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Abstract: This paper proposes a method that improves autonomous vehicles localization using
a modification of probabilistic laser localization like Monte Carlo Localization (MCL) algorithm,
enhancing the weights of the particles by adding Kalman filtered Global Navigation Satellite
System (GNSS) information. GNSS data are used to improve localization accuracy in places with fewer
map features and to prevent the kidnapped robot problems. Besides, laser information improves
accuracy in places where the map has more features and GNSS higher covariance, allowing the
approach to be used in specifically difficult scenarios for GNSS such as urban canyons. The algorithm
is tested using KITTI odometry dataset proving that it improves localization compared with classic
GNSS + Inertial Navigation System (INS) fusion and Adaptive Monte Carlo Localization (AMCL), it is
also tested in the autonomous vehicle platform of the Intelligent Systems Lab (LSI), of the University
Carlos III de of Madrid, providing qualitative results.

Keywords: localization; LIDAR; GNSS; Global Positioning System (GPS); monte carlo; particle filter;
autonomous driving

1. Introduction

Autonomous vehicle localization is the problem of estimating its position, determined by the
x and y coordinates in a map and its orientation. This localization must be as accurate as possible
since many vehicle’s modules, such as control or path planning strongly depend on how good
it is. Errors in localization can cause the vehicle to have an undesirable behavior or to even not
being able to follow the desired path. Localization techniques can be divided mainly in mapping
or sensor based [1]. Global Navigation Satellite System (GNSS) information is commonly used to
solve localization problems using a sensor. It provides a good global localization with no drift but
it has to deal with some errors from different sources. Those errors can be generated due to the
satellites themselves (e.g., clock inaccuracies or dilution of precision), interference in the satellite signal
(e.g., signal jamming, satellite occlusion) or signal propagation errors. That last error source includes
inaccuracies produced by different weather conditions in the ionosphere and troposphere earth layers,
and by multipath interference, caused by the reflection of the satellite waves when the vehicle is
surrounded by large obstacles (high buildings or trees) [2,3].

High precision GNSS receivers, like Real Time Kinematic (RTK) or differential GPS, improves
accuracy considerably but they have commonly a very high cost and they don’t solve some
accuracy errors. On the other hand, laser probabilistic localization methods, like Monte Carlo
Localization (MCL) [4] can compare a precomputed map with the laser readings to acquire a precise
position and orientation of the vehicle. The problem presented by this kind of algorithms is the
opposite that with GNSS; in open environments with less map features, their accuracy decreases
significantly. Here, particles of the filter would disperse generating different clusters of particles far
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away from the actual localization. This is known as the kidnapped robot problem and is a common
localization error for probabilistic methods like MCL [5].

To solve those autonomous vehicle’s localization problems, many different solutions have been
proposed. One of the most known solution includes the fusion of different localization sources using
Kalman filter based methods, i.e., Extended Kalman Filter or Unscented Kalman Filter [6]. This method
commonly fuses GNSS, IMU and other different odometry sources like the one generated by the
wheels encoders or LIDAR/camera odometry.

Fusion filters based on Kalman fuses all the localization sources and generates a more accurate
estimation of the position, but they depend strongly on the accuracy of the GNSS measurements, as it
is the only absolute localization source i.e. the only one that does not have drift.

Furthermore, GNSS can suffer different problems, being one of the most common the multipath
problem, which is a common reaserch topic where several works try to reduce it. In [7], a digital map
of the environment is generated with OpenStreetMaps to prevent these errors and in [8], multipath is
estimated and mitigated using a particle filter. However, the results don’t give enough accuracy and
they depend on the information in OpenStreetMaps which is not always available.

