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Abstract: This article presents a comprehensive study of human physiology to determine the impact of
body mass index (BMI) on human gait. The approach followed in this study consists of a mathematical
model based on the centre of mass of the human body, the inertia of a person in motion and the human
gait speed. Moreover, the study includes the representation of a building using graph theory and
emulates the presence of a person inside the building when an emergency takes place. The optimal
evacuation route is obtained using the breadth-first search (BFS) algorithm, and the evacuation time
prediction is calculated using a Gaussian process model. Then, the risk of the building is quantified
by using a non-sequential Monte Carlo simulation. The results open up a new horizon for developing
a more realistic model for the assessment of civil safety.

Keywords: body mass index; breadth-first search; evacuation routes; human gait; Monte
Carlo simulation

1. Introduction

According to the World Health Organization (WHO), the number of individuals who are
overweight worldwide has tripled since 1975 (http://www.who.int/es/news-room/fact-sheets/
detail/obesity-and-overweight). In 2016, more than 1900 million adults (18 or older), 340 million
children between 5 and 19 and 41 million children under 5 were overweight or obese [1]. The Body
Mass Index (BMI) is a reliable indicator of overweight, and it is commonly used to identify if a person
lies within a weight category that can lead to health problems [2]. For instance, a person is considered to
be obese if his or her BMI is greater than 30. There are a number of studies in the literature in which the
BMI is calculated on the basis of weight and height [3–7]. Nevertheless, the Center for Disease Control
and Prevention (CDC) states that “factors such as age, sex, ethnicity, and muscle mass can influence
the relationship between BMI and body fat. Also, BMI doesn’t distinguish between excess fat, muscle,
or bone mass, nor does it provide any indication of the distribution of fat among individuals” [8,9].
Therefore, it is relevant to consider these factors to avoid inaccuracies in BMI calculation.

The new trends in Information and Communication Technologies (ICT) have fostered the
development of countless applications in several fields, such as telemedicine and e-health. In most
applications, the BMI is used to indicate certain ways in which the physical condition of an individual
can be improved [10]. For instance, some Xiaomi products (My Band 2, 3 and My Body Composition
Scale) [11] allow customers to keep track of daily activities and, through a mobile application, consult
several health indicators such as BMI, body fat, bone mass and muscle mass in a reliable and safe way.
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Although these applications help citizens become aware of their BMI, there are several other factors
influencing this measure such as eating habits [12], lack of daily exercise [13] and stress [14], that affect
the daily routine of human beings, especially in the workplace. Taking into account these factors,
Mattila et al. [15] presented a concept for maintaining ICT-assisted health in a company, designed
to address various risks in occupational safety that allow better management of employee health.
Furthermore, Akhtar et al. [16] presented a mixed-methods approach, including user experience and a
perception survey through telemedicine services. Both studies focus on monitoring a person’s health
by providing the necessary information for a healthy life. Conversely, this study aims to make use of
the BMI provided by these applications in order to relate it to the possibility of evacuating a building
when an unforeseen event happens.

The main contribution of this article is an innovative model that allows assessing building risk
using evacuation times. The evacuation times are calculated on the basis of the nearest emergency exit
to each person in the building. The model considers two main algorithms: (1) Breadth-First Search
(BFS (https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/) for determining the
optimal evacuation route, and (2) Non-Sequential Monte Carlo simulation for determining the risk
index of the building. The building employed for validating the model is based on the laboratory of the
Institute of Applied Information Technology, which is subject to an earthquake condition. The model
incorporates the real size of the different rooms and exit pathways of the building. In order to get
realistic results, people with different physiologies are simulated. This model is based on previous
research in which the relationships between BMI at different speeds and human gait [17], and between
BMI and human walking on different types of surface (concrete, wood and ceramic) are calculated [18].
Moreover, the centre of mass, weight and height of a person are also taken into consideration in
this model.

The rest of the article is structured as follows. Section 2 presents related work in the literature.
Section 3 describes the mathematical model of human gait expressed as a function of BMI. Section 4
describes the simulation environment including the building’s representation using graphs. Section 5
presents the case study in this analysis. Section 6 presents the test results and an analysis of the
impact of BMI on human gait. Finally, a discussion about this research and future work that has been
contemplated before the implementation of a reactive emergency system is presented in Section 7.

