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Abstract: In this paper, a nonlinear robust formation flight controller for a swarm of unmanned aerial
vehicles (UAVs) is presented. It is based on the virtual leader approach and is capable of achieving
and maintaining a formation with time-varying shape. By using a decentralized architecture, the local
controller in each UAV uses information only from the UAV itself, its neighbors, and from the virtual
leader. Also, a synchronization control objective provides a mechanism to weight between the fleet
achieving the desired formation shape, that is, achieving the desired relative position between the
UAVs, and each UAV achieving its desired absolute position. The use of a combination of a sliding
mode controller and a low pass filter reduces the usual chattering effect, providing a smooth control
signal while maintaining robustness. Simulation results show the effectiveness of the proposed
decentralized controller.

Keywords: unmanned aerial vehicle; synchronized multi-agent formation; decentralized sliding
mode control

1. Introduction

The use of an unmanned aerial vehicle (UAV) swarm brings several advantages in search
and rescue, disaster monitoring, aerial mapping, traffic monitoring, reconnaissance missions,
and surveillance [1–3]. A swarm of UAVs provides system redundancy, reconfiguration ability,
and structure flexibility, being more effective, flexible, robust, and reliable than single vehicles [4,5].
The formation control is a critical task of attempting cooperation among UAVs. In general, a formation
control problem is to find a coordination scheme to enable UAVs to reach and maintain some desired,
possibly time-varying formation or group configuration [6].

In the view of communication networks, the existing formation control approaches can be
classified into the centralized method, where a single controller is used to control the whole team
based on the information from the whole team [7] and the decentralized method, where each
team member generates its own control based on local information from its neighbors [1,2,4,8–11].
Centralized formation control can be a good strategy for a small team of UAVs. When considering
a team with a large number of UAVs, the need for greater computational capacity and a large
communication bandwidth would mandate a decentralized formation control [4].

The main structures considered for formation control of UAVs swarm are leader-follower,
behavioral, and virtual structure/virtual leader [12,13]. In the leader-follower approach [3,6,10,14],
a common leader is chosen and the rest of the agents are assigned as followers. The group leader
broadcasts its position information to the followers who then begin to follow the leader at an offset.
In the behavioral approach [15,16], several desired behaviors are prescribed for agents in this approach.
Such desired behaviors may include cohesion, collision avoidance, obstacle avoidance. In the virtual
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structure/virtual leader approach [4,9,11], the entire formation is treated as a single rigid body.
The virtual structure can evolve as a whole in a given direction with some given orientation and
can maintain a rigid geometric relationship among multiple vehicles. In the virtual leader approach,
the leader is a known virtual entity and its information can be made available for each agent software.

There are several control techniques used in UAV formation control, based on distinct premises
and aiming to achieve distinct objectives. A common approach is to use a nonlinear dynamic
inversion (NLDI) which, via nonlinear functions, encapsulates the nonlinear system in a box with
virtual inputs/outputs that behaves as a linear system. This linearized system act as a set of double
integrators, that then is controlled by any linear or nonlinear technique, such as pole placement [14,17],
H∞ control [9], differential game approach [10] or sliding mode control (SMC) [8,18]. There are two
main approaches when using the NLDI fixed-wing UAV formation flight control, related to in which
frame the whole formation is described. One is to choose a global frame, such as north-east-down [9,10],
and the virtual inputs are accelerations in north/south, east/west and up/down directions. Other is
to use a leader related frame [8,14,17,18], and the virtual inputs accelerates toward forward/backward,
left/right and above/below the leader.

In References [14,17], classic controllers were designed after applying of NLDI procedure in
the nonlinear dynamics of UAVs formation flight. In Reference [10], a differential game approach is
used to achieve an optimal controller that weights between minimizing the terminal position and
velocity error of each UAV and minimizing the control effort. Another option, as in Reference [2],
is the model predictive control (MPC), which can be used to compute an optimal control output to
achieve formation control while avoiding obstacle and dealing with actuator saturation. It is however
computationally expensive, since it reevaluates, at each time instant, the optimal control output over a
finite time horizon. In Reference [2], the computational cost is partially reduced by maintaining the
previously computed control output and reevaluating only when certain trigger events indicates that
the control output must be changed, which works well in steady maneuvers, such as straight level
flight or in constant-rate turns. In all of these approaches [2,10,14,17], the project does not account for
the effect of disturbances or model uncertainty. Robust [8,9,11,18,19] and adaptive [1] approaches are
appropriate for tackling this problem, where robust approaches usually has fast response but has a
high control effort and/or chattering, whereas adaptive approach has a slower convergence, but uses a
smoother control signal. In this way, the robust approach is recommended if precision of the formation
is more important than control effort. In Reference [9], the proposed H∞ linear controller is robust
to noises, disturbances, and delays in communication between the UAVs. The SMC is an interesting
technique since it, ideally, can completely compensates the effects of model uncertainties and bounded
disturbances. As disadvantage, it provides a discontinuous, chattering control signal whose source is a
signum (sign) function [11,19,20]. A possible solution is to change this signum function to a saturation
(sat) function, as in our previous work for UAV formation flight [18], but this generates a trade-off
between precision and chattering. Another solution is the use of a second-order SMC (SOSMC) [21,22],
which uses the integral of the chattering signal as control input of a plant. A generalization of the
second-order SMC is the low-pass filter (LPF) [23–26]. The integral, or the more general low-pass
filter, is included as part of the plant model, which improves precision. For example, in Reference [23]
an architecture with sliding mode control and low pass filter is proposed for synchronous position
control for multiple robotic manipulator systems. However, its control law involves the computation of
derivatives whose order is higher than the plant order, which can difficult implementation for example
in an embedded system. In Reference [24] an attitude controller for the reentry of a space vehicle
based on low pass filter SMC architecture is proposed. Differently from, for example, Reference [23],
the LPF in Reference [24] is used to filter only the signal component that contains a signum function,
while bypassing the smooth component of the control signal directly to the plant. This approach,
compared to the approach in Reference [23], avoids the computation of higher-order derivatives.