Another solution adopted by some researchers consists in probabilistic localization, which can
be performed using different sensors such as LiDAR [9], cameras [10,11] or magnetometers [12].
One of the most common method for this kind of solution is Monte Carlo Localization (MCL) [4].
MCL works as a probabilistic particle filter that uses the match between the LiDAR sensor and the
map as a feature for each particle that determines the probability of existing in the next iteration. As an
improvement for MCL, Adaptive Monte Carlo Localization (AMCL) outperforms classic (MCL) [13]
as it uses Kullback-Leibler Distance (KLD) sampling to make the filter converge faster. Particle filter
localization methods can be applied to autonomous vehicles, like in [9], that uses a 2D LiDAR and a
map with the features of the road.

Both previously commented algorithms, GNSS and MCL have a good performance, but also have
some drawbacks. To get the best from every algorithm, several works explore the idea of combining
the two sources of information to improve the localization. Most of the works available in the literature,
improve MCL by resetting the calculated position when it differs too much from the GNSS position,
in other words, the kidnapped robot problem is corrected once it is detected. Those improvements
consists of resetting methods, which makes MCL more robust. An example of this is [14], where the
kidnapped robot is detected and then solved using the Expansion resetting method.

Different localization sensors are used to solve this problem like in [15], where GNSS is used to
detect and solve it, or in [16], where WiFi signal detection provides information about the localization
error. These methods give good results as they are able to detect and solve the kidnapped robot error
in most of the cases. However, the time necessary to detect and solve this problem adds further error to
the system, as during this time, the vehicle is driving with a wrong localization. That localization error
is unacceptable for autonomous driving vehicles as it would result in wrong control or path planning
commands and thus, incorrect behavior. Consequently, it seems a reasonable assumption that the
prevention of the kidnapped problem, as it is intended in this work, would lead to better results.

The work of [17] gives a solution based on replacing particles with a low degree of laser fit on
the map with new particles according to the probability density given by the sensor, but it can have
localization problems in empty maps as no GNSS is used. In [18], GNSS data are used to generate new
particles on the filter and to eliminate distant ones. However, this method doesn’t handle orientation,
it only considers the position. Furthermore introducing particles based on GNSS data in all the cycles
of the filter, would increase the noise of the localization and unfortunately no quantitative results of its
performance are provided. As shown in [19], fusion of both sensors based on particle weight gives
better results than adding new particles based on GNSS data. However, that work does not handle the
kidnapped robot problem, as no strategies to recover are performed when the GNSS and particle filter
positions differ considerably.
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In contrast to all the approaches mentioned above, our method continuously uses GNSS data
in the filter in both ways: modifying the weight of the particles, and injecting new ones if needed,
avoiding kidnapped robot problem and making unnecessary to detect and reset states where the robot
is badly localized. Furthermore, the method is designed to not replace directly the particles with new
ones based on GNSS data, but to calculate its probability considering multiple parameters of both
localization sources, making the particle filter more stable, an reducing noise generated by adding
directly new particles on every cycle of the filter. Besides, we also consider orientation error when
calculating the new probability, which is not done in most of the reviewed works.

The rest of the paper is structured as follows: Sections 2 and 3 describe the software architecture
and the method proposed respectively, Section 4 evaluates the localization with real data and in
Section 5 the conclusions are exposed.

The proposed method is coded and tested with the KITTI Dataset [20]. The source code of this
method is publicly available at https://github.com/midemig/gps_amcl so anyone can replicate the
experiments described in this work.

2. Sensors and Software Architecture

This section describes the software architecture of the tests, including the configuration of the
different modules used. This architecture includes the AMCL implementation for Robot Operating
System (ROS) [21] from [4], the GNSS/INS based localization module [22] and the map generation
module, in charge of the generation of the map, used by AMCL module.

2.1. Software Modules

In this section, the specific version of the software modules used in the comparison are described.

2.1.1. AMCL

This algorithm outperforms original MCL [13] and is chosen to be the probabilistic LIDAR
localization used. Specifically, it is used the AMCL ROS node implementation as it is a stable and
maintained version of the algorithm. Most of the parameters’ configuration is set to the default values
values, however, the most relevant ones are shown in Table 1, were the odometry model defines the
equations that better describe the movement of the vehicle, the laser model describes the method used
to calculate the probability of being at a certain position given a laser measurement and max particles
and beams represents the maximum number of possible positions and laser beams around the vehicle
respectively (more particles and beams can increase localization accuracy, but also computation time).