2. Related Work

The existing literature presents different approaches to the study of human gait. For instance,
Ackermann et al. [19] presented a model based on walking optimisation using minimal energy
to predict how a patient’s gait adapts to mechanical interventions such as prosthetics or surgery,
concluding that minimising fatigue may be one of the optimisation principles governing human
pace. Likewise, Dorn et al. [20] formulated a predictive simulation framework based on energy
minimisation, which they use to simulate a regular walk, with a variety of slopes and loads transported.
This simulation is muscle-driven and includes controllers based on muscle force and stretch reflexes.
More comprehensive research is presented by Sun and Sakai in [21], in which human motion is
predicted using a model based on measurement sensors. Their study focuses on the various angles that
legs form when walking at different speeds. Similarly, Balazia and Plataniotis [22] propose a method
for gait recognition using image classifiers that can be applied to a street-level video surveillance
environment. Following a different approach, Rajagopal et al. [23] presented an open source 3-D
musculoskeletal model with hi-fi representations of the lower limb musculature of young individuals
that can be used to generate accurate gait simulations. The results suggest that the model they present
is suitable for creating adequate muscle simulations for a healthy gait. Although there is a considerable
number of studies on human gait, there is a dearth of literature regarding the influence of human
gait on public safety, and simulations regarding natural hazards are not explicitly given. For instance,
the study conducted by Wolf, Babaee and Rigoll [24] presents a deep convolutional neural network for
gait recognition in multiple views. Although this approach evaluates three different datasets (clothing
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variations, gait speeds and angle of vision), allowing to have comparable performance from different
perspectives, it does not study how to improve occupational safety or natural disasters.

When studying evacuation route modelling schemes, different approaches have been followed.
For instance, in [25], an evacuation model for low-level fires is proposed. Such model considers people’s
motion as if they were in a “fluid”, in order to obtain the maximum evacuation time. It describes
different mathematical models for each surface (room, stairs and lobby), in which people are supposed
to travel in a fixed direction and angle until they reach the nearest exit. This model has an interesting
peculiarity: if the room has more than one exit, it is divided into equal sections (smaller rooms with
only one exit). Moreover, if there are obstacles inside the room, the model considers that the person
moves in the shape of an “L” in order to reach the nearest exit. Similarly, in [26], an approach based on
the fire escape stairs of a high-rise building is presented, in which the scheme of automaton cells are
incorporated to human fatigue in the movement of a person to quantify the impact on the evacuation
time. The design of the automaton cells is based on cell separation per room, i.e., a different cell for
each room, staircase and hall. When a user arrives at the exit of one surface, he/she is automatically
transported to the next automaton cell. This process is repeated until the exit is reached. However,
in this study, the verification of fatigue was empirically obtained using a real-world scenario, and no
mathematical model was defined. In [27], an evacuation model is presented including a study that
regards chaotic movement as the main reason for injuries in people in an emergency. This model
is aimed at reducing the total evacuation time by leading people to the nearest exit. However,
this study is reduced to a simulation of a room with four exits. Furthermore, in [28], the authors
present an evacuation model that applies the functions developed by Nelson and McLennan [29] for
modelling human movement. Both studies incorporate a new procedure to solve evacuation problems
in buildings. Even though these studies consider cinematic parameters (distance, time, etc.) to calculate
the evacuation time, they disregard people’s physiology in their analysis (human gait), which brings
inaccuracies when applying their proposed models in real scenarios. Likewise, Li et al. [30] present
an approach using stairs in a multistorey elementary school, in which the spatial topology of twisted
stairs and their relationship with the floors in the event of evacuation are studied. The validation of
this study was carried out using simulations of real scenarios for showing qualitative and quantitative
consistencies of the simulated results. Finally, Yuan and Tan [31] present a model of the evacuation of a
room with obstacles, in which the evacuation analysis is conducted using automaton cells and human
behaviour including only the effect of inertia. Overall, there are certain limitations to these studies.
For instance, one concern is that they only consider a section of the area of a building, such as the stairs
or a single room. Another limitation stems from the fact that the incidence of the body weight of a
person in the evacuation is not considered. In addition, there is a lack of mathematical formulation
to describe the motion of a person, and they do not acknowledge how well a building is designed to
withstand an emergency.

