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Abstract: High-bentonite mud (HBM) is a water-based drilling fluid characterized by its remarkable
improvement in cutting removal and hole cleaning efficiency. Periodic monitoring of the rheological
properties of HBM is mandatory for optimizing the drilling operation. The objective of this study is
to develop new sets of correlations using artificial neural network (ANN) to predict the rheological
parameters of HBM while drilling using the frequent measurements, every 15 to 20 min, of mud
density (MD) and Marsh funnel viscosity (FV). The ANN models were developed using 200 field
data points. The dataset was divided into 70:30 ratios for training and testing the ANN models
respectively. The optimized ANN models showed a significant match between the predicted and
the measured rheological properties with a high correlation coefficient (R) higher than 0.90 and
a maximum average absolute percentage error (AAPE) of 6%. New empirical correlations were
extracted from the ANN models to estimate plastic viscosity (PV), yield point (YP), and apparent
viscosity (AV) directly without running the models for easier and practical application. The results
obtained from AV empirical correlation outperformed the previously published correlations in terms
of R and AAPE.

Keywords: rheological properties; high-bentonite mud; artificial neural network; mud weight;
marsh funnel

1. Introduction

Drilling Fluids play a pivotal role during the drilling operation [1]. There are three main categories
of the drilling fluid, namely water-based mud, oil-based mud, and synthetic-based mud, used to
enhance the drilling operation performance under downhole conditions of pressure and temperature [2].
The main function of a drilling fluid is to clean the wellbore by lifting the drilled cuttings from the
bottom of the hole up to the surface; then the cuttings are treated by the solid control equipment before
being pumped again into the well [3]. Special viscous mud (known as spud mud) is commonly used
while drilling surface sections to help remove large cuttings out of the drilled hole [4]. Moreover, it
enhances wellbore stability by forming an impermeable filter cake and minimize fluid loss by stopping
mud filtration [5].

1.1. High-Bentonite Mud (HBM)

HBM is a certain type of spud mud, which contains high-bentonite concentration. Generally,
bentonite is used in drilling fluids to increase its viscosity and provide more colloidal solids, which
form an impermeable filter cake and reduces [6]. Increasing the plastic viscosity of drilling fluid leads
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to a remarkable improvement in cutting removal and hole cleaning efficiency; however, it should be
optimized to avoid many drilling problems, such as pipe sticking [7]. HBM mainly comprises of a
large amount of pre-hydrated bentonite, ranging from 40 to 50 sacks (2000 Ib-sack) per drill-water
barrel to avoid severe flocculation, in addition to acting as a viscosifier and fluid loss control [8]. It also
contains enviro-thin as a dispersant to disperse a large amount of bentonite within the fluid and reduce
the tendency of mud to coagulate into a mass of particles [9]. Besides, it contains caustic soda NaOH
for pH control and a fluid loss additive like starch [10]. The additives used to formulate HBM and
their uses are summarized in Table 1.

Table 1. HBM additives.

Additive Range/Unit Uses

Bentonite 40–50 lb/bbl Viscosifier
Fluid loss control

Enviro-thin 1–3 lb/bbl Dispersant
Shear strength reduce/deflocculant

Caustic Soda (NaOH) 0.2–0.5 lb/bbl pH adjustment

Starch 1–3 lb/bbl Fluid loss control

Bactcide 0.01–0.03 gal/bbl Antibacterial/Biocide

1.2. Drilling Fluid Rheology

Rheology of drilling fluid is the controlling factor for enhancing the hole cleaning efficiency and
optimizing the drilling performance [11,12]. These rheological properties include plastic viscosity (PV),
yield point (YP), and apparent viscosity (AV) for evaluating the mud performance during drilling
operation [13].

Plastic viscosity (PV) indicates the amount of solids existing in the drilling fluid [14]. Uncontrolled
increase of the mud solid content may lead to many critical problems while drilling like pipe sticking
and reducing the rate of penetration [15]. Yield point is another rheological parameter measuring the
attractive forces among colloidal particles within the drilling fluid [14]. Optimizing YP significantly
affects hole-cleaning efficiency [15].