In this paper, using an LPF-based SMC approach, a decentralized controller for a time-varying
synchronized formation of multiple UAVs with a virtual leader is proposed. It is considered that each
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UAV is subject to unknown bounded disturbance. The computation of higher-order derivatives is not
required. This is achieved by decomposing the control signal in smooth and in chattering components
and filtering only the chattering component. Compared with Reference [24], which considers a single
space vehicle, the proposed controller considers a synchronized and decentralized formation of
multiple UAVs. In a synchronized formation, multiple UAVs simultaneously converge to desired
positions. In comparison with Reference [23], which uses LPF SMC for synchronized position control for
multiple robotic manipulator systems in a ring-link communication topology, the proposed controller
not require computation of higher-order derivatives, a more general information exchange topology
is adopted, and the problem of UAV formation flying is considered. Different from our previous
work [18], the proposed controller uses an LPF for chattering attenuation. The finite-time convergence
to a linear sliding surface is proven by introduction of an appropriated Lyapunov function candidate
and simulation results show the effectiveness of the proposed control architecture.

To use the LPF-based SMC, the upper bound of the disturbance must be known. Most of this
disturbance is better described in the wind frame of the aircraft. For example, a model uncertainty
can affect the lift force computation. The difference between the true and computed lift forces is
equivalent to a disturbance force applied in the lift direction. Similar discussion can be made of the
thrust, drag and side forces. If the NLDI linearizes the system in the leader’s wind frame [8,14,17,18],
this upper bound can be used directly, under the assumption that the leader’s wind frame is similar
enough to the followers’ wind frames, as the fleet in formation flies approximated to the same direction.
If, however, the NLDI linearizes the system in a global frame [9,10], the wind-frame-described upper
bound must be translated to the global frame. The equations to translate the disturbance upper bound
to the global frame are developed in this paper.

The main contribution is now summarized. A formation flight controller is developed that
includes, in a single controller, the following characteristics:

• uses the robust sliding mode control technique [8,11,18,19];
• has low-chattering with low degradation in performance by the use of a low-pass filter modelled

as a plant component [23–26];
• uses a variant of the LPF SMC that is mathematically and computationally simpler than the usual

approach, and removes computation of higher-order derivatives [24];
• is a multi-agent decentralized/synchronous approach [18,23].

It is worth noting that each individual characteristic of the controller listed above has already been
developed in other papers but, to the best knowledge of the authors, there is no controller that includes
all characteristics in a single controller. It is also worth noting that, to include all characteristics in a
single controller, an appropriate Lyapunov that unifies theses characteristics is developed.

As a second contribution, a set of equations that translate the disturbance upper bound and is
derivative upper bound from the wind frame to the global frame is proposed. These equations are used
in the proposed LPF-SMC, but can be used, with minor modifications, in most fixed-wing formation
SMC or SOSMC that are described in a global frame.

The remainder of this paper is organized as follows. Section 2 defines the problem, presents the
mathematical models for the UAVs, formation flight, and communication graph. Section 3 presents the
proposed controller, equations to compute the disturbance’s upper bound, and proves the stability of
the controller. Section 4 evaluates the proposed controller by simulation against an unfiltered SMC,
where it is shown that the controller significantly reduces its chattering without significantly reducing
its performance, and Section 5 concludes this paper.

2. Preliminaries

In this section, models for an individual UAV and for a fleet formation are presented.
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2.1. UAV Model

The dynamics relating the input and output of the i-th vehicle in a fleet of n UAVs can be
described by using the so-called point-mass aircraft model. It assumes a non-rotating flat Earth with
a constant gravitational acceleration g. This model provides adequate precision to aircraft guidance
and control problems and for short-range trajectory planning. It also assumes that the intensity of
the wind is mild such that the airflow can be considered aligned with the vehicle fuselage, that is,
that the angle-of-attack and sideslip angle are null, which are reasonable suppositions to cruise flight
and coordinate maneuvers. Under these assumptions, as depicted in Figure 1, the drag force Di(t),
generated by the airflow, is aligned to the fuselage, pointing backward, whereas the lift force Li(t) is
perpendicular to the fuselage. It is assumed that the propulsive system provides a thrust force vector
Ti(t) aligned with the fuselage/airflow and in the opposite direction to Di(t) and that the net angular
momentum generated by the propulsive system is null. Finally, it is assumed that the vehicle mass mi
is (approximately) constant, i.e., the propulsive system is electric or if fuel-based, that the consumption
is small compared to the total vehicle mass. These simplified suppositions are commonly used in
the literature [9,10,27,28]. To achieve extra precision in more aggressive maneuvers, the effect of the
angle-of-attack and sideslip angle should be included in the model [14]. In general, these quantities
require a dedicated sensory system—which is usually not present in small UAVs—to these angles be
measured. In this work, the angle-of-attack and sideslip angle are allowed to be unmeasured but it is
supposed that their effect can be incorporated in the model as a bounded disturbance bi(t).