In an effort to fill the gaps in the existing literature, this paper proposes a comprehensive model
based on the BMI to determine the evacuation time of a building, taking into account the physical
phenomena involved in human motion. The features of the building and the people involved are
modelled by using graph theory incorporating a building with different floors, in which each node
within the scheme represents a floor (including obstacles, doors, offices) and the relationships between
floors represent the stairs (distance between each floor accounted for unit step). The BFS algorithm is
used to define the optimal evacuation route, and the Monte Carlo simulation is utilised to indicate
the risk index of the building. The proposed approach opens a pathway to bring a more accurate and
realistic analysis to this field of study.

3. Human Gait Model Based on Bmi

This section describes the mathematical model used to calculate the evacuation time of a building.
This model is based on previous research described in [17,18], where a BMI model is designed to
recognise incidences on different types of soil.
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3.1. Centre of Mass

The centre of mass of a human body varies depending on the person’s physiology. Nevertheless,
there is evidence [32,33] that it mainly depends on sex and height, h. Taking the feet as a reference
point, the mathematical formulation to calculate the position of the centre of mass of the human body
is as follows.

x = kh; k =

{
0.565 for men

0.550 for women
(1)

3.2. Inertia of the Human Body When Walking

From the physical point of view, an inverted pendulum is a mechanism in which the centre
of mass oscillates over a pivot that contacts a solid surface. By analogy, the human gait represents
such a mechanism, in which the human body centre of mass moves following repetitive variation
(oscillation) with support on the feet (pivot), as presented in Figure 1. This idea is supported by
previous investigations, such as in [34], which proposes a new method to simulate human gait motion
based on the enhanced version of three-dimensional linear inverted pendulum. The authors of [35]
conducted an experimental study with an inverted pendulum apparatus to describe human body
motion, resulting suitable for human gait modelling. A more detailed study in this field is presented
in [36], in which the inverted-pendulum theory is compared to the six determinants of gait theory.
When using the inverted pendulum analogy to model human gait, the pendulum is formed by two
main parts: (1) leg (including the thigh) of length l and mass ml , and (2) upper part of the body with
mass mb (this value of mass includes the other leg that will swing when walking).

Figure 1. Human body represented as an inverted physical pendulum.

Focusing on the legs, they can be approximated as uniform bars. Thus, the inertia with respect to
O is given by [37,38]

Il =
1
3

ml l2 (2)

On the other hand, the upper part of the body is assumed to be a uniform cylinder. To determine
its inertia, the Steiner Theorem can be applied [38]. Then,

Ib =
1

12
mbb2 + mb(

b
2
+ l)2 (3)

Therefore, the total inertia of the human body when walking is
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Io = Il + Ib =
1
3

ml l2 +
1

12
mbb2 + mb(

b
2
+ l)2 (4)

The human body has a proportion within its parts. For instance, the authors of [39] found that,
for a male of 25.8 years of age, his height is around 8.58 times the height of his head. Another example
is presented in [40], in which the authors set a relationship between the mass of the whole body and
the mass of the limbs. Based on this criterion, let us call the relationship of human body height and
mass as α and β, respectively. Then, Equation (4) can be rewritten in terms of the total human body
mass m and height h, as shown in Equation (5).

Io =
1
3
(βlm)(αlh)2 +

1
12

(βbm)(αbh)2 + (βbm)(
αbh
2

+ αlh)2 (5)

By reducing terms,

Io = mh2(
1
3

βlα
2
l +

1
12

βbα2
b + βb(αl +

αb
2
)2) (6)

3.3. Power Injected to Walk

For this analysis, the air friction will be considered as negligible and it will be assumed that the
centre of mass follows a trajectory as described in Figure 2.

Figure 2. Motion of the centre of mass.

The person moves due to the torque produced by the force he/she injects in each step j, that is,

τ0 = Ioγ→ Fj × x = Ioγ→| Fj || x | sin θFx = Ioγ (7)

where γ is the angular acceleration, which can be represented as a function of the tangential speed vj,
as follows,

γ = v2
j /x (8)

On the other hand, the relationship between power Pj, force and speed is

Pj = Fj · vj → Fj = Pj · v−1
j (9)

By replacing Equations (8) and (9) in Equation (7):

|Pj · v−1
j ||x| sin θFx = Iov2

j /x (10)
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As F and x are orthogonal between them, the angle θFx takes a value of 90◦. Taking this fact into
consideration, and solving v from (10), the result is as follows.

|vj| = (
Pj|x|2

Io
)

1
3 (11)

The last formulation is valid under the following assumptions.