Mud rheological properties are experimentally estimated using conventional rheometer and
mud balance. The rheometer can be simply described as a coaxial cylindrical rotational viscometer.
During the measurement of the rheological properties of the drilling fluid using rheometer, the drilling
fluid is contained in the annular space or the shear gap between the cylinders. Then the viscosity
is determined based on the measurements of applied shear rate and the corresponding shear stress
at different rotation speeds. More details on the rheometer design and the measuring technique are
described in [16,17]. Common field practice comprises only measuring mud density by mud balance
and mud viscosity by Marsh funnel periodically every fifteen minutes to monitor any changes in
the rheology of the drilling fluid. A complete mud test (including all mud rheological properties) is
performed twice a day since it consumes considerable time.

In 1960, Marsh funnel viscosity (FV) was introduced to indicate the changes in the rheology of the
drilling fluid and measured by the Marsh funnel device. This tool is effectively practical because it
takes a short operating time and can be utilized to frequently measure FV [18].

Some empirical models have been developed to determine rheological parameters of the drilling
fluid using Marsh funnels. Some of the proposed models monitor the change in the mud height in
Marsh funnel with time and correlate it with the fluid rheological properties such as PV, YP, and
AV [19–22]. The shear rate and the shear stress are estimated on the sides of the Marsh funnel using the
volume of the mud coming out at different points. The measured shear rate and shear stress are then
correlated to the rheological parameters. The Marsh funnel was used to investigate several water-based
drilling fluids and it was proved that both PV and AV can be estimated using consistency plots [23].
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Results from these models were extremely different from the measurements of the Marsh funnel and
conventional rheometer. Other trials were conducted for accuracy improve by using polynomial
functions of a high order to model the fluid flow volume through the marsh funnel instead of the
simple equations used before [24,25]. These trials accurately simulated the change in fluid height
within the Marsh funnel with time and achieved better estimations of the rheological parameters
compared to those obtained from the standard rheometer.

The main objective of this study is to identify the rheological flow model of HBM experimentally
and develop new sets of correlations using artificial neural networks to estimate the rheological
parameters of HBM from available.

1.3. Predicting the Rheological Properties of Drilling Fluid While Drilling

Periodic monitoring of the parameters controlling the drilling operation is crucial for improving the
drilling performance and avoiding any drilling problems. Therefore, hole cleaning and bit hydraulics
should be optimized [26]. Optimization of drilling hydraulics accounts for the pressure losses, which
depends mainly on the rheological properties of the drilling fluid used. Pressure losses through the
annulus can be determined once the parameters of the Bingham plastic model (YP and PV) are known
using Equation (1), assuming laminar flow [27]. Moreover, equivalent circulating density (ECD) can be
estimated using Equation (2), which represents the apparent mud weight in dynamic conditions. ECD
accounts for many drilling problems like loss of circulation and well control incidents.

∆P =

 PV× v

1000(d2 − d1)
2 +

YP
200(d2 − d1)

L (1)

ECD = MD +
∆P

0.052× h
(2)

where ∆P is the pressure losses through the annulus (psi), PV is the plastic viscosity of the drilling
fluid (cP), v is the average velocity (ft/s), YP is the yield point (lb/100ft2), d1 is hole diameter (in), d2 is
the drill pipe outer diameter (in), L is the annulus length (ft), ECD is the equivalent circulation density
(lb/ft3), MD is the mud density (lb/ft3), and h is true vertical depth (ft).

Furthermore, surge and swab pressures can be estimated using Equation (1); after replacing the
value of the average velocity (v) in Equation (1) with the effective velocity (ve), which can be calculated
using Equation (3) [28].

ve = vm − kvp (3)

where vm is the mud velocity (ft/s), vp is the pipe velocity (ft/s), k is the clinging constant.