The state vector of the point-mass model of the i-th UAV is composed of its position vector pi(t) =
[ pxi(t) pyi(t) pzi(t) ]T described in the inertial Cartesian reference frame NED (North-East-Down) and
by its velocity, described in a spherical coordinate system composed by the ground speed Vi(t), flight
path angle γi(t) and course angle χi(t). By rotating the reference frame first by χi(t) around the z
axis and after by γi(t) around the rotated y axis, the i-th aircraft wind frame is obtained. Since it is
assumed that the aircraft velocity vector is aligned with its fuselage, χi(t) and γi(t) are equivalent
respectively to the yaw ψi(t) and pitch θi(t) attitude angles. The point-mass model includes also the
roll attitude angle φi(t), which is a rotation of the fuselage around the direction of the velocity vector.
The definition of the roll, pitch and yaw angles can be seen in [29]. Figure 1 shows the i-th UAV and its
vectors and attitude angles.

Figure 1. The i-th Unmanned Aerial Vehicle (UAV), its force and velocity vectors, and attitude angles.

The state change given by the derivative of pi(t) is computed as

ṗi(t) =

 ṗxi(t)
ṗyi(t)
ṗzi(t)

 = Ri(t)

Vi(t)
0
0

 = Vi(t)

cos γi(t) cos χi(t)
cos γi(t) sin χi(t)
− sin γi(t)

 , (1)

where
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Ri(t) =

cos γi(t) cos χi(t) − sin χi(t) sin γi(t) cos χi(t)
cos γi(t) sin χi(t) cos χi(t) sin γi(t) sin χi(t)
− sin γi(t) 0 cos γi(t)

 (2)

is a rotation matrix that rotates from the wind frame to the reference frame with angular velocity

ωi(t) = [−χ̇i(t) sin γi(t) γ̇i(t) χ̇i(t) cos γi(t) ]T , (3)

and the variables Vi(t), χi(t), and γi(t) can be computed by

tan χi(t) =
ṗyi(t)
ṗxi(t)

, sin γi(t) = −
ṗzi(t)
Vi(t)

, V2
i (t) = ṗ2

xi(t) + ṗ2
yi(t) + ṗ2

zi(t). (4)

The UAV dynamics is described by [9]

V̇i(t) =
Ti(t)− Di(t)

mi
− g sin γi(t) + bti(t),

χ̇i(t) =
Li(t) sin φi(t)

miVi(t) cos γi(t)
+

bψi(t)
Vi(t) cos γi(t)

,

γ̇i(t) =
Li(t) cos φi(t)

miVi(t)
− g cos γi(t)

Vi(t)
+

bθi(t)
Vi(t)

,

(5)

where the disturbance signal bi(t) = [ bti(t) bθi(t) bψi(t) ] encompasses model approximations,
parameter uncertainty, and disturbances in acceleration, generated by several sources, such as wind.
It is supposed that bi(t) and ḃi(t) are unknown but with known bounds. The subscripts t, θ, and ψ

from the elements of bi(t) means respectively thrust, pitch, and yaw. The thrust force magnitude Ti is
a function of the engine throttle; Di(t) is the magnitude of the drag force; the lift force magnitude Li
is a function of several parameters, such as air density and aircraft speed, and is adjusted mainly by
changing the elevator position and φi is adjusted by a combination of aileron and rudder positions.
The variables Ti(t), Li(t), and φi(t) are the control inputs at the i-th UAV. It can be seen that Equation (5)
presents a singularity when Vi(t) = 0. Fixed-wing vehicles must maintain non-null airspeed to
maintain its lift. Assuming null or mild wind speed, the ground speed Vi(t) is also non-null and this
singularity does not occur. It can be seen that cos γi(t) = 0 also presents a singularity in Equation (5).
This occurs only when the UAV is flying exactly in an up or down direction. However, this is not an
achieved state, except in highly acrobatic vehicles.

By defining the load factor ni(t) as [28]

ni(t) ,
Li(t)
mig

, (6)

and defining the following virtual control input

Γi(t) =

 ati(t)
aψi(t)
aθi(t)

 =


Ti(t)−Di(t)

mi

gni(t) sin φi(t)
gni(t) cos φi(t)

 , (7)

the dynamics Equation (5) can be rewritten as

V̇i(t) = ati(t)− g sin γi(t)− bti(t),

χ̇i(t) =
aψi(t)− bψi(t)
Vi(t) cos γi(t)

,

γ̇i(t) =
aθi(t)− g cos γi(t)− bθi(t)

Vi(t)
.

(8)
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By deriving ṗi(t) from Equation (1), and applying some manipulations, is obtained that

p̈i(t) = Ri(t) (Γi(t) + bi(t)) + g, (9)

where g = [ 0 0 g ]T is the gravitational acceleration vector. By defining

τi(t) = [ τxi(t) τyi(t) τzi(t) ]T , Ri(t)Γi(t) + g, (10)

di(t) = [ dxi(t) dyi(t) dzi(t) ]T ,, Ri(t)bi(t), (11)

the dynamics are finally rewritten as

p̈i(t) = τi(t) + di(t), (12)

where τi(t) ∈ R3 is a virtual controller input and di(t) ∈ R3 is the virtual disturbance described in the
reference frame.

For the controller design, the model given by Equation (12) will be used. Once the virtual control
signals are known, the original variables can be obtained. Since for any rotation matrix, R−1

i (t) =
RT

i (t), the virtual input Γi(t) can always be obtained from τi(t) by

Γi(t) = RT
i (t) (τi(t)− g) , (13)

and then Ti(t), ni(t), φi(t) can be obtained from Equation (7), which can finally be used as the input of
an inner loop controller that actuates over the engine and control surfaces [8].