• When a person moves and has reached his/her limit speed (acceleration equal to zero), each leg
is stiff during the time of its contact with the ground, like the spokes of a wheel, which thereby
rotates without the benefit of a rim. Thus, each foot leaves contact with the ground at the same
instant as the other one touches the ground. The flexing of the knee of the free leg serves only to
keep that foot from contacting the ground as its leg swings forward, and such flexure does not
consume significant energy or change the natural period of oscillation of the leg.

• The elasticity of the tendons and ligaments are ignored.
• The force on one foot acts at a fixed point.

3.4. Critical Human Walking Speed and Maximum Power Injected

With every step j, the person changes speed, and it depends on the power injected by the person.
Nonetheless, there is a speed limit, attributed to the fact that walkers’ feet fall under gravity. Therefore,
the acceleration cannot be greater than gravity.

For a body that experiments a circular motion, acceleration is defined by [37]

|γ| =
|v2

j |
x

(12)

Solving Equation (12) for vj, and considering a value of 9.8 m/s2 for gravity, the maximum speed
is as follows,

|vmax| =
√

9.8x (13)

By replacing Equation (13) in Equation (12) and solving for Pmax,

|Pmax| =
Io(
√

9.8x
3
)

x2 (14)

3.5. Human Walking Speed Behavior

Based on the analysis developed in [41], the human walking is described as follows, when the
human walking starts, it requires an initial power, considered to be 1/3 of the maximum power. Then,
in the next few steps, the person needs to inject more power, which starts increasing (for simplicity,
this study assumes a linear increment) until the person reaches its normal speed (vn) (assumed to be
90% of its maximum walking speed). Eventually, he/she will require to stop and, for that purpose,
a fast decrease (approximated to be linear) in the injected power occurs until it becomes zero and,
in that case, it is said that the person stops his/her motion. To better understand human speed
behaviour, a schematic diagram of the power and speed of a man with BMI = OM, a total inertia of
Io = 113 [kg/m2], x = 1.143 m is presented in Figure 3.
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Figure 3. Human walking behaviour: (a) power and (b) speed [18,32].

In general, the mathematical formulation of speed is given by Equation (15).

v =


u1s + w1 for 0 ≤ s < s1

vn for s1 ≤ s ≤ s2

u2s for s2 < s ≤ s3

(15)

where

w1 = (
1
3 Pmax|x|2

Io
)

1
3 /unit step in meters (16)

vn = (
0.90Pmax|x|2

Io
)

1
3 /unit step in meters (17)

u1 =
vn − w1

s1
(18)

u2 =
vn

s3 − s2
(19)
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3.6. Distance with Every Step

In Figure 2, it is noteworthy that with one step a person travels a distance equal to

unit step = s = 2l sin θ = 2αlh sin θ (20)

The angle θ is typically about 25◦ for human walking; therefore,

s = 0.845αlh (21)

If a person walks a distance D, the total number of steps sT can be estimated using (22).
Nevertheless, s1 and s2 varies depending on the sex and BMI of the person.

A sample of 25 people with different BMIs was used. The experiment consisted in making each
individual walk. Then, the number of steps and time used to travel a certain distance were recorded.
Table 1 was obtained based on the variance of the results. The values for s1 and s2 were obtained using
the following formulations.

sT = D/s (22)

Table 1. Transition steps depending on the body mass index (BMI).

Sex BMI s1 s2

Male

Under Weight ‖rand(1, 3)‖ ‖rand(1, 2)‖
Normal ‖rand(2, 3)‖ ‖rand(1, 3)‖

Obesity Mild ‖rand(2, 4)‖ ‖rand(1, 3)‖
Average Obesity ‖rand(2, 4)‖ ‖rand(1, 4)‖
Severe Obesity ‖rand(2, 5)‖ ‖rand(2, 5)‖

Very Severe Obesity ‖rand(3, 7)‖ ‖rand(2, 5)‖

Female

Under Weight ‖rand(2, 3)‖ ‖rand(1, 2)‖
Normal ‖rand(2, 4)‖ ‖rand(1, 2)‖

Obesity Mild ‖rand(3, 5)‖ ‖rand(1, 3)‖
Average Obesity ‖rand(3, 6)‖ ‖rand(1, 4)‖
Severe Obesity ‖rand(3, 6)‖ ‖rand(2, 4)‖

Very Severe Obesity ‖rand(3, 6)‖ ‖rand(2, 4)‖
Note: the function rand(a, b) generates a uniformly random number
between a and b, while the function round(a) round the value x.