2. Methodology

2.1. Experimental Work

The rheological models are critical for simulating the characteristics of drilling mud under dynamic
conditions to determine key parameters such as equivalent circulating density, pressure drop, hole
cleaning efficiency. All of these parameters are required to design and evaluate the hydraulics and
assess the functionality of the mud system [29]. There are three well-known mathematical models
used to describe the mud rheology; Power Law model, Bingham Plastic model, and Hershel Buckley
Model [30,31]. Each model has specific parameters to describe the drilling fluid performance such
as shear stress, shear rate, flow behavior index, and consistency coefficient. To study the rheological
behavior of HBM and identify the most appropriate rheological model that follows, mud samples were
prepared based on the formulation listed in Table 2.
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Table 2. HBM formulation prepared in the laboratory for the experimental investigation.

Item Quantity Unit

Water 340 g
Bentonite 40 g

Caustic Soda 0.5 g
Dispersant 3 g

Starch 3 g

The standard Rheometer was operated at different shear rates and the corresponding shear stress
was recorded at 120 ◦F and atmospheric pressure. The results presented in Figure 1 shows the relation
between the shear rate and shear stress for HBM. HBM was believed to follow Bingham plastic behavior
due to the linear relationship found between shear stress and shear rate [32]. Mud exhibiting Bingham
plastic behavior need shear stress that is higher than a critical value, called the yield point (YP), to
start flowing. Once the yield point is reached, changes in shear stress and shear rate are directly
proportional. The slope of the curve gives the plastic viscosity (PV) [33]. Based on this result, the
behavior of HBM can be described by the two-parameter in the Bingham plastic model, PV and YP.
Bingham plastic model does not accurately predict fluid flow behavior at low shear rates’ therefore,
only high shear rates are considered in Figure 1. However, it is useful for continuous monitoring and
controlling of the drilling fluids’ performance [34].
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2.2. Implementation of Artificial Neural Network (ANN) to Predict HBM Rheology

ANN is an artificial intelligence (AI) powerful tool that can imitate different complex problems
which cannot be treated using conventional regression techniques. Without defining the physics
behind the studied phenomenon, ANN can analyze its characteristics [35]. ANN processes the data
through a network that mimics biological neural systems [36]. Artificial neurons are the elementary
units in ANN. An ANN model consists of three fundamental layers: input layer, hidden layers,
and an output layer. These layers are connected and processed with special training algorithm and
transfer functions to represent the nature of the problem [35]. The neurons existing in each layer are
linked by weighted connections called weights and bias [37]. The output layer is commonly assigned
to an activation function of “pure linear” while there are many available options for the transfer
functions assigned to hidden layers such as log-sigmoidal and tan-sigmoidal types [38]. Recently,
AI has been widely used in the area of drilling fluid [39]. Some of these applications are drilling
optimization [40], optimizing drilling hydraulics [41], and prediction of rheological properties of invert
emulsion mud, KCl water-based mud, CaCl2 drilling fluid, NaCl water-based drill-in fluid rheological
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properties [42–45]. Additionally, new systems were developed using the integration between sensitive
sensors measurements and AI application to estimate rheological parameters of non-Newtonian
fluids [46]. Furthermore, an automated Marsh funnel was developed using data-driven sensors to
allow real-time measurement of FV [47]. Therefore, integration between the developed models and
such automated funnel would lead to a complete real-time monitoring system for estimating the
rheological properties of the drilling fluid while drilling.

2.2.1. Data Description

Field measurements (200 data points) include MD, FV, Yp, PV, and AV for HBM were collected
from field measurements that follow the recommended practice for field testing drilling fluids by API
RP 13B-1 [48]. The HBM data represented HBM prepared using the same formulation and mixed
with the same service company. During field measurements, the rheometer was used to measure the
shear stresses at shear rates of 300 and 600 donated by R600 and R300, respectively. These readings
were used to estimate Yp, PV, and AV using Equations (4)–(6), respectively [49,50]. Mud density was
measured using a mud balance device. MD and FV measurements were conducted at 80 ◦F, which is
the average surface temperature of the region in which the field under study exists. Therefore, it is
recommended to use the developed model for fields within the same surface temperature.