Table 1. Adaptive Monte Carlo Localization (AMCL)’s most relevant parameters.

Parameter Value

Odometry model differential
Laser model likelihood filed
Max particles 2000
Max beams 360

When the AMCL module is used in a map with a small number of reference obstacles
surrounding the vehicle, the kidnapped robot localization error can easily appear, as shown in Figure 1,
where multiple particles clusters appear due to the lack of features in the map, and the localization
obtained by AMCL is inaccurate.
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Figure 1. AMCL kidnapped robot localization error. Different clusters rounded in blue, red dots are
the filter’s particles and red and green arrows are ground truth.

2.1.2. Fusing Method

Kalman filter is commonly used for fusing localization data from different sources giving, as
a result, a more accurate one. The software version used in this work is the robot localization ROS
implementation [22]. Unscent Kalman filter is used as it is known to deal better with non-linearities in
the filtering process [23]. In order to improve GNSS localization, it is fused with IMU data.

Robot localization package can fuse n different localization sources enhancing single-sensor based
localization, and providing useful information such as the covariance of the position, which is of great
relevance in this work.

2.1.3. Map Generation

To use AMCL localization, a pre-generated map of the environment is generated using different
Simultaneous Localization and Mapping algorithms [24]. As later on, GNSS information will be added
to the localization step, this map must be generated with GNSS localization data. That means that a
high precision GNSS receiver is needed, but only for the map generation. The Laser information is
transformed accordingly to the GNSS position at each time step and then accumulated into the map
using gmapping Simultaneous Localization and Mapping (SLAM) method [25]. The generated map
(Figure 2) has all the features needed later by the AMCL algorithm to match a new laser scan with it.

Figure 2. Map generated of one of the KITTI sequences.
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2.2. Vehicle Sensor Setup

Although the results presented in the test section were performed using KITTI dataset,
this algorithm can be implemented in any vehicle that fulfills some specified sensor requirements that
are explained in this subsection:

2.2.1. LiDAR

LiDAR Information is necessary to provide map information, although other 3D output may be
used, the recommendation for this application, where accuracy is a key point, it is to use 3D Laser
scanner technology. KITTI data provides a 64 layers 3D laser scanner. As 360 degrees 2D LiDAR
scanner is needed to get environment information and match it with the pre-generated map using
AMCL, the 3D laser scanner information is converted to 2D. This is done by choosing a minimum
and a maximum height from the LiDAR, the multiple layers can be converted into a single 2D one.
These parameters are selected to incorporate the maximum amount of features from the environment,
but removing the ground plane, as it would only increase the noise in the particle filter. Other LiDAR
configuration can be used, the test vehicle of LSI where this algorithm was implemented and tested is
based on a 32 layers LiDAR, which provide similar results.

2.2.2. GNSS Receiver

For this application, a Low-cost GNSS receiver can be used. Instead of high-cost RTK or differential
GPS receivers, our method can work with lower accuracy in GNSS localization, making possible the
generalization of these applications [26]. As the only localization information provided by KITTI
dataset is the ground truth, it is considered to not have any zero error. Here, a low-accuracy GNSS
receiver can be simulated by adding Gaussian noise to every ground truth measure, providing output
similar to low-cost sensors [27]. The qualitative results provided on this test were performed using a
low-accuracy GPS receiver, based on PixHawk technology.

2.2.3. Inertial Measurement Unit (IMU) Sensor

IMU is the most common sensor fused with GNSS data, as it can provide position and orientation
data. KITTI database provides IMU data with extrinsic calibration information, needed for the fusion.
The PixHawk sensor unit used in the qualitative tests were performed using the PixHawk unit.

3. Method Description

Based on the original AMCL algorithm, several modifications are made to integrate GNSS data
into the loop.

