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Abstract: The proper spatial distribution of chickens is an indication of a healthy flock. Routine
inspections of broiler chicken floor distribution are done manually in commercial grow-out houses
every day, which is labor intensive and time consuming. This task requires an efficient and automatic
system that can monitor the chicken’s floor distributions. In the current study, a machine vision-based
method was developed and tested in an experimental broiler house. For the new method to recognize
bird distribution in the images, the pen floor was virtually defined/divided into drinking, feeding, and
rest/exercise zones. As broiler chickens grew, the images collected each day were analyzed separately
to avoid biases caused by changes of body weight/size over time. About 7000 chicken areas/profiles
were extracted from images collected from 18 to 35 days of age to build a BP neural network model
for floor distribution analysis, and another 200 images were used to validate the model. The results
showed that the identification accuracies of bird distribution in the drinking and feeding zones were
0.9419 and 0.9544, respectively. The correlation coefficient (R), mean square error (MSE), and mean
absolute error (MAE) of the BP model were 0.996, 0.038, and 0.178, respectively, in our analysis of
broiler distribution. Missed detections were mainly caused by interference with the equipment (e.g.,
the feeder hanging chain and water line); studies are ongoing to address these issues. This study
provides the basis for devising a real-time evaluation tool to detect broiler chicken floor distribution
and behavior in commercial facilities.

Keywords: broiler chicken; health and welfare; animal behaviors; precision farming

1. Introduction

In commercial poultry houses, animal floor uniformity and distribution in drinking, feeding, and
resting zones are critical for evaluating flock production, animal health, and wellbeing. The proper
distribution of chickens is an indication of a healthy flock. Currently, daily routine inspections of
broiler flock distributions are done manually in commercial grow-out houses, which is labor intensive
and time consuming. This task requires an efficient system that can monitor chicken floor distribution
and behavior automatically, to provide information for the early detection of potential problems [1–3].

Noncontact and nondestructive monitoring methods such as the machine vision-based technology
(MVT) have been suggested and tested to monitor poultry and livestock behavior and for individual
identification [4–9]. MVT has also been used to evaluate welfare status (e.g., lameness, estrus, pecking,
etc.) [10–13], and for body size or weight assessments [14,15]. For poultry housing, different versions
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of MVT have been tested for the identification of specific behaviors under given scenarios (e.g., feeding
and drinking as affected by environmental factors or enrichments) and general group behavior (e.g.,
activity index and locomotion) with or without assistance from other sensors (e.g., Radio-frequency
identification and accelerometers) [16–21]. However, most existing procedures have limitations or high
levels of uncertainty in monitoring group chicken behavior and distribution in the different feeding,
drinking, and resting zones due to higher animal density (>10,000 broiler chickens in a commercial
facility) compared to other animal (e.g., cattle and swine) facilities [7,8,22]. The “optical flow”
method for measuring broiler welfare based on optical flow statistics of flock movements recorded on
video [19,22,23], and the “eYeNamic” system for gait score monitoring in broiler houses [17,24], are
the most common vision-based methods. These systems represent the first proof of concept for broiler
welfare evaluation via computer or machine vision-based methods. However, there is no method, to
our knowledge, with a high level of efficiency and accuracy for monitoring group bird behavior or for
tracking individual birds in a commercial broiler house setting.

The back propagation (BP) neural network algorithm is a multilayer feedforward network trained
according to the error back propagation algorithm [25]. This algorithm is one of the most widely
applied neural network models. BP networks can be used to learn and store a great deal of mapping
relation data via an input-output model; there is no need to disclose in advance the mathematical
equation that describes these mapping relations. In recent years, a BP neural network algorithm was
tested and showed a high level of accuracy in monitoring the production and behavior of large animals,
e.g., pigs’ pen floor behavior recognition, rating, and body weight prediction [26–29]. Applying this
method to monitor poultry requires modifications to the algorithm and training with a large number
of animal images reflecting changes in body size.

The objectives of this study were to: 1) develop a machine vision-based method for monitoring
broiler chicken floor distribution (i.e., real-time number of birds in the drinking, feeding, and resting
zones); 2) train the BP neural network model with broiler chicken images collected at different ages;
and 3) test the new machine vision-based method in terms of its ability to identify the distribution of
broiler chickens in the feeding and drinking zones of a research poultry facility.