3.7. Human Walking Time Calculation

If the human walking speed is known, then the time in which the person covers a distance D with
sT , can be determined. The analysis is carried out as follows.

The definition of speed in terms of steps is given below,

v =
ds
dt

(23)

then,

t =
∫ sT

0
v−1ds (24)

The speed equation is divided into three sections (as presented in Figure 3). Then, Equation (24)
can be written as

t =
∫ s1

0

1
u1s + w1

ds +
∫ s2

s1

1
vn

ds +
∫ sT

s2

1
u2s

ds (25)
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Solving the integrals:

t =
ln (u1s + w1)

u1

∣∣∣∣s1

0
+

s
vn

∣∣∣∣s2

s1

+
ln (s)

u2

∣∣∣∣sT

s2

(26)

t =
ln (u1s1 + w1)− ln w1

u1
+

s2 − s1

vn
+

ln sT − ln s2

u2
(27)

4. Simulation Environment

A relevant factor that affects the optimal evacuation route is the place in which the person
is located when the natural hazard starts. This section presents the building structural features
represented using graph theory. This representation is used to calculate the optimal evacuation route.

4.1. Building Design

The building’s design is based on a structural graph, where nodes represent a room, exit, ladder or
another object. Moreover, relationships specify how nodes are connected to perform different analyses.
The building is composed of a 30-story structure and a ground floor. Each floor is composed of several
rooms, stairways and exits. The building’s area is 30 × 30 m2, with rooms of 5 × 10 m2 and 10 × 10 m2.
The database used in the proposed model is Neo4j (Graph Database—GDB) [42]. The graph used to
represent the building employs relationships that allow establishing links or union between objects,
i.e., it shows the adjoining rooms and set outputs that connect the rooms, as well as the sequence of
stories through a relationship (Up-stair or Down-stair). Each relationship in the proposed model is
described below.

• A (Building Node) − > CONTAINS − > 1.. ∗ (Floor Node)
• A (Floor Node) − > CONTAINS − > 1.. ∗ (Room Node) and/or 1.. ∗ (Stair Node) and/or 1.. ∗

(Exit Node)
• A (Stair Node) − > JOIN (UP− DOWN) − > Another (Stair Node)
• A (Room Node) − > JOIN (Le f t− Right− Behind−OnFront) − > Another (Room Node)

Focusing on (Room Node), (Stair Node) and (Exit Node), they have the following information.

• X-start—It represents the x-position in the matrix from where the object starts.
• Y-start—It represents the y-position in the matrix from where the object starts.
• Height—It represents the length of the object, with reference to point (x-start, y-start).
• Width—It represents the width of the object, with reference to point (x-start, y-start).
• Soil—This attribute is only for room and floor; everything will depend on the type of surface

within each object.

Considering the previous information, the floor is designed with the following process. People
are placed at a specific point (x, y) of any floor, as shown in Figure 4. Moreover, using (width, height)
building attributes, different matrices are created with dimensions MxN (width, height). Depending
on the configuration of the floor, a matrix is created per level with free boxes (0), locked (−2) and
exits (−1); the exits can be of two types: room’s door or building exit. This will depend on the initial
position of the person. Thus, we obtain a set of 31 matrices, one for the ground floor and the other
30 for each level of the building.

For more details, Figure A1 (Appendix A) shows the relational model graph of the building,
how the nodes are connected to the relationships and the content of each node.

4.2. Walking Routes

To calculate the time that a person requires to get out of a building, three stages are defined
as follows.



Sensors 2020, 20, 2899 10 of 20

• Graph—A Web application (out of the scope of this paper) has been developed, where you can
design a building (floors, stairs and rooms) to create a graph with this information.

• Building—This variable contains the design of the building, which is composed of arrays of arrays
(Figure A1 (Appendix A)).

• People inside the building—This variable (Array[4232]) contains the attributes of the person, such as
sex, weight, height, BMI and location inside the building.

The evacuation route is calculated for each person inside the building using the following as
benchmarks: initial position of the person, and nearest floor exit, as shown in Figure 4. For every
person, a twin matrix is created based on the floor in which he/she is located (one matrix per person).
The characters used in the matrix free boxes (0), blocked (∗) and exits (e).