PV = R600 −R300 (4)

YP = PV−R300 (5)

AV =
R600

2
(6)

The MD ranges from 64 to 73 lb/ft3, FV ranges from 45 to 150 s/quart, PV ranges from 11 to 56
cP, YP ranges from 20 to 46 lb/100 ft2, and AV ranges from 23 to 79 cP. MD has a low correlation
coefficient (R) with Yp, PV, and AV, 0.06 at maximum as shown in Figure 2. On the other hand, FV
has a correlation coefficient (R) of 0.45, 0.59, and 0.62 with YP, PV, and AV respectively. This higher
R-value between the rheological properties with FV compared to MD can be explained as HBM is
characterized by its high content of bentonite, which mainly affects the mud viscosity, not the mud
weight. Table 3 lists different statistical parameters for the HBM rheological data used in building the
ANN models, while Table 4 lists a sample of the obtained data used for training the networks.
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Figure 2. Correlation coefficient (R) between the inputs: mud density (MD) and Marsh funnel viscosity
(FV) and the outputs: yield point (YP), plastic viscosity (PV) and apparent viscosity (AV).
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Table 3. Statistical analysis of the obtained data for HBM.

Statistical Quantity MD FV PV Yp AV

Mean 67.6 85.4 25.2 30.3 40.3
Median 68.0 82.0 25.0 30.0 40.0
Mode 68.0 85.0 25.0 26.0 40.0
Range 9.0 105.0 45.0 26.0 56.0

Minimum 64.0 45.0 11.0 20.0 23.0
Maximum 73.0 150.0 56.0 46.0 79.0

Standard Deviation 1.4 19.6 8.0 5.3 9.5
Kurtosis 6.2 1.1 1.7 0.8 2.0

Skewness 1.5 1.0 0.9 0.7 0.9

Table 4. Sample of the filtered HBM field data.

No. MD (lb/ft3) FV (s) PV (cP) Yp (lb/100 ft2) AV (cP)

1 68 60 11 28 25
2 64 135 13 20 23
3 69 80 12 27 25.5
4 73 70 15 30 30
5 67 75 16 22 27
6 68 59 11 27 24.5
7 69 85 40 25 52.5
8 66 150 45 40 65
9 68 110 31 31 46.5

10 67 90 31 36 49
11 68.5 76 29 28 43
12 67 105 29 36 47
13 73 108 40 28 54
14 67 92 40 36 58
15 68.5 75 32 26 45

2.2.2. Quality Check and Data Filtration

The higher the quality of the training data is, the better the accuracy of AI models [51]. Thus, the
obtained dataset quality was checked using both statistical and technical tools. Unrealistic values like
negative and zero values were removed. Then outlier values which show significant deviation from
the normal trend of the data were eliminated using the box and whisker plot method [52]. This method
comprises two limits (top and bottom) called whiskers representing the upper and lower limits of
the data [53]. Values exceeding these two whiskers are considered outliers thus would be removed.
These whiskers can be determined using some statistical parameters such as the minimum, maximum,
mean, and median parameters (listed in Table 3). According to the reference ranges of the rheological
properties of the HBM formulation listed in Table 5, it is clear that the collected data for building the
model covers a wide range of these properties, which gives a promising indication on the distribution
and the quality of the obtained models.

2.2.3. Model Development

The collected data were used for building the proposed ANN models. For optimizing the
developed models, several scenarios were tested including varying ANN parameters. This was
achieved using a specially designed MATLAB code to test all the possible combinations between these
parameters. For each scenario (parameters’ combination), the accuracy of the results was evaluated
based on the calculated average absolute percentage error (AAPE), in addition to the correlation
coefficient (R), to determine how close the predicted values were to the actual values. The varying
ANN parameters and their tested ranges were as follows:

– Number of hidden layers (ranges from one to four layers)
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– Number of neurons in each layer (range 5: 30 neurons for each layer)
– Transfer functions (tansig, logsig, elliotsig, radbas, satlin, purelin, tribas, hardlim)
– Training algorithm (trainlm, trainrp, traingd, traingda, trainbr, trainc)
– Learning rate (ranges from 0.01 to 0.9)

Table 5. Reference rheological properties of field high-bentonite mud formulation.