2. Materials and Methods

2.1. Experimental Setup and Data Collection

This study was conducted in an experimental facility (Figure 1) at the Poultry Research Center at
the University of Georgia, Athens, GA, USA. Six identical pens measuring 1.84 L × 1.16 W m were
used to raise Cobb 500 broiler chickens (21 broilers per pen) from d1 to d49 (from November 26, 2019
to January 14, 2020). Each pen was monitored with a high definition (HD) camera (PRO-1080MSFB,
Swann Communications, Santa Fe Springs, CA) mounted on the ceiling (2.5 m above floor) to capture
video (15 frame/s with the resolution of 1440 × 1080 pixels). Videos were saved as avi files in a video
recorder (DVR-4580, Swann Communications, Santa Fe Springs, CA) (Figure 1). The collected videos
were transferred to a data station in an office every three day. The files were later converted to images
using MATLAB-R2019b.
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Figure 1. Experimental setup for broiler chicken image data collection. 

For the machine-vision based method to recognize the bird distributions in the images, the pen 
floor was divided virtually into drinking, feeding, and rest/exercise zones (Figure 2). Broilers were 
raised antibiotic-free on reused litter made of pine shavings. Husbandry and management (e.g., 
feeding, drinking, lighting, bedding, and house air temperature) followed the US industry standard 
protocols and approval was obtained from the Institutional Animal Care and Use Committee 
(IACUC) at the University of Georgia.  

 
Figure 2. A top view of a pen and zone definition. The red box (1) represents the drinking area: the 
center of the nipple drinker is the center of the drinking area and its width is defined as one body 
length of a three-week-old broiler chicken; the yellow circle (2) represents the feeding area: the center 
of the tube feeder is the feeding area center; the radius of feeding zone is the tube feeder radius plus 
the body length of a three-week-old broiler chicken; and the cyan box (3) represents the overall 
detection area of the pen, so any area not included in drinking and feeding zones will be considered 
as the rest/exercise zone. 
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For the machine-vision based method to recognize the bird distributions in the images, the pen
floor was divided virtually into drinking, feeding, and rest/exercise zones (Figure 2). Broilers were
raised antibiotic-free on reused litter made of pine shavings. Husbandry and management (e.g.,
feeding, drinking, lighting, bedding, and house air temperature) followed the US industry standard
protocols and approval was obtained from the Institutional Animal Care and Use Committee (IACUC)
at the University of Georgia.

 
Figure 1. Experimental setup for broiler chicken image data collection. 

For the machine-vision based method to recognize the bird distributions in the images, the pen 
floor was divided virtually into drinking, feeding, and rest/exercise zones (Figure 2). Broilers were 
raised antibiotic-free on reused litter made of pine shavings. Husbandry and management (e.g., 
feeding, drinking, lighting, bedding, and house air temperature) followed the US industry standard 
protocols and approval was obtained from the Institutional Animal Care and Use Committee 
(IACUC) at the University of Georgia.  

 
Figure 2. A top view of a pen and zone definition. The red box (1) represents the drinking area: the 
center of the nipple drinker is the center of the drinking area and its width is defined as one body 
length of a three-week-old broiler chicken; the yellow circle (2) represents the feeding area: the center 
of the tube feeder is the feeding area center; the radius of feeding zone is the tube feeder radius plus 
the body length of a three-week-old broiler chicken; and the cyan box (3) represents the overall 
detection area of the pen, so any area not included in drinking and feeding zones will be considered 
as the rest/exercise zone. 

Figure 2. A top view of a pen and zone definition. The red box (1) represents the drinking area:
the center of the nipple drinker is the center of the drinking area and its width is defined as one body
length of a three-week-old broiler chicken; the yellow circle (2) represents the feeding area: the center
of the tube feeder is the feeding area center; the radius of feeding zone is the tube feeder radius
plus the body length of a three-week-old broiler chicken; and the cyan box (3) represents the overall
detection area of the pen, so any area not included in drinking and feeding zones will be considered as
the rest/exercise zone.
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2.2. Method for Target (Chicken) Detection

The target detection method in the current study was developed based on the color space
classification in the MATLAB tool box (MATLAB-R2019b, The MathWorks, Inc., Natick, MA).
The MATLAB tool box provides a number of different color space classification choices such as
L* a* b* (LAB) and RGB (Red, Green, Blue) for RG, RB, and GB. We compared the visualization effect
of different color space classification methods (Figure 3). The GB method was used in this study, as it
(Figure 3d) had higher classification and visualization efficiencies (e.g., processing time and target
extraction) than other strategies.
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Figure 3. Comparison between different color spaces ((a) LAB, (b) RG, (c) RB, and (d) GB) in the 
classification process. 