Figure 4. A symbolic representation of one floor inside the building.

To find the evacuation optimal route, two algorithms are implemented. The former establishes
the pathway to the nearest exit as a set (x, y) position. The latter determines the distance based on
the position array. For instance, in Figure 5, a person is in position (6, 6), and must be directed to the
nearest exit in position (1, 4). By using algorithm 2, the route is calculated, as shown in Figure 5a,
with 11 boxes (distance) that the person has to walk. If the primary way is blocked, an alternative route
is calculated, as shown in Figure 5b with 13 boxes to go. However, to calculate the evacuation route,
algorithm 1 is used and each position (x, y) toward the nearest exit of the flat or the building is saved.

Figure 5. Evacuation route in a matrix using Breadth-First Search (BFS): (a) Non-blocked; (b) Blocked.

This procedure is then performed for each person (4232) inside the building, obtaining the optimal
route from an initial position (xi, yi) to the closest exit (xe, ye). Then, the exit time is calculated by
replacing the person’s variables (sex, height and weight) and the distance travelled inside the building
using Equation (27).

4.3. Building Risk Index

In this paper, the building risk index (BRI) refers to the statistical probability of not being capable
of getting out of the building in the event of a natural hazard. In order to determine the BRI, a Monte
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Carlo simulation has been conducted. It starts by setting a random number of people with different
features into different rooms and floors of the building. Then, a natural hazard condition is simulated
and the optimal route for each person is determined by means of the algorithms previously described.
As a result, the number of people who fail to get out of the building within the maximum evacuation
time is obtained, and this value is saved. This process is repeated several times. With the saved data,
the probability density function is obtained, and its mean represents the building risk index. Figure 6
presents a schematic diagram of the described process, where

• np: counter for the number of people inside the building
• n f : counter for the number of floors
• o: counter for the number of observations
• O: total number of observations
• r: increment of people in the building
• NF: total number of floors
• V1xNF: vector that contains the minimum number of people that can be inside the building,

which depends on the number of floors.
• W1xNF: vector that contains the maximum number of people that can be inside the building,

which depends on the number of floors.
• M6x0: matrix that contains the percentage of men that did not survive. The columns represent the

classification of BMI (UW, NO, OM, AO, SO, VSO), whereas the rows contain the observations.
• F6x0: matrix that contains the percentage of women that did not survive. The columns represent

the classification of BMI (UW, NO, OM, AO, SO, VSO), whereas the rows contain the observations.

Figure 6. Flowchart of the process.

5. Case Study

The experiment was carried out with a dataset containing a sample of 4232 people [43];
2284 women and 1948 men, with different heights and weights. In addition, Table 2 shows the
BMI classification established by the World Health Organization (WHO) [44], and the number of
individuals for each BMI category in the experiment.
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Table 2. Classification of BMI per Individual.

BMI Male BMI Women Classification Male Female

<20 <20 UW 25 169
20–<25 20–<24 NO 531 656
25–<30 24–<29 OM 867 768
30–<35 29–<33 AO 390 353
35–<40 33–<37 SO 114 174
>=40 >=37 VSO 21 164

In addition, for the design of the building, the structure of the Institute of Applied Information
Technology Building (InIT - ZHAW) was taken as a reference for the first floor, for the next floors the
design is as shown in Figure A2.

6. Test Results

6.1. Exit Time Prediction

An example of the distribution of people for each flat, assuming a 30-storey building is as follows,
[30, 138, 145, 147, 120, 144, 140, 140, 143, 132, 122, 142, 131, 154, 128, 144, 140, 145, 133, 145, 130,
152, 160, 145, 132, 140, 137, 155, 139, 141, 138]. This distribution is random for each sample of the
experiment, which consists of 5000 samples. Every person in the experiment has a feature called field
(x, y), which represents their position within their building floor. These values are used to obtain the
results, which are classified according to BMI. In addition, there is a defined evacuation limit time (Ts)
of 15 s and an additional increment of two seconds per floor. If the person leaves the building in a time
lower than Ts, the person “survives”; otherwise, he/she is trapped inside the building. This is tagged
as “1” or “0”, respectively, (it is used to determine the risk of the building).