2.2. UAV Formation

It is considered a formation of UAVs with a virtual leader scheme. The virtual leader is designated
here as the 0-th UAV, and consists of a virtual point with a position p0(t) = [ px0(t) py0(t) pz0(t) ]T in
space, known by all UAVs, which describes a smooth trajectory as a function of time. The results of
this work can also be used for a non-virtual leader configuration by assuming that the leader UAV can
broadcast its position to all followers UAVs.

The fleet formation is planned by the generation of the desired position pd
i (t) =

[ pd
xi(t) pd

yi(t) pd
zi(t) ]

T for the i-th UAV which is described as

pd
i (t) = p0(t) + p̃i(t), (14)

where p̃i(t) = [ p̃xi(t) p̃yi(t) p̃zi(t) ]T is the desired (time-varying) clearance, which is described in the
reference frame.

To achieve a formation shape that rotates with the leader is interesting to describe the desired
clearance p̃i(t) in the leader’s wind frame or any other frame related to the leader as

p̃i(t) = Rr(t)p̃r
i (t), (15)

where p̃r
i (t) is the clearance vector described in a leader’s frame, such as wind, and the formation

rotation matrix Rr(t) rotates from the leader’s frame to the reference frame. For example, by defining
Rr(t) = R0(t) (see Equation (2) with i = 0), it is achieved formation description aligned with the
(virtual) leader’s trajectory as in, for example, Reference [8,9]. If, instead, Rr(t) is defined as

Rr(t) = Rχ(t) ,

cos χ0(t) − sin χ0(t) 0
sin χ0(t) cos χ0(t) 0

0 0 1

 , (16)
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it is achieved a formation description aligned with the horizontal projection of the (virtual) leader’s
trajectory, used in, for example, References [14,17].

Another option is to describe the formation using a leader’s frame defined by the attitude Euler
angles yaw ψ0(t), pitch θ0(t), and roll φ0(t). This can be useful, for example, for maneuvers involving
close interaction between the leader and the followers, such as to a boom-receptacle automatic aerial
refueling. In this case, Rr(t) = Rb(t), where [29]

Rb(t) ,cos ψ0 cos θ0 cos ψ0 sin θ0 sin φ0 − sin ψ0 cos φ0 cos ψ0 sin θ0 cos φ0 + sin ψ0 sin φ0

sin ψ0 cos θ0 sin ψ0 sin θ0 sin φ0 + cos ψ0 cos φ0 sin ψ0 sin θ0 cos φ0 − cos ψ0 sin φ0

− sin θ0 cos θ0 sin φ0 cos θ0 cos φ0

 . (17)

The derivatives of pd
i (t) in Equation (14) can be computed as

ṗd
i (t) = ṗ0(t) + ˙̃pi(t), (18)

p̈d
i (t) = p̈0(t) + ¨̃pi(t). (19)

Using the Theorem of Coriolis [29], the derivatives of p̃i(t) in Equation (15) can be computed as

˙̃pi(t) = Rr(t) [ ˙̃pr
i (t) + ωr(t)× p̃r

i (t)] , (20)
¨̃pi(t) = Rr(t) { ¨̃pr

i (t) + 2ωr(t)× ˙̃pr
i (t) + ω̇r(t)× p̃r

i (t) + ωr(t)× [ωr(t)× p̃r
i (t)]} , (21)

where ωr(t) is the angular velocity between the rotating leader’s frame and the reference frame and is
given by

ωr(t) =


leader’s gyro measurements, if Rr(t) = Rb(t),

[−χ̇0 sin γ0 γ̇0 χ̇0 cos γ0 ]
T , if Rr(t) = R0(t),

[ 0 0 χ̇0 ]
T , if Rr(t) = Rχ(t).

(22)

It is worth noting that when using the non-virtual leader’s body frame, the angular velocity ωr(t)
is the body angular velocity, which can be directly measured by a gyro sensor at the leader. By using a
non-virtual leader and any of the wind frame variants, the ground velocity obtained from a GPS sensor
or from a navigation algorithm must be used. When using a virtual leader approach, its trajectory is
smooth, pre-known, and artificially generated, in a way that ωr(t) can be pre-computed analytically or
numerically with arbitrary precision depending on how the trajectory is created.

2.3. Communication Graph

Each follower UAV can exchange data with their neighbors. The communication network is
represented by an undirected graph, which means that, if an i-th UAV receives data from a j-th UAV,
this means that the j-th UAV receives data from the i-th UAV. The set of the UAVs that are neighbors of
the i-th UAV is defined as Ni.

The Laplacian matrix L represents the connectivity between the UAVs

Lij =


−aij, if j 6= i and j ∈ Ni,

∑k∈Ni
aik, if j = i,

0, otherwise,

(23)

where aij = 0 means that there is no communication between the i-th and j-th UAVs and aij > 0 means
that there is a communication link between the i-th and j-th UAVs, and the value of aij is used as
a weight to the control algorithm that is developed in this paper. If all UAVs are reachable, that is,
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if someone starts from any UAV and can achieve any-other UAV via the communication links, L is
semidefinite positive.

In decentralized controllers, the weight that is given to the information present in the own i-th
UAV is also described, which is given by the diagonal matrix Λ. The matrix H includes both the own
weight and the neighborhood weight. These matrices are given by

H = Λ + L, (24)

Λ = diag([ λ1 . . . λn ]). (25)

Note that since λ1, . . . , λn > 0 and L is semidefinite positive, the matrix H is invertible.