Two-dimensional Otsu processing was applied to convert the original images into binary  
images [30]. Figure 2 (an original image) was used as an example to show image processing steps of 
removing the nontarget area (Figure 4a), the generation of binary image (Figure 4b), and a further 
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the classification process.

Two-dimensional Otsu processing was applied to convert the original images into binary
images [30]. Figure 2 (an original image) was used as an example to show image processing
steps of removing the nontarget area (Figure 4a), the generation of binary image (Figure 4b), and
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a further process with morphological corrosion to remove the background (Figure 4c). It can be
observed that the nipple drinker pipe and the hanging chain of the tube feeder were blocking the top
view images of the chickens on the floor.

process with morphological corrosion to remove the background (Figure 4c). It can be observed that 
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of the chickens on the floor.  

 
Figure 4. The image processing steps. (a) Nontarget area removal; (b) Generation of binary image; (c) 
Morphological corrosion operation and background removal. 

In addition, the current method (i.e., the integration of GB color space and two-dimensional Otsu 
processing) was compared, in terms of its image processing speed and visualization efficiency, to K-
means [31] and Fuzzy C-Means (FCM) [32], two widely used classical clustering algorithms to 
identify static or mobile targets. The K-means algorithm takes k as the parameter to divide n objects 
into k clusters, such that the cluster has a high degree of similarity, while the similarities between 
clusters are low [31]. FCM is a clustering method based on fuzzy sets which determines the 
subordination of each data point to a center by membership degree [32].  
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each of the top view images caused by changes in the body weight/size over time. Different chicken 
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Morphological corrosion operation and background removal.

In addition, the current method (i.e., the integration of GB color space and two-dimensional
Otsu processing) was compared, in terms of its image processing speed and visualization efficiency,
to K-means [31] and Fuzzy C-Means (FCM) [32], two widely used classical clustering algorithms to
identify static or mobile targets. The K-means algorithm takes k as the parameter to divide n objects into
k clusters, such that the cluster has a high degree of similarity, while the similarities between clusters
are low [31]. FCM is a clustering method based on fuzzy sets which determines the subordination of
each data point to a center by membership degree [32].

2.3. Method for Counting Broiler Chickens

The top view area-based animal recognition method was used to determine the number of broilers
in different zones on the floor [33]. For a machine vision-based method, recognizing chickens and
their numbers in an image is based on chicken profile and specific area size, because they tend to
congregate together. The images collected each day were analyzed separately to avoid biases in each
of the top view images caused by changes in the body weight/size over time. Different chicken profiles
were randomly selected from images collected each day. The area of each chicken in the image was
quantified first, then the average was used as the reference area of the day to estimate the number of
chickens on the house floor, as expressed in Equation (1).

si =
si
s

, 1 ≤ i ≤ n (1)

where si is the area value of the ith area after normalization, si is the area value of the ith area in
the image, s is the reference value of a single broiler area, and n is the number of areas detected in
the image.

To determine the chicken number in each zone, the specific BP neural network algorithm was
developed and applied by referring existing methods [29,34]. A BP network is a typical supervised
neural network classifier which performs the function of linear or nonlinear mapping from input to
output to automatically extract reasonable solving rules through learning; it has certain generalization
abilities [25]. In the current study, the newly modified BP neural network model comprised an input
layer (area value of a chicken), a hidden layer, an output layer (the number of chicken), and a node
connection between the layers. On the MATLAB-R2019b software platform (MathWorks, Natick, MA),
the Feedforwardnet function was used to build a BP neural network.

We manually selected high quality images collected during d18–d35 (1926 images in total) to train
the model to identify broiler chickens in the drinking and feeding zones. Then, an additional 196
randomly selected images between d18 and d35 were used for verification. The quantification method
is expressed in Equations (2)–(6). According to different zones defined in Figure 2, chickens were
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considered to be in the drinking or feeding zone when more than 50% of their body was quantified in
the zone.