In this section, all those modifications are detailed and justified. Furthermore, the resulting
algorithm is presented in Algorithm 1.

3.1. LiDAR Likelihood

The proposed solution computes a weight for each particle in AMCL by comparing the laser data
transformed to each particle position with the map. In addition to that weight, our method computes a
score of how accurate this particle is matched with the map. This score s; is computed using a Gaussian
model [28,29] for the LiDAR data, following the expression:

N %
s = 1y 1 . e 2%t (1)
N Zowe- V27

where N is the number of lasers of a laser scan, z is the distance from the laser hit point to the closest
map occupied cell and oy is the standard deviation of the laser. With this expression, we can evaluate
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how good the LiDAR measurements match with the map in every particle position, and is later used
to modify the probability of that particle to exist.

3.2. GNSS likelihood Estimation

In addition to weight calculated based on the matching of the sensor with the map, we add a
second weight based on the GNSS Kalman filtered position estimation. As for the LiDAR likelihood,
a Gaussian model is used to estimate the GNSS based weight of each particle d;, but in this case, as the
position received and each particle of the filter are three dimensional (x, y and ), the n dimensional
Gaussian model is used,

1
d; = 5
2

ST P ) o

where the received position is pp = (xg, Yk, Px) with covariance matrix X and the position and
orientation of each particle is defined with x; = (x;,y;, ;). Using this model, orientation error is
also considered when computing the GNSS based weight. Furthermore multiplying all the errors by
the inverse of the covariance matrix in the exponential part, makes position and orientation errors
scale-invariant. Here it is important to remark that the use of the covariance of the Kalman output
allows reducing the importance of this weight when the quality of the information is low.

3.3. New Particle Weight Computed

To modify the weight of every particle so that Kalman filtered GNSS data are incorporated into the
filter, the new weight of every particle is calculated by making use of the weights computed in (1), (2),
and the following equation:

Wi—pew = Wj * 8; - ky +d; (3)

where w;, the weight calculated by original AMCL, is modified in order to incorporate GNSS
probabilistic data. The weight k; is a constant and it is added to balance the importance of each
source of information. It is empirically set to 200, where it gives the best results in all the environments
tested. After this weight modification, they are normalized to make the sum of all the weights equal 1.

3.4. New Particles Generation

As the particle filter eliminates particles accordingly to its probability, the original AMCL method
adds new particles randomly distributed in the map, based on two parameters that define how often
it is needed to add those particles. A different function was defined to generate new particles Xj,e
near GNSS Kalman position and to determine the probability of generating those new particles.
The following expression defines how the new particles are generated to follow a normal distribution
centered in py with covariance .

T 1
(xnew Ynew lpnew) = /\]3 (Pk “R+ Hk (4)

where R is a random vector with distribution N[0, 1] and A, ¢ are the diagonal matrix of eigenvalues
and the eigenvectors matrix of the covariance X respectively. Besides, the probability p of generating
a new GNSS based particle at each cycle is determine as:

lf dmgan > 0

A mean,
P (Xnew|x, ) = { et (5)

0, otherwise

with

Amean = Pmax — 1

2|~
7]
R
©
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where ppy is the maximum probability allowed to generate new particles at each filter cycle and is
experimentally set to 0.01.

The addition of particles does not increase the noise in the final localization given by the particle
filter, as they are only added when the filter particles begin to considerably differ from the GNSS
localization, and the newly generated number never goes beyond the limit of 1%.This situation avoids
the creation of GNSS based particles when the filter provides accurate detection, these are generally
particularly difficult situations for the GNSS such as urban canyons.

Algorithm 1: New weight and resample of filter particles

Input: x, yy, w, z
Output: x,0y
fori =0to N do
s; = lidarLikelihood(z;);
d; = gnssLikelihood (x;, px;);
Wi —pew = W; * S; kg +dj;
end
Whew = normalizeWheigt(Wpew);
fori =0to N do
p(Xnew|x, ) = probO f NewParticle(d;);
if rand() < p(Xnew|x, ) then
| Xi_new = generateNewParticlePosition (juy);
else
Xi_pew = sampleParticle(x, Wpew) ; // Original function from AMCL

end

end

4. Experimental Results and Discussion

Two different group of experiments were performed. On the one hand, the proposed method is
tested using the KITTI odometry dataset for quantitative results. On the other hand, the LSI platform
for autonomous driving is used for qualitative results [30].