2.4. Formation Tracking and Synchronization Errors

The tracking error of each aircraft ei(t) = [ exi(t) eyi(t) ezi(t) ]T ∈ R3, relative to a desired position
in the reference frame, is defined as

ei(t) , pi(t)− pd
i (t). (26)

The synchronization error ∆eij(t) = [∆exij(t) ∆eyij(t) ∆ezij(t) ]T ∈ R3, which can be seen as a
relative position error between the UAVs, is defined as

∆eij(t) , ei(t)− ej(t) = pi(t)− p̃i(t)−
(
pj(t)− p̃j(t)

)
. (27)

It can be seen that ∆eij(t) can be computed without knowing the leader’s position. However,
since the computation of p̃i(t) and p̃j(t) in Equation (15) can be chosen to be dependent on the leader’s
flight direction or attitude angles, it is assumed here that the leader’s data is available to all UAVs.

It is assumed that each i-th UAV can communicate only with a correspondent set of neighbor UAVs,
Ni ⊂ {1, 2, . . . , n}. The communication graph is assumed to be undirected, connected, not change with
time, and previously known. Each UAV receives the tracking error information of other UAVs in the
fleet only through its neighbors (as, for example, in the simulation in Section 4). The virtual leader can
be seen as an extra node in the graph, that connects to every other UAV in a directed way, from leader
to each follower.

The coupled error at i-th UAV is defined as the weighted sum of its tracking error and the
synchronization error with respect to its neighbors, that is,

ec
i (t) = [ ec

xi(t) ec
yi(t) ec

zi(t) ]
T , λiei(t) + ∑

j∈Ni

aij∆eij(t) = λiei(t) +
n

∑
j=1

aij∆eij(t), (28)

in which λi > 0 weights its own tracking error and aij > 0 weights the error difference between
the neighbor UAV j of the UAV i. In the last equality in Equation (28), if j /∈ Ni then aij = 0.
The synchronization control objective is to make the coupled errors approach to zero.

2.5. A Componentwise Formation Description

It is supposed that each component of di(t) is independent of each other which implies that each
component of p̈i(t) is independent of each other. In this way, the controller design is simplified since
the description of only one axis is sufficient. A controller policy can be developed to a single axis and
then it can be directly applied to the other two.

The one-dimensional dynamics from axis l = x, y, z, of the reference frame, is obtained from
Equation (12) as

p̈li(t) = τli(t) + dli(t). (29)

Accordingly, the coupled tracking-synchronization error is obtained from Equation (28) as
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ec
li(t) = λieli(t) + ∑

j∈Ni

aij

[
eli(t)− el j(t)

]
. (30)

3. Proposed Controller

Here, a synchronous sliding mode controller is proposed. Figure 2 shows the proposed control
structure. It achieves robustness against model uncertainty and disturbance. The chattering is
attenuated by the use of a low pass filter (LPF).

Sliding mode controller LPF

Comm.
Network

 UAV  

Disturbances

Figure 2. Block diagram of the control structure.

To achieve synchronization, each UAV uses tracking errors of its neighbors to compute a sliding
surface in the coupled error space. The sliding surface at the i-th UAV for the l axis is defined as

sli(t) = ëc
li(t) + kd ėc

li(t) + kpec
li(t). (31)

As usual for sliding mode controllers, it is shown in the next subsection that sli(t) converges to
zero in finite time, and maintains equal to zero thereafter. On the sliding surface, that is, when sli(t) = 0,
the coupled error behaves according to the linear system

ëc
li(t) + kd ėc

li(t) + kpec
li(t) = 0, (32)

which has all poles in the left plane and, thereafter, is exponentially asymptotically stable for project
parameters kd, kp > 0.

The proposed control law for i-th UAV is

τli(t) = τs
li(t) + τ

f
li (t), (33)

where τs
li(t) and τ

f
li (t) are, respectively, a smooth signal and a filtered signal of the control law,

computed by

τs
li(t) = p̈d

li(t)− kd ėli(t)− kpeli(t), (34)

τ̇
f

li (t) + ξiτ
f

li (t) = uli(t), (35)

uli(t) = −sign(sli(t))η. (36)

Equation (35) defines a low pass filter with cutoff frequency ξi > 0 that converts a chattering
signal uli(t) to a smooth signal τ

f
li (t). The parameter η must be chosen by the designer to guarantee

the stability of the overall system.
The proposed control law given by Equations (33)–(36) contains only information from the virtual

leader (or from a broadcasting non-virtual leader), from the own i-th UAV, and from its neighborhood
Ni. The neighborhood information is contained in sli(t), defined in Equation (31), which is a function
of ec

li(t) from Equation (30), which is a function of the own local error eli(t) and the neighborhood
errors el j(t), j ∈ Ni.

Remark 1. The variables kp and kd define the natural frequency and damping factor of the 2nd order local sliding
surface sli of the i-th UAV from Equation (31). As can be seen in [20], these gains also define a control bandwidth,
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which must be sufficiently small to account for, for example, to actuator dynamics. Since it is chosen the same
gain kp and the same gain kd to all UAVs, it means that they have sliding surfaces that share the same control
bandwidth. This is reasonable if all UAVs have similar physical, actuator, and aerodynamic characteristics.
However, if there are distinct UAVs, the constants must be chosen to respect the control bandwidth of the UAV
with the slowest dynamics.