Dnum =
n∑

i=1

round(
Adi
Asc
×Ni) (2)

Fnum =
∑m

j=1
round(

A f j

Asc
×N j) (3)

Raccuracy =
Tnum

Ttruenum
(4)

Rmiss =
Tmiss

Ttruenum
(5)

R f alse =
T f alse

Ttruenum
(6)

where Dnum is the number of broiler chickens detected in the drinking zone, n is the number of extracted
areas containing chicken/chickens in the drinking zone, Adi is the size of the ith extracted area containing
chicken/chickens in the drinking zone, Acs is the standardized area size of a chicken in the image,
Ni is the number of broiler chicken associated area detected in the Adi, Fnum is the number of broiler
chickens detected in the feeding zone, m is the number of extracted areas containing chicken/chickens
in the feeding zone, Afj is the size of the j-th extracted area containing chicken/chickens in the feeding
zone, Nj is the number of broiler chicken associated area detected in the Adj, Raccuracy is the accuracy
rate of the number of broilers in the drinking area or feeding area, Tnum is the number of broiler
chickens detected automatically within the drinking or feeding zone, Ttruenum is the true number of
broiler chickens in the drinking or feeding zone, Rmiss is the missed detection rate, Tmiss is the number
of missed detections, Rfalse is the false detection rate, and Tfalse is the number of false detections.

2.4. Evaluation Criteria and Statistical Analysis

In order to measure the calculated deviation (i.e., difference between true and predicted results)
and test the new BP model in chicken number determination, three test criteria, i.e., correlation
coefficient R, mean square error (MSE), and mean absolute error (MAE), were applied [29].

R =

√√
1−

n∑
i=1

(yi − ŷi)
2

(yi − yi)
2 (7)

MSE =

∑n
i=1(yi − ŷi)

2

n
(8)

MAE =
1
n

∑n

i=1

∣∣∣yi − ŷi
∣∣∣

yi
(9)

where, yi is the actual number of broilers, ŷi is the number obtained by model fitting, yi is the average
of the actual number, and n is the number of samples.

A one-way ANOVA (MATLAB-R2019b) was used to test if there were significant differences in
the detection speed of broiler chickens on the same image between the method developed in the current
study (i.e., integration of GB Color Space and two-dimensional Otsu processing), K-means, and FCM.
The effect was considered to be significant when the p-value was less than 0.05.
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3. Results and Discussions

3.1. Individual Chicken Identification

Images collected on d18, d24, and d30 were randomly selected (30 images) to test the GB color
space classification for chicken identification. Figure 5 shows the identification results (i.e., profile
extraction of chicken/chickens) of the current method and the comparison with two other existing
methods, i.e., K-means and FCM. The current method extracted individual animals from original
images with a visualization efficiency (e.g., clearness and completeness of chicken areas) similar to
FCM method, but a better visualization effect than K-means method (p < 0.001). However, the current
method required less time (clustering speed) than FCM (p < 0.001) (Table 1). According to Figure 5B,
some target areas (i.e., chicken profiles) were lost during imaging processing with the K-means method.
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Figure 5. The visualization efficiency of three different methods (a, b, and c represent images taken 
on d18, d24 and d30, respectively). 

Figure 5. The visualization efficiency of three different methods (a, b, and c represent images taken on
d18, d24 and d30, respectively).
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Table 1. Comparison between different methods in processing (clustering) speed for 30 images on
different days.

Method
Images Clustering Running Time (s, Mean ± SD, n = 30)

d18 d24 d30

K-means 5.17 ± 0.69 5.04 ± 0.66 5.31 ± 0.87
FCM 1 16.79 ± 1.26 14.93 ± 0.86 12.99 ± 0.81

This study 2 0.24 ± 0.04 0.26 ± 0.03 0.24 ± 0.04
1 FCM-Fuzzy C-Means. 2 The integration of GB color space and two-dimensional Otsu processing.