The prediction of the exit time of a person is performed by using a Gaussian Process
Regression (GPR (https://scikit-learn.org/stable/modules/gaussian_process.html)), due to its
prediction accuracy compared to other models. A GPR is a supervised learning method designed to
solve regression and probabilistic classification problems. In this case, it uses the kernel by default
(sigma0 = 1.87e− 05 + noiselevel = 0.00951), obtaining a R2 score of 0.90. To optimise this process,
cross-validation is employed. It consists in adjusting a Gaussian process model using correlation
parameters that are determined by maximum likelihood estimation (MLE). An anisotropic squared
exponential correlation model with a constant regression model is assumed. Then, it computes a
cross-validation estimate of the coefficient of determination (R2), using the set of parameters found in
the dataset (with K = 20-fold estimate of the coefficient of determination is R2 = 0.991).

Figure 7 shows a sample of 30 people chosen at random to validate the GPR. In each of the cases,
the time prediction shows a standard deviation ~0.09s, concerning the simulated time. In addition,
to verify the proposed mathematical model presented in (27), Table 3 is presented. This table shows
the evacuation time for people with different gender and BMI. The results are tabulated by group.
The first group shows the evacuation time calculated using (27), whereas the second group shows the
evacuation time based on statistical observation (simulation). The results reveal a relative error lower
than 1% for all subject tests, which validates the mathematical model presented in (27).

https://scikit-learn.org/stable/modules/gaussian_process.html
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Figure 7. Predicting evacuation times with Gaussian Process Regression (GPR).

Table 3. Evacuation time verification.

Subject
Test Gender BMI Distance

[m]
Evacuation Time [s] Relative Error [%]

error = |(t− t′)/t|x100Using (27): t Statistical Observation: t′

A M 33.36 41 4.953312 4.986175 0.659082
B M 26.54 121 12.32967 12.34569 0.129786
C F 32.13 92 8.930232 8.950459 0.225988
D M 26.62 59 6.056623 6.056424 0.003286
E F 27.13 39 4.080984 4.082034 0.025722
F M 26.62 80 8.265445 8.245791 0.238352
G F 24.47 54 5.509876 5.511277 0.025421
H F 25.38 66 6.952345 6.950091 0.032431
I M 23.30 90 9.236540 9.234620 0.020791
J M 27.45 21 2.213450 2.223788 0.464882

6.2. Building Risk Index

Figure 8 shows a box plot of the percentage of people who escape the building within the
evacuation time. These values are obtained by means of a Monte Carlo simulation, which is carried out
with 5000 samples. It can be appreciated that, regardless of the BMI, males present a higher probability
of evacuation than women. Regarding BMI, it presents an inverse relationship with the percentage
of people who escape from the building. This last premise suggests that in order to reduce the risk,
it is recommended to locate people inside the building by following a hierarchy from low to high, i.e.,
people with the highest BMI should be placed in the ground floor of the building and the ones with
low BMI are suggested to be located in the upper floors.

To evaluate the risk of the building, Figure 9 shows the probability density function of the people
who did not evacuate the building. This graph represents the BRI and it follows a Birnbaum–Saunders
probability function with a mean of 3.37. According to the Federal Emergency Management Agency
(FEMA) (https://www.fema.gov/media-library-data/20130726-1730-25045-1580/femap_750.pdf),
the mean BRI value categorizes the building as “safe” under earthquake conditions. This index

https://www.fema.gov/media-library-data/20130726-1730-25045-1580/femap_750.pdf


Sensors 2020, 20, 2899 14 of 20

provides useful information for safety managers, safety officers and safety analysts to carry out
safety-based decision-making.

Figure 8. Evacuation times (People) classified by BMI.

Figure 9. Birnbaum–Saunders probability function.

7. Discussion and Future Work

This paper proposes an innovative approach to show the impact of sex and BMI on human
gait. The model incorporates graph theory to emulate building infrastructure and human physiology.
The main engines of the approach are the Breadth-First Search algorithm to determine the optimal
evacuation route, and the non-sequential Monte Carlo simulation to evaluate the risk of the building,
in addition to the use given to the prediction of evacuation times to know future problems that may
occur within a building.