3.1. Disturbance Model

Measurement or computation errors and the effect of non-modeled dynamics are incorporated in
the dynamics model, given by Equation (12), as a disturbance signal described in the reference frame,
di = [ dxi dyi dzi ]

T . It is supposed that the controller has no access to di but there are known upper
bounds ∆xi, ∆yi and ∆zi on the magnitude of the components of di and upper bounds ∆̃xi, ∆̃yi, and ∆̃zi
on the derivatives of the components of di, that is,

|dli(t)| ≤ ∆li, |ḋli(t)| ≤ ∆̃li, l = {x, y, z}. (37)

These upper bounds are used to define the value of η in Equation (36), as explained in Section 3.2.
As a contribution of this paper is shown that the upper bounds on the components in the reference
frame coordinates can be computed from the upper bounds δti, δθi, and δψi on the components of the
disturbance signal in the wind frame bi(t),

|bti(t)| ≤ δti, |bθi(t)| ≤ δθi, |bψi(t)| ≤ δψi, (38)

and from the upper bounds δ̃ti, δ̃θi and δ̃ψi for the

|ḃti(t)| ≤ δ̃ti, |ḃθi(t)| ≤ δ̃θi, |ḃψi(t)| ≤ δ̃ψi. (39)

The wind frame components of the disturbances are more naturally obtained, for example,
in description of imprecision in the computation of drag or thrust forces. Assume that there is an
upper bound Ωi for the i-th UAV angular velocity ωi and define the bounds vectors δi , [ δti δθi δψi ]

T

and δ̃i , [ δ̃ti δ̃θi δ̃ψi ]
T . From Equation (11), it can be seen that

|dli(t)| ≤ ‖di(t)‖ = ‖Ri(t)bi(t)‖ = ‖bi(t)‖ ≤ ‖δi‖. (40)

The upper bounds of each component of di are

∆xi = ∆yi = ∆zi = ‖δi‖. (41)

Since Equation (11) involves two frames in which one rotates related to the other, its derivative is
obtained by using the Theorem of Coriolis [29]

ḋi(t) = Ri(t)
(
ḃi(t) + ωi(t)× bi(t)

)
, (42)

where ḋi(t) contains two components. The first, ḃi(t), is the derivative of the disturbance bi(t), as seen
by the wind frame. The second, ωi(t)× bi(t), is generated by the rotation of the wind frame related to
the inertial frame. See that a constant disturbance in the wind frame is a varying disturbance in the
inertial frame, because of its rotation. Finally, Ri(t) is used to represent the sum of these components
in the inertial frame.

For the bounds δi, δ̃i, and Ωi, it is obtained

|ḋli(t)| ≤ ‖ḋi(t)‖ ≤ ‖ḃi(t)‖+ ‖ωi(t)× bi(t)‖ ≤ ‖δ̃i‖+ ‖Ωi‖‖δi‖. (43)

In this way,
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∆̃xi = ∆̃yi = ∆̃zi = ‖δ̃i‖+ ‖Ωi‖‖δi‖. (44)

Equations (40) and (44) provide the upper bounds to the proposed controller.

3.2. Stability Proof

To analyze the overall fleet behavior, all local variables must be concatenated in vectors.
Concatenating the positions pi, virtual control inputs τi(t), and disturbances di(t) from all UAVs of
the fleet results in respectively P(t) = [ pT

1 (t) . . . pT
n (t) ]T , τ(t) = [ τT

1 (t) . . . τT
n (t) ]T , and D(t) =

[ dT
1 (t) . . . dT

n (t) ]T , all R3n vectors. In this way, the dynamics of the fleet of UAVs is given by
concatenating Equation (29) as

P̈(t) = τ + D(t). (45)

Similarly, the error and coupled error in x axis are Rn vectors given by E(t) = [ eT
1 (t) . . . eT

n (t) ]T

and Ec(t) = [ ecT
1 (t) . . . ecT

n (t) ]T which are related by

Ec(t) = (H⊗ I3)E(t), (46)

where ⊗ denotes the Kronecker product and matrix H is given by Equation (24). The concatenation of
the n UAVs sliding surfaces S(t) = [ sT

1 (t) . . . sT
n (t) ]T is obtained as

S(t) = Ëc(t) + kdĖc(t) + kpEc(t) = (H⊗ I3)
(
Ë(t) + kdĖ(t) + kpE(t)

)
. (47)

The proposed sliding mode control law is written as

τ(t) = τs(t) + τ f (t), (48)

where τs(t) and τ f (t) are computed by

τs(t) = P̈d(t)− kdĖ(t)− kpE(t), (49)

τ̇ f (t) + Ξτ f (t) = U(t), (50)

U(t) = −diag
{

η

|sli(t)|

}
S(t), (51)

with U(t) = [ uT
1 (t) . . . uT

n (t) ]T , ui(t) = [ uxi(t) uyi(t) uzi(t) ]T , and Ξ , diag([ ξ1 . . . ξn ])⊗ I3 ∈
R3n×3n.

To analyze the fleet stability, the following Lyapunov functional candidate is proposed

V(t) =
1
2

ST(t)(H⊗ I3)
−1S(t). (52)

Note that, since H and H⊗ I3 are a positive definite matrix, H−1 and (H⊗ I3)
−1 are also a positive

definite matrix, so V(t) is always positive for S(t) 6= 0.
By using Equations (45), (48) and (49), the sliding surface given by Equation (47) can be

rewritten as

S(t) = (H⊗ I3)
(

P̈(t)− P̈d(t) + kdĖ(t) + kpE(t)
)

= (H⊗ I3)
(

τs(t) + τ f (t) + D(t)− P̈d(t) + kdĖ(t) + kpE(t)
)

= (H⊗ I3)
(

D(t) + τ f (t)
)

.