3.2. Broiler Chicken BP Model Building/Training Results

From the images collected from d18 to d35 of chicken age, the video segments (6–8 min) in
each hour were used to train the BP neural network model. Finally, about 1926 images were used to
obtain 19,988 target chicken areas. Among these areas, about 6896 target areas qualified as good (i.e.,
area without overcrowding or occlusion) for building/training the broiler chicken BP network model.
The ratios of vectors for model training, validation, and testing were 0.70, 0.15, and 0.15, respectively.
The newly trained BP model had an MSE of 0.038, MAE of 0.178, and R of 0.996 (Figure 6).
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Figure 6. Input–output correlation in the newly developed BP neural network model for identifying
broiler chicken floor distribution (a,b,c, and d correspond to the training set, validation set, test set and
overall results, respectively. The horizontal axis Target is the actual number of chickens; and the vertical
axis Output is the number of BP model output; “O” represents the input data of the model; “Fit” is
the fitting relationship between input and output; “Y = T” means the training output value equal to
the target value).
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3.3. Chicken Distribution Identification with BP Model

3.3.1. Total Chicken Numbers Identification

Figure 7 shows the number of broiler chickens automatically counted by the BP model. Originally,
there were 21 chickens, but two were sampled from each pen for health evaluation, leaving 19 in each
pen. The BP model could identify the chicken distribution at different ages correctly by quantifying
the number of chickens in each zone (Figure 7a,b). However, broiler chickens could be blocked
by equipment including the feeder hanging chains and the water lines from the top view images
(Figure 7c,d).
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Figure 7. Number of chickens identified and their distribution determined with the newly developed 
BP model (chickens were three weeks of old in (a), (b) and 4 weeks old in (c), (d); cyan rectangles 
represent target extraction zone by BP method, and back rectangles represent missed target area 
(chicken); yellow numbers indicate true chicken number and behind indicate BP model recognized 
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The interference could be fixed after image background processing only if a part of a body was 
blocked (e.g., a chicken blocked by feeder chain was still recognizable, Figure 7a). Sometimes, the 
issue cannot be fixed if the chicken is mostly obscured (>50% area) (e.g., one chicken was missed in 
Figure 7b,d, respectively). The interference issues caused by physical barriers can be solved by using 
multiple cameras or a mobile camera. In addition, broiler chickens were observed spreading their 
wings and crowded together during data collection, which affected the accuracy of chicken counting 
(Figure 7c). For instance, there were only two broiler chickens in the bottom left area of Figure 7c, 
with one chicken spreading its wings, but this was misidentified as five chickens due to the expansion 
of the target area. Therefore, there is a need to improve the chicken identification efficiency of this 
model before counting can be applied in a commercial setting, where thousands of birds are usually 
crowded together. 

3.3.2. Chicken Distribution Identification in Drinking and Feeding Zones 

Figure 7. Number of chickens identified and their distribution determined with the newly developed
BP model (chickens were three weeks of old in (a), (b) and 4 weeks old in (c), (d); cyan rectangles
represent target extraction zone by BP method, and back rectangles represent missed target area
(chicken); yellow numbers indicate true chicken number and behind indicate BP model recognized
chicken).

The interference could be fixed after image background processing only if a part of a body
was blocked (e.g., a chicken blocked by feeder chain was still recognizable, Figure 7a). Sometimes,
the issue cannot be fixed if the chicken is mostly obscured (>50% area) (e.g., one chicken was missed in
Figure 7b,d, respectively). The interference issues caused by physical barriers can be solved by using
multiple cameras or a mobile camera. In addition, broiler chickens were observed spreading their
wings and crowded together during data collection, which affected the accuracy of chicken counting
(Figure 7c). For instance, there were only two broiler chickens in the bottom left area of Figure 7c,
with one chicken spreading its wings, but this was misidentified as five chickens due to the expansion
of the target area. Therefore, there is a need to improve the chicken identification efficiency of this
model before counting can be applied in a commercial setting, where thousands of birds are usually
crowded together.
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3.3.2. Chicken Distribution Identification in Drinking and Feeding Zones

Figure 8 shows the distribution of broiler chickens in feeding and drinking zones identified by
the BP model. For the same image, the model analyzed the total number of chickens in the pen first
(Figure 8a), and then quantified their distribution in each zone (Figure 8b). From Figure 8b, we can
ascertain that there were two birds in the drinking zone and 11 in the feeding zone. The rest (19 − 2 −
11 = 6) were considered to be in rest zone.

Figure 8 shows the distribution of broiler chickens in feeding and drinking zones identified by the 
BP model. For the same image, the model analyzed the total number of chickens in the pen first  
(Figure 8a), and then quantified their distribution in each zone (Figure 8b). From Figure 8b, we can 
ascertain that there were two birds in the drinking zone and 11 in the feeding zone. The rest  
(19 − 2 − 11 = 6) were considered to be in rest zone.  