4.1. Dataset

The KITTI dataset is commonly used to test different odometry algorithms, and compare them as
it includes calibrated data from different sensors (cameras, LIDAR and IMU) and precise ground truth
for localization. The tests performed using this dataset compare the ground truth localization accuracy
with the three following methods:

e Kalman filtered GNSS and IMU. As covariance of GNSS localization is set fixed, the mean error
value is displayed for visualization purpose.

e AMCL original implementation.

e Proposed method, having the same odometry source as original AMCL and the same
parameters configuration.

For every position and orientation, euclidean distance and orientation error are compared with
the closest one in time of the ground truth (interpolating if necessary). KITTI dataset gives multiple
sequences in different scenarios. For this evaluation residential sequences were selected, since they
combine narrow and empty streets, including both types of scenarios. For every sequence, first,
a map is generated using the localization ground truth and the LiDAR data described in Section 2.1.3.
The experiments are designed to compare the proposed method with the other two considering the



Sensors 2020, 20, 3145 8of 13

worst-case scenario for our method where, at least, it needs to give similar results to the comparing
methods. Then a normal situation is tested to quantify the improvements of the proposed method.
Considering this, the following three scenarios are tested.

4.2. Empty Map

This scenario refers to situations with a low number of obstacles, i.e. lack of references for the
LiDAR points to match. This is considered to be the worst scenario for AMCL. However, GNSS has
better accuracy when it is not surrounded by obstacles that interfere with observations. Localization
error is compared for Kalman filtered GNSS and the proposed method. As it is shown in Figure 3,
localization error provided by our approach is very similar to the GNSS based, giving almost the same
values for position and orientation. This is according to the expected as the proposed method can not
improve localization accuracy with no laser information, but it proves that in empty environments it
would perform as good as GNSS based localization.

5

N —— Proposed Method (u = 0.2, 0 = 0.141)
£ 41 GNSS (u = 0.383, 0 = 0.206 )

2 34
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Figure 3. Comparison between proposed method with no LiDAR information but Global
Navigation Satellite System (GNSS) localization. (GNSS is plotted as constant of mean value for
visualitation purpose.)

4.3. GNSS Challenging Scenarios

This scenario describes the opposite problem. In an environment full of objects or an urban
environment with urban canyons, GNSS localization would fail or would give noisy measurements
with high covariance. In these cases, AMCL algorithm gives better results thanks to a map with
numerous features and objects to match with the laser points. Localization is compared in this scenario
for AMCL and the proposed method. As shown in Table 2, localization errors are similar. When no
GNSS localization is received, or it has a high covariance, the proposed method, as it is designed, has a
very similar behavior as original AMCL.
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Table 2. Comparison between proposed method and AMCL with no GNSS information.

Method  Position Mean (m) Position Std (m) Yaw Mean Yaw Std

Proposed 0.513 0.856 0.033 0.025
AMCL 0.566 0.742 0.023 0.023

4.4. Mixed Environments

The last scenario tested is a more common one where GNSS data are received with an acceptable
covariance, and the map has features unequally distributed on it, generating places with more
objects and empty places. The three algorithms are tested and compared in this scenario using
the KITTI dataset residential sequences, that include more than 45 min of recorded data in a residential
environment, but only the most relevant ones are discussed in this section.

44.1. AMCL

When evaluating AMCL performance two different localization issues can be identified. The first
one, as shown in Figure 4, presents an increase in the error due to multiple particles’ clusters that
make the filter jump from one to another, increasing the error but finally converging again to the true
localization. The second problem can be seen in Figure 5, where the kidnapped robot problem appears
around the second 180, where the localization jumps to a similar place in the map.