(53)

Since (H⊗ I3)
−1 is constant, the derivative of Equation (52) is

V̇(t) = ST(t)(H⊗ I3)
−1Ṡ(t). (54)
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By deriving Equation (53) and after using Equation (50), V̇(t) is rewritten to

V̇(t) = ST(t)
(

Ḋ(t) + τ̇ f (t)
)

= ST(t)Ḋ(t)− ST(t)Ξτ f (t) + ST(t)U(t)

=
n

∑
i=1

(
sT

i (t)ḋi(t)− ξisT
i (t)τ

f
i (t) + sT

i (t)ui

)

=
n

∑
i=1

 ∑
l={x,y,z}

(sli ḋli − ξisliτ
f

li − |sli|η)


≤

n

∑
i=1

 ∑
l={x,y,z}

|sli|(|ḋli|+ ξi|τ
f

li | − η)

 .

(55)

The upper bounds of the disturbance and its derivative are given, respectively, by ∆li ≥ |dli(t)|
and ∆̃li ≥ |ḋli(t)|, which are computed by, respectively, Equations (41) and (44). It is shown in [24] that
|τ f

li (t)| ≤ |dli(t)| ≤ ∆li. By using these upper bounds in Equation (55), it can be seen that

V̇(t) ≤
n

∑
i=1

 ∑
l={x,y,z}

|sli|(∆̃li + ξi∆li − η)

 . (56)

By choosing η satisfying

η ≥ ∆̃li + ξi∆li + ε, ∀i ∈ {1, ..., n}, , ∀l ∈ {x, y, z}, (57)

for some arbitrarily chosen constant ε > 0, it is obtained

V̇(t) ≤ −
n

∑
i=1

∑
l={x,y,z}

|sli(t)|ε = −ε
n

∑
i=1

∑
l={x,y,z}

|sli(t)| = −ε ‖S(t)‖1 , (58)

where ‖S(t)‖1 is the 1-norm of S(t). Using the fact that the 1-norm is greater than the Euclidean norm
of the same vector, then

V̇(t) ≤ −ε‖S(t)‖, (59)

which means that V(t) and, therefore, S(t) go to zero in finite time [20]. On the sliding surface,
the system behaves as a stable linear system given by Equation (32) and the error converges
asymptotically to zero.

Remark 2. Note that the sliding surface given by Equation (47), when rewritten in Equation (53), is a function
only of the disturbance D(t) and the output of the filter τ f (t). This has two main implications:

1. Since it is shown here that S(t) → 0, it follows that τ f (t) → −D(t). In this way, τ f (t) estimates
and compensates disturbances. Since the effect of airflow is not aligned to the fuselage is a disturbance,
the presence of a disturbance compensation shows that the wind effect can be neglected in the initial model
if this effect has known bounds.

2. If the disturbance is null at t = 0, S(0) = 0 if τ f (0) = 0 and the system already starts in sliding
condition. Similarly, if the known disturbance upper bound is relatively small, the system starts near the
sliding surface and converges fast to the sliding surface.

4. Simulation

In this section, a simulation is made to show the effectiveness of the proposed controller.
A scenario of 5 UAVs with communication links described by Figure 3 is used.
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1

2 3

4 5

Figure 3. Five UAVs and their undirected communication links. The virtual leader is not shown here.
All UAVs have access to the virtual leader’s trajectory information.

The matrices

L =


2 −1 −1 0 0
−1 3 −1 −1 0
−1 −1 3 0 −1
0 −1 0 1 0
0 0 −1 0 1

 (60)

and Λ = I5 are chosen to give the same weight for the UAV own error and for each of its relative
errors. The choice kp = 0.5 and kd = 0.0625 provide a critically damped sliding surface with natural
frequency ωn = 0.25 rad/s. These gains are chosen relatively small, as a way to limit the maximum
commanded acceleration, even if the UAVs are initially far from their desired position. The low pass
filters are settled such that Ξ = I5 ⊗ I3.

A fleet with a non-rectilinear 3D trajectory is described, which is defined by the virtual leader
path given by 

px0(t) = 80 + 45t [m],

py0(t) = 20 cos(0.1t) [m],

γ0(t) = π
36 rad, (z0(0) = −100 m).

(61)

For easy visualization, a time-varying formation is considered, whose horizontal projection in the
reference frame has a V-shape and the altitude has time-varying oscillation. Accordingly, the formation
rotation matrix Rr is defined as Rχ from Equation (16) and the clearance vectors p̃r

i (t) related to the
virtual leader are

p̃r
1(t) =

 0
0

10 sin(0.1t)

 , p̃r
2(t) =

 −40
−40

10 sin(0.1t + 2π/5)

 , p̃r
3(t) =

 −40
40

10 sin(0.1t + 4π/5)

 ,

p̃r
4(t) =

 −80
−80

10 sin(0.1t + 6π/5)

 , p̃r
5(t) =

 −80
80

10 sin(0.1t + 8π/5)

 .

(62)

The initial position of each UAV is defined as

p1(0) =

 60
0
−100

 , p2(0) =

 20
−30
−100

 , p3(0) =

 50
20
−100

 , p4(0) =

 10
−50
−100

 , p5(0) =

 20
80
−100

 . (63)

The initial velocity of each UAV is defined as

ṗ1(0) =

50
5
0

 , ṗ2(0) =

40
10
0

 , ṗ3(0) =

 45
−10

0

 , ṗ4(0) =

 40
−5
0

 , ṗ5(0) =

45
0
0

 . (64)

The disturbance is simulated as
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bi(t) = 0.2
[
cos(0.5t) cos(0.5t) cos(0.5t)

]T
, ∀i ∈ {1, 2, 3, 4, 5}. (65)

From Equation (65), the magnitude of the upper bound vector δi of bi(t) is computed as
‖δi‖ = 0.35. The magnitude of the upper bound vector of δ̃i is computed also from Equation (65) as
‖δ̃i‖ = 0.17.