 
Figure 8. Broiler chicken distribution in feeding and drinking zones as identified by the BP model.  
(a) total chicken tracked and identified; (b) chicken distribution in drinking and feeding zones. The 
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Figure 8. Broiler chicken distribution in feeding and drinking zones as identified by the BP model. (a)
total chicken tracked and identified; (b) chicken distribution in drinking and feeding zones. The big
red rectangle is the drinking zone, and the small red rectangles in this zone indicate the detected broiler
chickens. The yellow circle is the feeding area, and the yellow rectangles in the zone indicate detected
broiler chickens.

Table 2 shows details of the distribution analysis of 196 images randomly selected from images
collected between d18-d35 to verify the BP method. The identification accuracy rates for broiler chicken
distribution in the drinking and feeding zones were 0.9419 and 0.9544, respectively. The missed
detection rates were 0.0626 and 0.0498, respectively; this was primarily caused by chicken crowding
behavior and occlusion problems from the feeder hanging chains and water system (Figure 8). The false
detection rates were 0.0045 and 0.0037, respectively. The current method was developed using healthy
chickens. However, in the future, the model will be applied to chickens raised under several conditions
(e.g., diseases, heat stress, etc.) in order to develop real-time welfare-status evaluation ability.

Table 2. Test of the BP model on 196 images on identification of chicken distribution in
the feeding/drinking zones.

Zone True
Chickens 1

Detected
Chickens 2

Missed Detections [3] False
Detections

Rac Rmiss Rfalse
Crowding Occlusion Others

Drinking 671 632 8 32 2 3 0.9419 0.0626 0.0045

Feeding 823 785 8 26 7 3 0.9544 0.0498 0.0037
1 True chicken numbers were obtained manually by looking at 196 images; 2 Detected chicken numbers were
obtained by applying the newly developed BP model to analyze 196 images automatically; 3 Missed detections were
caused by multiple factors such as the crowding of chickens and occlusion by equipment such as feeder hanging
chains and water lines; Rac-identification accuracy rate of the number of broilers in the drinking/feeding zone, Rmiss
-missed detection rate, and Rfalse-false detection rate.

It is a technical challenge to apply only machine vision-based methods to judge individual eating
or drinking behavior in commercial broilers houses with thousands of chickens. In the current study,
we focused on the floor distribution patterns (i.e., real-time counts of bird numbers in the feeding and
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drinking zones), as this is technically quantifiable and the information is correlated to animal health and
welfare, as birds with underlying conditions such as lameness or high gait score tend to be less active and
stay closer to feeders/drinkers due to their limited mobility [10,13]. Our method is different from most
existing methods. The “eYeNamic” system, for instance, evaluates a gait score based on a group activity
index quantified according to pixel changes in continuously recorded photos/videos. The broiler house
is a physically challenging environment for vision-based monitoring due to equipment interference
and dust levels [35,36], and usually leads to poor image quality and results. In the long-term, we
plan to develop a mobile imaging system equipped with a global positioning system (GPS) to track
individual birds for their welfare/health based on their distribution patterns.

4. Conclusions

A machine vision-based method was developed and tested to identify broiler chicken floor
distributions, including the total number of chickens on the house floor and their distribution in
drinking and feeding zones. The following observations and conclusions were made from the current
study:

(1) Advanced image processing techniques of GB color space and two-dimensional Otsu processing
were integrated for image processing, which has a faster clustering speed than most existing
methods (e.g., K-means and FCM) (p < 0.001);

(2) The BP neutral network model developed to count the total number of birds on the floor and
their distribution in feeding and drinking zones had a correlation coefficient (R), mean square
error (MSE), and mean absolute error (MAE) of 0.996, 0.038, and 0.178, respectively;

(3) The machine vison-based method was tested with an accuracy rate of 0.9419 and 0.9544,
respectively. The missed detections were primarily caused by facility interferences such as
feeder hanging chains and water lines in the chicken images. These issues can be solved by using
multiple cameras or a mobile imaging operation.

Work is ongoing to identify chicken head posture and distance from feeder, drinker and litter
floor in order to evaluate real-time feeding, drinking, and foraging behaviors. The current findings
provide the basis for the development of an automatic system to monitor poultry floor distributions
and behavior in a commercial production system.
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