Property Range Unit Remarks

Mud weight 67 lb/ft3 Mud balance measurement
Marsh Funnel Viscosity 75–120 s Qualitative measurement

pH 9.5–10.5 Alkalinity measurement
Initial Gel Strength 15–27 lb/100 ft2 10-senocd rheometer measurement
10-min Gel Strength 25–75 lb/100 ft2 10-min rheometer measurement
30-min Gel Strength 26–80 lb/100 ft2 30-min rheometer measurement

Yield Point 25–50 lb/100 ft2 Rheometer measurement
Plastic Viscosity 10–60 cP Rheometer measurement
Filtrate Volume 8–10 cm3/30 min Filter Press measurement

Thereafter, the tested parameters, which resulted in the most accurate results indicated by the
lowest AAPE and highest correlation coefficient between the predicted and actual values, were
selected. The optimization process followed is schematically described in the flowchart shown
in Figure 3. The optimized parameters were found to be a single hidden layer with 20 neurons,
Levenberg-Marquardt backpropagation (trainlm) training algorithm with a learning rate of 0.12, a
tan-sigmoidal transfer function between the input and hidden layers in addition to a pure-linear
transfer function between the hidden and output layers. Figure 4 shows the schematic structure of the
developed ANN models.Sensors 2020, 20, x 8 of 19 
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3. Results and Discussion

3.1. Yield Point Prediction

ANN model was developed using MD and FV as inputs to predict YP. The obtained data were
randomly divided using MATLAB program into ratios of 70 percent for training and 30 percent for
testing. Figures 5 and 6 show a good match between the predicted YP values and the actual ones.
The high accuracy of the developed model can be inferred from the high R-value of 0.94 for the training
process and 0.92 for the testing process in addition to the low AAPE of 2.95% and 4.8% for the training
and testing respectively.

Thereafter, a new correlation was developed using the ANN model to predict YP based on MD
and FV. The developed correlation can be used as follows. First, the inputs should be normalized
as described in Appendix A. Then, the normalized value of the output (Ypn

) is calculated using
Equation (7) with its optimized coefficients listed in Table A1 (Appendix B).

Ypn =

 N∑
i=1

w2i

 2

1 + exp
(
−2(MDn ×w1i,1 + FVn ×w1i,2 + b1,i)

) − 1


+ b2 (7)

where; (i) is the index of each neuron in the hidden layer, (N) is the optimized number of neurons in
the hidden layer, (w1) is the weight vector linking the input and the hidden layer, (w2) is the weight
vector linking the hidden and output layer, (b1) is the biases vector for the input layer, (b2) is the biases
vector for the output layer. For example, w1i,1 represents the weight [associated with the neuron of
index (i) in the first layer], which would be multiplied by the normalized value of the first input (MWn)
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and similarly w1i,2 represents the weight [associated with neuron of index (i) in the first layer], which
would be multiplied by the normalized value of the second input (FVn). The required YP value can
then be obtained by denormalizing Ypn

using Equation (8).

YP = 13(YPn + 1) + 20 (8)
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3.2. Plastic Viscosity Prediction

Similarly, MD and FV were used to predict PV using ANN. The model was trained using 70%
of the obtained data while 30% of the data for testing the model performance. Figures 7 and 8 show
cross-plots indicating the high match between the measured and the predicted
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PV values from the developed ANN model. The high accuracy of the developed model can be
pointed out from the high R-value of 0.95 for training and 0.94 for testing in addition to low AAPE of
4.9% and 5.7% for training and testing, respectively.

Afterwards, an empirical equation was obtained from the developed ANN model to calculate
PV from MD and FV. The normalized PVn was first calculated using Equation (9) with the optimized
weights and biases listed in Table A2 (Appendix B). MDn and FVn are the normalized input parameters
following the procedures described in Appendix A.

PVn =

 N∑
i=1

w2i

 2

1 + exp
(
−2

(
MDn ×w1i,1 + FVn ×w1i,2 + b1,i

)) − 1


+ b2 (9)
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The denormalized value for the output (PV) was finally calculated from the normalized value
(PVn) using Equation (10).