The upper bound of each component of di(t) is computed by Equation (41) resulting in ∆xi =

∆yi = ∆zi = 0.35. By simulation experiments it is verified that Ωi = 0.17 rad/s is an upper bound for
the angular velocity amplitude; the upper bound in ḋi(t) is computed by Equation (44), resulting in
∆̃xi = ∆̃yi = ∆̃zi = 0.23. By choosing ε = 0.42, it is obtained from Equation (57) that η = 1.

The system is implemented using an ode4 Runge-Kutta solver, with a fixed-step size of 1 ms.
Since it is impossible to perfectly simulate the effect of a chattering input signal in a continuous
differential equation, the controller output is evaluated at 10 ms time steps and maintained constant
between time intervals.

For comparison purposes, the unfiltered synchronous formation flight controller presented in
Reference [18] is also simulated. It is configured to be as similar as possible to the proposed controller.
The first order sliding surface is defined with the same natural frequency as the proposed controller,
that is, ωn = 0.25 rad/s. By using the same upper bound ∆xi = ∆yi = ∆zi = 0.35 and by choosing
the same ε = 0.42, it is computed η = 0.77. Other parameters are exactly the same as the proposed
controller.

Figure 4 shows the desired trajectory for each UAV in black, and the trajectory achieved by
each UAV in distinct colors. Square and ‘*’ markers show respectively the desired and achieved
positions in specific and equally spaced time instants. When a ‘*’ is inside the square, the UAV is in its
desired position.

(a) Trajectory (3D view)
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1500
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]

UAV 1
UAV 2
UAV 3
UAV 4
UAV 5
pd

i

(b) Trajectory (above view)
Figure 4. Desired trajectory and UAV position.

Figure 5 shows the formation flight error components exi, eyi, and ezi for each i-th UAV for both
controllers. Figure 6, shows the coupled error of each i-th UAV, which is given by Equation (46) for
both controllers. It can be seen that, for both controllers, the system rapidly enters in sliding mode,
the coupled errors slide in the prescribed linear sliding surface and achieve the performance described
by the linear system that defines the sliding surface. It can also be seen that the error converges to zero,
which shows that both controllers completely compensate for the added input disturbance.

Figure 7 shows the controller output τxi, τyi, and τzi for each i-th UAV, which is generated by

adding the smooth τs
i control signal and τ

f
i , obtained by filtering the chattering signal Ui in the

proposed controller, or is the unfiltered control signal in the controller from Reference [18]. As can
be seen, the proposed control output is smooth, whereas the control output from the unfiltered
SMC chatters.
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(a) Unfiltered sliding mode control (SMC).
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(b) Low-pass filter (LPF) SMC.
Figure 5. Position errors for all UAVs.
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(a) Unfiltered SMC.
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(b) LPF SMC.
Figure 6. Coupled errors for all UAVs.

(a) Unfiltered SMC. (b) LPF SMC.
Figure 7. The controller output for all UAVs.
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5. Conclusions

A decentralized architecture for synchronous formation flight of UAVs based on sliding mode
control with a low pass filter was proposed. The use of the SMC technique provides robustness to
disturbances, in a way that the system slides in the prescribed sliding surface even in the presence of
disturbances. The LPF virtually removes the chattering while maintaining the convergence to a null
error in steady-state. In the proposed architecture only the chattering component of the control signal
is filtered. As a result, the controller has a simpler expression when compared to recent results of the
literature, such as in [23]. Also, it is presented an equation that is used to compute the upper bounds
in the disturbance and in its derivative to a formation described in a global frame. This equation
assumes that the upper bounds are known in the wind frame of each follower UAV. It is proved that
the proposed controller is stable, achieving a prescribed sliding surface in finite time.

For future work, more realistic models for UAV and wind gusts can be implemented. Also, it is
desired to implement other SOSMC, such as presented in References [21,22], in the context of the
synchronous formation flight.
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26. Xu, B.; Li, J.; Yang, Y.; Wu, H.; Postolache, O. A Novel Sliding Mode Control with Low-Pass Filter for
Nonlinear Handling Chain System in Container Ports.Complexity 2020, 2020, 7254503. [CrossRef]

27. Han, T.; Guan, Z.H.; Wu, Y.; Zheng, D.F.; Zhang, X.H.; Xiao, J.W. Three-dimensional containment control for
multiple unmanned aerial vehicles. J. Frankl. Inst. 2016, 353, 2929–2942. [CrossRef]

28. Anderson, J.D., Jr. Introduction to Flight, 3rd ed.; Mcgraw-Hill: New York, NY, USA, 1988.
29. Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation; Wiley-Interscience: New York, NY, USA, 2003.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/icuas.2017.7991441
http://dx.doi.org/10.1016/j.comcom.2020.01.076
http://dx.doi.org/10.1016/j.ins.2018.06.061
http://dx.doi.org/10.1016/j.conengprac.2007.01.004
http://dx.doi.org/10.1109/icuas.2019.8798246
http://dx.doi.org/10.1016/j.jfranklin.2018.01.017
http://dx.doi.org/10.1109/TSMC.2018.2875267
http://dx.doi.org/10.1016/j.automatica.2019.108704
http://dx.doi.org/10.1177/0959651811401303
http://dx.doi.org/10.1109/cgncc.2016.7828761
http://dx.doi.org/10.1007/s12046-017-0722-9
http://dx.doi.org/10.1155/2020/7254503
http://dx.doi.org/10.1016/j.jfranklin.2016.05.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	UAV Model
	UAV Formation
	Communication Graph
	Formation Tracking and Synchronization Errors
	A Componentwise Formation Description

	Proposed Controller
	Disturbance Model
	Stability Proof

	Simulation
	Conclusions
	References

