more users are placed within the network of a given grid size, the degree of freedom of
their association with DBSs increases, resulting in better overall network utilization. For all grid sizes
and the number of users, the utility function value obtained by the proposed heuristic is fairly close to
the optimal solution.

In Figure 2b, the performance results are presented in terms of the number of connected users.
For all grid sizes and values of N, both algorithms satisfy the minimum QoS requirements represented
as black bars in the plots. The plots further reveal that, for a given grid size and N, the proposed
heuristic results in greater number of connected users as compared to the optimal one. Moreover,
the user connectivity achieved by the proposed heuristic decreases with an increase in grid size,
whereas this quantity remains almost the same for an optimal algorithm. This trend is due to the fact
that as grid size increases for a given value of N, the users initially get connected to their nearest DBS
location, resulting in some drones being under-utilized. These DBSs are removed in the later phases
of the algorithm to satisfy constraint C4. As a result, some of the users are connected to the existing
DBSs, while others remain unassigned. In Figure 2c, the performance results are plotted in terms of
the number of DBSs assigned. The proposed heuristic places more DBSs, as compared to the optimal
algorithm. However, it also serves a greater number of users. Overall, the combined result, that is,
the ratio of quantities of Figure 2b,c of the proposed heuristic, is comparable to the optimal solution.

Figure 3 demonstrates the simulation results for β = 0.8 and various grid sizes. The value of
utility functions for two algorithms are plotted in Figure 3a, which shows that both algorithms perform
close to each other. A similar trend is exhibited by the plots of Figure 3b,c, where the proposed heuristic
not only satisfies the minimum user connectivity requirements for all cases, but also achieves a number
of connected users and DBSs that is fairly close to the optimal algorithm.
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Figure 2. Comparison of proposed heuristic with the optimal algorithm for β = 0.2 and different
grid sizes, in terms of: (a) The total number of connected users, (b) total number of placed drones,
and (c) the utility value, that is, the ratio of the total number of placed drones to the total number of
connected users.
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Figure 3. Comparison of proposed heuristic with the optimal algorithm for β = 0.8 and different
grid sizes in terms of: (a) The total number of connected users, (b) total number of placed drones,
and (c) the utility value, that is, the ratio of the total number of placed drones to the total number of
connected users.

Finally, in Figure 4, the confidence interval (CI) is plotted as a function of β for various values
of N. CI is defined as the squared difference between the utility function value of the optimal and
proposed heuristic. A very small value of CI is achieved for all cases of simulation, which validate the
numerical accuracy of proposed scheme.
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Figure 4. Confidence intervals for grid size = 3× 3.

5. Conclusions

In this paper, DBSs have been investigated as a promising solution to fulfil the aggressive connectivity
and QoS requirements of large-scale IoT networks. However, DBSs being power-constrained devices
themselves, a careful scheme is required for their deployment and the user association to them.
This aspect was addressed in this work, by first providing a realistic mathematical model for the joint
optimization problem of DBS assignment and user association in a massive, large-scale IoT network.
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The mathematical model was developed by keeping in mind an air-to-ground path-loss model and
practical network constraints. The objective function minimizes the ratio between the number of DBSs
utilized to the number of users connected. Such an integer fractional problem suffers from prohibitive
complexity when solved optimally for practical-sized networks. A linearization of the problem was
proposed, along with a low-complexity heuristic algorithm for its solution in linear time. A comparison
of the results of the proposed solution with the optimal one confirmed the accuracy and validity of
our approach.

Author Contributions: Conceptualization, A.A. and M.A. (Muhammad Awais); Investigation, M.A.
(Muhammad Awais); Methodology, A.A. and T.A.; Software, A.A., M.A. (Muhammad Awais) and T.A.; Validation,
M.A. (Musaed Alhussein) and K.A.; Writing—original draft, A.A. and M.A. (Muhammad Awais); Writing—review
& editing, T.A., Selman Kulac, M.A. (Musaed Alhussein) and K.A.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at King Saud
University for funding this work through research group NO. (RG-1438-034).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lagum, F.; Bor-Yaliniz, I.; Yanikomeroglu, H. Strategic Densification with UAV-BSs in Cellular Networks.
IEEE Wirel. Commun. Lett. 2018, 7, 384–387. [CrossRef]

2. Yin, S.; Tan, J.; Li, L. UAV-assisted Cooperative Communications with Wireless Information and Power
Transfer. arXiv 2017, arXiv:1710.00174.

3. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP Altitude for Maximum Coverage. IEEE Wirel.
Commun. Lett. 2014, 3, 569–572. [CrossRef]

4. Pereira, A.A.; Espada, J.P.; Crespo, R.G.; Aguilar, S.R. Platform for controlling and getting data from
network connected drones in indoor environments. Future Gener. Comput. Syst. 2019, 92, 656–662.
[CrossRef]

5. Sharma, S.; Chen, K.; Sheth, A. Toward practical privacy-preserving analytics for IoT and cloud-based
healthcare systems. IEEE Internet Comput. 2018, 22, 42–51. [CrossRef]

6. Woo, M.W.; Lee, J.; Park, K. A reliable IoT system for Personal Healthcare Devices. Future Gener.
Comput. Syst. 2018, 78, 626–640. [CrossRef]

7. Ahmad, A.; Ahmad, S.; Rehmani, M.H.; Hassan, N.U. A Survey on Radio Resource Allocation in Cognitive
Radio Sensor Networks. IEEE Commun. Surv. Tutor. 2015, 17, 888–917. [CrossRef]

8. Yan, Y.; Xu, C. A Development Analysis of China’s Intelligent Transportation System. In Proceedings of
the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of
Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 1072–1076.

9. Sanchez-Gomez, J.; Sanchez-Iborra, R.; Skarmeta, A. Transmission Technologies Comparison for
IoT Communications in Smart-Cities. In Proceedings of the GLOBECOM 2017—2017 IEEE Global
Communications Conference, Singapore, 4–8 December 2017; pp. 1–6.

10. Fu, J.; Liu, Y.; Chao, H.; Bhargava, B.K.; Zhang, Z. Secure Data Storage and Searching for Industrial IoT
by Integrating Fog Computing and Cloud Computing. IEEE Trans. Ind. Inform. 2018, 14, 4519–4528.
[CrossRef]

11. Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D Placement of an Unmanned Aerial Vehicle
Base Station (UAV-BS) for Energy-Efficient Maximal Coverage. IEEE Wirel. Commun. Lett. 2017, 6, 434–437.
[CrossRef]

12. Kalantari, E.; Shakir, M.Z.; Yanikomeroglu, H.; Yongacoglu, A. Backhaul-aware robust 3D drone
placement in 5G+ wireless networks. In Proceedings of the 2017 IEEE International Conference on
IEEE Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 109–114.

13. Shakhatreh, H.; Khreishah, A.; Alsarhan, A.; Khalil, I.; Sawalmeh, A.; Othman, N.S. Efficient 3D placement
of a UAV using particle swarm optimization. In Proceedings of the 2017 8th International Conference on
Information and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 258–263.

http://dx.doi.org/10.1109/LWC.2017.2779483
http://dx.doi.org/10.1109/LWC.2014.2342736
http://dx.doi.org/10.1016/j.future.2018.01.011
http://dx.doi.org/10.1109/MIC.2018.112102519
http://dx.doi.org/10.1016/j.future.2017.04.004
http://dx.doi.org/10.1109/COMST.2015.2401597
http://dx.doi.org/10.1109/TII.2018.2793350
http://dx.doi.org/10.1109/LWC.2017.2700840


Sensors 2019, 19, 2157 16 of 16

14. Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-D placement of an aerial base station in next
generation cellular networks. In Proceedings of the 2016 IEEE International Conference on Communications
(ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–5.

15. Lu, J.; Wan, S.; Chen, X.; Fan, P. Energy-Efficient 3D UAV-BS Placement versus Mobile Users’ Density
and Circuit Power. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore,
4–8 December 2017; pp. 1–6.

16. Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the Number and 3D Placement of Drone Base Stations
in Wireless Cellular Networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference
(VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–6.