PV = 22.5(PVn + 1) + 11 (10)

3.3. Apparent Viscosity Prediction

Another ANN model was developed to estimate AV based on MD and FV. The obtained data are
partitioned into 70/30 ratios for training and testing the model, respectively. Figures 9 and 10 show the
high agreement between the measured and the predicted AV values from the developed ANN model
as shown in the cross-plots. The high accuracy of the developed model can be confirmed from the
high R-value of 0.98 for training and 0.92 for testing, in addition to the low AAPE of 2.8% and 5.6% for
training and testing processes, respectively.Sensors 2020, 20, x 12 of 19 
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Following that, the empirical correlation was extracted from the developed model to calculate AV
directly from MD and FV without the need to run the model. The normalized value AVn would first be
calculated using Equation (11), the needed weights and biases for this equation are listed in Table A3
(Appendix B).

AVn =

 N∑
i=1

w2i

 2

1 + exp
(
−2

(
MDn ×w1i,1 + FVn ×w1i,2 + b1,i

)) − 1


+ b2 (11)

Finally, AV can be estimated using Equation (12).

AV = 28(AVn + 1) + 23 (12)

3.4. Apparent Viscosity Model Validation

Based on the literature, two general models were developed to evaluate the mud rheology using
mud weight and Marsh funnel viscosity. One was introduced by Pitt [54] to predict the apparent
viscosity from mud density and Marsh funnel measurements, as stated in Equation (13). Later, the
previous model was modified by Almahdawi et al. [55] as shown in Equation (14), yielding more
accurate results compared to Equation (13).

AV = D(T− 25) (13)

AV = D(T− 28) (14)

where AV is the apparent viscosity of the drilling fluid (cP), and the D was the density of mud (g/cm3),
and T is the Marsh funnel viscosity (s).

The developed AV correlation was validated by comparing its results with the previously published
approaches. To verify the developed model, the testing data of MD and FV were utilized to estimate
AV using the two previous models in Equations (13) and (14) and the newly developed ANN-AV
model. The obtained results showed that the ANN model outperformed with R2 of 0.94 compared
to R2 of 0.63 for both Equation (13) and Equation (14), respectively as shown in Figures 11 and 12.
The superiority of the developed ANN model over the other models can be also indicated in Figure 12,
which shows that the error of the developed ANN model was only 3.4% AAPE compared with 63.8%
AAPE for Equation (13) and 55.8% for Equation (14).
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4. Conclusions

Actual field measurements (200 data points) were used to build new ANN models to predict the
rheological parameters of high-bentonite mud (HBM) while drilling. The following conclusions can be
drawn based on the findings of this study:

1. The new ANN models can predict the rheological parameters (PV, YP, and AV) for HBM while
drilling based on MD and FV with high accuracy (R-value was greater than 0.90 and AAPE was
less than 6%).

2. The optimized models were developed using a network of a single hidden layer with 20 neurons
processed by Levenberg-Marquardt algorithm. The optimum training rate was 0.12 for developing
the ANN models. Tan-sigmoidal was used as a transfer function to get the best results with the
linear function as an activation function for the output layer.

3. The developed ANN-based empirical equations provide a practical way to estimate the rheological
parameters of HBM directly without requiring any special programs or compilers.

4. The developed ANN-based model for the apparent viscosity outperformed the previously
published correlations.
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AAPE Average absolute percentage error
R Correlation coefficient
tansig Hyperbolic tangent sigmoid transfer function
logsig Log-sigmoid transfer function
elliotsig Elliot symmetric sigmoid transfer function
radbas Radial basis transfer function
purelin Linear transfer function
Tribas Triangular basis transfer function
hardlim Hard-limit transfer function
satlin Saturating linear transfer function
trainlm Levenberg-Marquardt backpropagation
trainrp Resilient backpropagation
trainbr Bayesian regularization
trainc Cyclical order incremental update
traingda Gradient descent with adaptive learning rule backpropagation
traingd Gradient descent backpropagation

Appendix A

The inputs should be normalized between [−1 and 1] to calculate the values MDn and FVn, then these values
can be used within the developed set of equations to estimate the normalized values of Yp, PV, and AV using
Equations (7), (9), and (11), respectively. The normalization can be done using the two-point slope form as shown
in the following equation:

Y−Ymin
Ymax −Ymin

=
X−Xmin

Xmax −Xmin
(A1)

where Y is the normalized value of the input parameter, Ymin = −1, Ymax = 1, X is the input parameter (MD or FV),
Xmin is the minimum value of the input parameter, and Xmax is the maximum value of the input parameter.