5

. —— Proposed Method (u = 0.185, 0 = 0.12)
E47 - GNSS(u=0.366,0=0.197)

S —— AMCL (= 0.566, 0 = 0.742 )

)

C

S

:'ﬁ

@)

a

0.5

—— Proposed Method ( u = 0.025, 0 = 0.019)
049 - GNSS (u=0.041,0=0.028)
034 — AMCL (u = 0.023, 0 = 0.023)

Yaw error (rad)

Time (s)

Figure 4. Localization error of the three methods described in KITTI sequence 36. (GNSS is plotted as
constant of mean value for visualitation purpose).
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Figure 5. Localization error of the three methods described in KITTI sequence 34. (GNSS is plotted as
constant of mean value for visualitation purpose).

4.4.2. GNSS

It is set to have a constant covariance error, so this localization maintains the same localization
error along all the sequence. In real environments, Kalman results could be even worse as GNSS
position error could be even higher in narrow streets.

4.4.3. Proposed Method

The proposed method, gives a better performance along all the path, improving localization mean
error compared to AMCL and GNSS. It outperforms the other algorithms in terms of accuracy and
stability as it has a localization error better or equal to Kalman localization method, and does not
present kidnapped robot localization problem.

Figures 4 and 5 present the localization error along the sequence and the mean error values for
sequences 36 and 34 respectively, showing how the proposed method outperforms original AMCL
avoiding the kidnapped robot problem, while maintaining the localization error below the GNSS one.

Moreover, Table 3 compares the error of the proposed method as the accuracy of the GNSS
localization decreases. As it is shown, for high GNSS accuracy, the error is close, but as the GNSS error
increases, our method is able to reduce it using the laser information, giving always better results than
the original AMCL algorithm.

Table 3. Evaluation of the proposed method errors for different GNSS mean errors in sequence 34.

GNSS Mean (m) Position Mean (m) Position Std (m) Yaw Mean Yaw Std

0.127 0.141 0.137 0.015 0.016
0.374 0.186 0.11 0.028 0.024
1.256 0.367 1.767 0.029 0.129
6.256 0.496 1.963 0.023 0.116
12.600 0.554 2.115 0.026 0.151
37.581 0.593 2.495 0.032 0.196

AMCL Robot kidnapped error
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4.5. Real Platform Qualitative Results

In addition to the evaluation using KITTI database, the proposed method is also tested in our
research platform as shown in Figure 6. As this platform does not include ground truth localization
information, only a qualitative analysis of the performance of the proposed method is possible giving,
as a result, a stable localization accurate enough to control the vehicle, solving the kidnapped robot that
this platform showed before the implementation of this method when using AMCL, and improving
the localization accuracy of the GNSS receiver.

Figure 6. Our autonomous vehicle platform testing the proposed method (left), and a visualization of
the LiDAR pointcloud and the map (right).

5. Conclusions

In this work, a novel localization method for autonomous vehicles is proposed. It consists of a
modified version of AMCL where GNSS data are integrated. As it is shown in Section 4, this method
combines the strengths of the two combined localization methods, without compromising accuracy at
any scenario, urban and non-urban. The results prove a good performance and a smooth transition
from using GNSS data when the map is featureless to using LiDAR and map data when GNSS
localization is not accurate, improving localization when both sources are available. The improvements
depend on the environment but the proposed method always gives better results, or, in the worst case,
the same results. It also gives a low-cost solution for different enviroments using low-cost sensors such
as one layer LiDAR or low accuracy GNSS receiver compared to systems that use High-cost RTK or
differential GNSS receivers and multiple layer LiDARs, making possible the generalization of these
applications. The method is tested and evaluated with a well-known database (KITTI) which is usually
used to evaluate autonomous vehicles perception and localization algorithms and with a real platform,
improving its performance thanks to a better localization. Besides, the source code of the method is
published so it can be tested and improved by anyone.
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