The results show that BMI strongly affects the human gait, and the higher it becomes, the lower
the probability of evacuating the building (considering a building with several floors). Moreover, sex
presents an impact on human gait, that is, women exhibit a lower probability of evacuation than men.
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The proposed approach presents a pathway to develop a more realistic model to enhance
public safety. The formulation can be extended considering other metrics such as floors with
slopes, leg positions at different angles (walking uphill, downstairs and so on). Besides the human
physical fitness can significantly affect human gait. For instance, if an individual is healthy, he/she
should have a higher probability of evacuation than those with a weak body or gait disorders. Last,
the implementation of external forces that can destroy the roof and walls can be considered for
future research.
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Nomenclature

Some of the symbols and notations used throughout this manuscript are defined below for quick
reference. Others are defined following their first appearances, as appropriated.

x Centre of mass: position defined relative to an object or system of objects
h Height of a person
m Human body mass
k Centre of mass sex factor: this is a constant defined by the sex of the person
I Inertia: resistance, of any physical object, to any change in its velocity.
O Pivot: reference point over which the torque is analysed
Il Inertia of the legs with respect to O

ml Mass of the legs
Ib Inertia of the upper body (legs not included) with respect to O

mb Mass of the upper body (legs not included)
Io Inertia of the human body with respect to O
αl Legs height rate: relationship between the length of the leg and human height
βl Legs mass rate: relationship between the mass of the legs and human body mass
αb Upper body height rate: relationship between the length of the upper body and human height
βb Upper body mass rate: relationship between the mass of the upper body and human body mass
τ0 Torque that produces human body motion
j Human body counter steps
γ Human body angular acceleration

vmax Maximum speed motion
Pmax Maximum power to get maximum speed motion

Pj Power required to move the person in every step
vj Human body tangential speed with every step
v Human body tangential speed per step
s Distance travelled per step

sT Total distance travelled by the person
t Time needed to travel the total distance

Appendix A. Schemes & Algorithms

In this section, the building scheme and the algorithms for route calculation are shown.
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Figure A1. Model of the internal structure building, stored in a graph with their respective relationships
and content nodes.

Algorithm A1: Get the evacuation path
Input: grid, width, height, start
Output: An array with each of the positions (x, y) where the person walks (path)

wall, clear, goal = b’0’, b’*’, b’e’
queue = collections.deque([[start]])
seen = set([start])
repeat

path = queue.popleft()
x, y = path[-1]
if grid[y][x] == goal then

return path
end
repeat

if 0 <= x2 < width and 0 <= y2 < height and grid[y2][x2] != wall and (x2, y2) not in see
then

queue.append(path + [(x2, y2)])
seen.add((x2, y2))

end
until x2, y2 in ((x+1,y), (x-1,y), (x,y+1), (x,y-1);

until queue;
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Algorithm A2: Get the distance to walk with BFS
Input: room, width, height, xperson, yperson

Output: Exit’s x-position (row), exit’s y-position (col), distance the person must walk - # of
boxes (distance), An array with each of the positions (x, y) where the person walks
(path)

source = QItem(yperson -1, xperson -1,0);
visited = np.zeros((int(height),int(width)), dtype=int)
repeat

repeat
if room[i][j] == b’0’ then

visited[i][j] = 1
else

visited[i][j] = 0
end

until range(0, int(width);
until range(0, int(height);
q = queue.Queue(); q.put(source); visited[source.row][source.col] = 1
repeat

p = q.get()
if room[p.row][p.col] == b’e’ then

return p.row +1, p.col +1, dist, bfsPathExit(room, width, height, (xperson -1,yperson -1))
end
The function bfsPathExit is calculated with the Algorithm 2.

if p.row - 1 >= 0 and visited[p.row - 1][p.col] == 0 then
q.put(QItem(p.row - 1, p.col, p.dist + 1))
visited[p.row - 1][p.col] = 1

end
if p.row + 1 < int(height) and visited[p.row + 1][p.col] == 0 then

q.put(QItem(p.row + 1, p.col, p.dist + 1))
visited[p.row + 1][p.col] = 1

end
if p.col - 1 >= 0 and visited[p.row][p.col - 1] == 0 then

q.put(QItem(p.row, p.col - 1, p.dist + 1))
visited[p.row][p.col - 1] = 1

end
if p.col + 1 < int(width) and visited[p.row][p.col + 1] == 0 then

q.put(QItem(p.row,p.col + 1, p.dist + 1))
visited[p.row][p.col + 1] = 1

end
until q.empty() == False;
return -1
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Figure A2. Scheme of the Building: (a) 30-storey building; (b) Ground Floor.
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