Y = 2×
(

X−Xmin
Xmax −Xmin

)
− 1 (A2)

Appendix B

Table A1. Extracted constants for estimating the normalized Ypn
in Equation (7).

i
W1i,j W2i b1,i b2

j = 1 j = 2

1 −6.438 −1.722 −0.976 5.256 −0.646
2 −3.871 −5.183 −1.309 5.189
3 1.196 8.918 1.450 −4.763
4 5.324 3.405 −0.843 −5.262
5 −4.281 −3.710 0.938 5.971
6 −0.898 8.725 −1.511 −4.598
7 −6.191 0.259 0.783 3.726
8 −6.592 −0.724 0.333 0.379
9 7.256 1.198 0.466 −1.105

10 5.796 1.522 0.252 3.285
11 5.534 −1.909 −0.561 3.017
12 −5.377 −10.789 −0.131 −4.180
13 −0.876 −10.431 −0.192 0.002
14 5.633 −2.006 −1.256 3.742
15 5.424 −3.472 0.839 3.876
16 5.851 −7.147 0.596 3.011
17 −4.425 2.739 −0.628 −5.963
18 −9.930 −3.096 0.126 −1.936
19 −5.837 12.148 0.667 −5.094
20 −9.246 1.508 −0.581 −5.767
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Table A2. Constants for estimating the normalized PVn in Equation (9).

i
W1i,j W2i b1,i b2

j = 1 j = 2

1 3.457 4.020 0.190 −7.611 0.811
2 −5.002 3.575 1.172 6.281
3 −5.545 −3.368 −0.390 5.267
4 −6.538 −1.564 −0.718 2.211
5 5.248 −2.050 −0.798 −4.631
6 −2.253 3.617 −0.827 3.458
7 −3.930 6.908 0.134 2.085
8 −9.102 5.892 0.675 3.095
9 −1.800 −7.060 0.258 −2.057

10 −1.567 4.346 0.584 −3.198
11 10.680 −7.060 −0.188 1.384
12 2.985 −0.144 0.230 −0.355
13 −3.206 1.819 −0.608 0.834
14 −1.983 −0.408 0.274 −0.381
15 −5.065 1.269 −0.124 −2.345
16 −0.031 −9.201 0.150 −4.596
17 −4.567 −5.151 −0.424 −2.586
18 6.310 0.927 −1.990 6.763
19 2.492 5.563 0.158 6.596
20 −6.164 0.435 −1.146 −5.166

Table A3. Constants for estimating the normalized AVn in Equation (11).

i
W1i,j W2i b1,i b2

j = 1 j = 2

1 7.678 −2.892 0.384 −4.868 −0.365
2 3.632 −5.384 −1.561 −6.839
3 4.647 4.557 0.499 −2.401
4 −5.234 −2.113 −0.325 5.115
5 6.199 0.612 0.510 −4.399
6 −6.369 3.674 1.956 2.124
7 −2.347 5.874 −0.911 −2.496
8 0.733 −6.371 1.034 −5.309
9 −8.594 3.012 −1.277 1.524

10 1.460 −3.995 −1.316 1.886
11 7.201 −9.123 −0.219 −0.057
12 7.542 6.624 −0.229 −1.789
13 −1.736 −7.167 0.574 −1.700
14 −2.995 −0.354 0.103 −10.009
15 5.760 3.549 0.693 2.579
16 −8.152 0.364 0.029 −2.345
17 −2.961 5.941 0.593 1.817
18 0.420 7.370 −0.733 3.554
19 −8.938 −2.516 −0.356 −6.634
20 −4.404 −1.935 −0.346 −9.442
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