17. Lyu., J.; Zeng, Y.; Zhang, R.; Lim, T.J. Placement Optimization of UAV-Mounted Mobile Base Stations.
IEEE Commun. Lett. 2017, 21, 604–607. [CrossRef]

18. Alzenad, M.; El-Keyi, A.; Yanikomeroglu, H. 3-D placement of an unmanned aerial vehicle base station for
maximum coverage of users with different QoS requirements. IEEE Wirel. Commun. Lett. 2018, 7, 38–41.
[CrossRef]

19. Azizi, A.; Mokari, N.; Javan, M.R. Joint Radio Resource Allocation, 3D Placement and User Association of
Aerial Base Stations in IoT Networks. arXiv 2017, arXiv:1710.05315.

20. Wang, H.; Wang, J.; Ding, G.; Wang, L.; Tsiftsis, T.A.; Sharma, P.K. Resource allocation for energy harvesting-
powered D2D communication underlaying UAV-assisted networks. IEEE Trans. Green Commun. Netw. 2018,
2, 14–24. [CrossRef]

21. Mignardi, S.; Buratti, C.; Bazzi, A.; Verdone, R. Trajectories and Resource Management of Flying Base
Stations for C-V2X. Sensors 2019, 19, 811. [CrossRef] [PubMed]

22. Huo, Y.; Dong, X.; Lu, T.; Xu, W.; Yuen, M. Distributed and multi-layer UAV network for the next-generation
wireless communication. arXiv 2018, arXiv:1805.01534.

23. Chen, W.; Liu, B.; Huang, H.; Guo, S.; Zheng, Z. When UAV Swarm Meets Edge-Cloud Computing:
The QoS Perspective. IEEE Netw. 2019, 33, 36–43. [CrossRef]

24. Lai, C.C.; Chen, C.T.; Wang, L.C. On-Demand Density-Aware UAV Base Station 3D Placement for
Arbitrarily Distributed Users with Guaranteed Data Rates. IEEE Wirel. Commun. Lett. 2019. [CrossRef]

25. Liu, X.; Wang, J.; Zhao, N.; Chen, Y.; Zhang, S.; Ding, Z.; Yu, F.R. Placement and Power Allocation for
NOMA-UAV Networks. IEEE Wirel. Commun. Lett. 2019. [CrossRef]

26. Sharma, V.; Song, F.; You, I.; Atiquzzaman, M. Energy efficient device discovery for reliable communication
in 5G-based IoT and BSNs using unmanned aerial vehicles. J. Netw. Comput. Appl. 2017, 97, 79–95.
[CrossRef]

27. Motlagh, N.H.; Bagaa, M.; Taleb, T. UAV Selection for a UAV-Based Integrative IoT Platform.
In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC,
USA, 4–8 December 2016; pp. 1–6.

28. Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms
in urban environments. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX,
USA, 8–12 December 2014; pp. 2898–2904.

29. Li, H.L. A global approach for general 0–1 fractional programming. Eur. J. Oper. Res. 1994, 73, 590–596.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LCOMM.2016.2633248
http://dx.doi.org/10.1109/LWC.2017.2752161
http://dx.doi.org/10.1109/TGCN.2017.2767203
http://dx.doi.org/10.3390/s19040811
http://www.ncbi.nlm.nih.gov/pubmed/30781511
http://dx.doi.org/10.1109/MNET.2019.1800222
http://dx.doi.org/10.1109/LWC.2019.2899599
http://dx.doi.org/10.1109/LWC.2019.2904034
http://dx.doi.org/10.1016/j.jnca.2017.08.013
http://dx.doi.org/10.1016/0377-2217(94)90257-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Contribution

	System Model and Problem Formulation
	Air-to-Ground (A2G) Path Loss Model
	Variable Definition
	System Constraints
	Minimum Users Connectivity Constraint
	User Connectivity with Deployed DBS Constraint
	Single DBS Connectivity for a User Constraint
	Maximum and Minimum Capacity of DBS Constraint
	DBS Deployment Budget Constraint
	Maximum User-DBS Distance Constraint

	An Optimization Model for Drone-BS Deployment for Maximal Coverage
	Linearization of Optimization Problem

	Proposed Solution
	Phase I: Allocation of Users within the Coverage Area of a Single DBS
	Phase II: Allocation of Users within the Coverage Area of Multiple DBS Locations
	Phase III: Check for Under-Utilized Drones
	Step IV: Association of All Unconnected Users until Now
	Step V: Remove All Under-Utilized Drones
	Complexity

	Results and Discussion
	Conclusions
	References

